libreoffice-online/common/Util.hpp
Miklos Vajna 11897f2db7 Introduce Util::make_unique()
In the old code, if the evaluation first allocates the memory for the
raw pointer, then calls firstLine() and an exception is thrown before
the std::unique_ptr construction, then the memory is leaked. Using
make_unique() has the benefit of avoiding this problem.

Convert only a single usage, so the remaining places can be done as easy
hacks.

Change-Id: Iaf3d8051a8a0627a57fdf1196bde7d5f8612fcff
2020-10-08 09:53:37 +02:00

1237 lines
37 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#pragma once
#include <cassert>
#include <cerrno>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <atomic>
#include <functional>
#include <memory>
#include <mutex>
#include <set>
#include <sstream>
#include <string>
#include <map>
#include <utility>
#include <inttypes.h>
#include <memory.h>
#ifndef __linux
#include <thread>
#endif
#include <Poco/File.h>
#include <Poco/Path.h>
#include <Poco/RegularExpression.h>
#define LOK_USE_UNSTABLE_API
#include <LibreOfficeKit/LibreOfficeKitEnums.h>
#include <StringVector.hpp>
namespace Util
{
namespace rng
{
void reseed();
unsigned getNext();
/// Generate an array of random characters.
std::vector<char> getBytes(const size_t length);
/// Generate a string of random characters.
std::string getHexString(const size_t length);
/// Generate a hard random string of characters.
std::string getHardRandomHexString(const size_t length);
/// Generates a random string suitable for
/// file/directory names.
std::string getFilename(const size_t length);
}
/// Create randomized temporary directory in the root provided.
/// If root is empty, the current temp directory is used.
std::string createRandomTmpDir(std::string root = std::string());
#if !MOBILEAPP
/// Get number of threads in this process or -1 on error
int getProcessThreadCount();
/// Spawn a process if stdInput is non-NULL it contains a writable descriptor
/// to send data to the child.
int spawnProcess(const std::string &cmd, const StringVector &args,
const std::vector<int>* fdsToKeep = nullptr, int *stdInput = nullptr);
#endif
/// Hex to unsigned char
bool dataFromHexString(const std::string& hexString, std::vector<unsigned char>& data);
/// Encode an integral ID into a string, with padding support.
std::string encodeId(const std::uint64_t number, const int padding = 5);
/// Decode an integral ID from a string.
std::uint64_t decodeId(const std::string& str);
bool windowingAvailable();
#if !defined(BUILDING_TESTS) && !defined(KIT_IN_PROCESS) && !MOBILEAPP
/// Send a message to all clients.
void alertAllUsers(const std::string& msg);
/// Send a 'error:' message with the specified cmd and kind parameters to all connected
/// clients. This function can be called either in loolwsd or loolkit processes, even if only
/// loolwsd obviously has contact with the actual clients; in loolkit it will be forwarded to
/// loolwsd for redistribution. (This function must be implemented separately in each program
/// that uses it, it is not in Util.cpp.)
void alertAllUsers(const std::string& cmd, const std::string& kind);
#else
/// No-op implementation in the test programs
inline void alertAllUsers(const std::string&)
{
}
/// No-op implementation in the test programs
inline void alertAllUsers(const std::string&, const std::string&)
{
}
#endif
/// Assert that a lock is already taken.
template <typename T>
void assertIsLocked(const T& lock)
{
#ifdef NDEBUG
(void) lock;
#else
assert(lock.owns_lock());
#endif
}
inline void assertIsLocked(std::mutex& mtx)
{
#ifdef NDEBUG
(void) mtx;
#else
assert(!mtx.try_lock());
#endif
}
#if !MOBILEAPP
/// Print given number of bytes in human-understandable form (KB,MB, etc.)
std::string getHumanizedBytes(unsigned long nBytes);
/// Returns the total physical memory (in kB) available in the system
size_t getTotalSystemMemoryKb();
/// Returns the process PSS in KB (works only when we have perms for /proc/pid/smaps).
size_t getMemoryUsagePSS(const pid_t pid);
/// Returns the process RSS in KB.
size_t getMemoryUsageRSS(const pid_t pid);
/// Returns the RSS and PSS of the current process in KB.
/// Example: "procmemstats: pid=123 rss=12400 pss=566"
std::string getMemoryStats(FILE* file);
/// Reads from SMaps file Pss and Private_Dirty values and
/// returns them as a pair in the same order
std::pair<size_t, size_t> getPssAndDirtyFromSMaps(FILE* file);
size_t getCpuUsage(const pid_t pid);
size_t getStatFromPid(const pid_t pid, int ind);
/// Sets priorities for a given pid & the current thread
void setProcessAndThreadPriorities(const pid_t pid, int prio);
#endif
std::string replace(std::string s, const std::string& a, const std::string& b);
std::string formatLinesForLog(const std::string& s);
void setThreadName(const std::string& s);
const char *getThreadName();
#ifdef __linux
pid_t getThreadId();
#else
std::thread::id getThreadId();
#endif
/// Get version information
void getVersionInfo(std::string& version, std::string& hash);
///< A random hex string that identifies the current process.
std::string getProcessIdentifier();
std::string getVersionJSON();
/// Return a string that is unique across processes and calls.
std::string UniqueId();
// Extract all json entries into a map.
std::map<std::string, std::string> JsonToMap(const std::string& jsonString);
inline int hexDigitFromChar(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
else if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
else
return -1;
}
/// Dump a lineof data as hex
inline std::string stringifyHexLine(
const std::vector<char> &buffer,
unsigned int offset,
const unsigned int width = 32)
{
char scratch[64];
std::stringstream os;
for (unsigned int i = 0; i < width; i++)
{
if (i && (i % 8) == 0)
os << ' ';
if ((offset + i) < buffer.size())
sprintf (scratch, "%.2x ", (unsigned char)buffer[offset+i]);
else
sprintf (scratch, " ");
os << scratch;
}
os << " | ";
for (unsigned int i = 0; i < width; i++)
{
if ((offset + i) < buffer.size() && ::isprint(buffer[offset+i]))
sprintf (scratch, "%c", buffer[offset+i]);
else
sprintf (scratch, ".");
os << scratch;
}
return os.str();
}
/// Dump a string as hex by splitting on multiple lines per width.
/// Useful for debugging and logging data that contain non-printables.
inline std::string stringifyHexLine(const std::string& s, const std::size_t width = 16)
{
std::ostringstream oss;
for (std::size_t i = 0; i < s.size(); i += width)
{
const std::size_t rem = std::min(width, s.size() - i);
oss << stringifyHexLine(std::vector<char>(s.data(), s.data() + s.size()), i, rem);
oss << '\n';
}
return oss.str();
}
/// Dump data as hex and chars to stream
inline void dumpHex (std::ostream &os, const char *legend, const char *prefix,
const std::vector<char> &buffer, bool skipDup = true,
const unsigned int width = 32)
{
unsigned int j;
char scratch[64];
int skip = 0;
std::string lastLine;
os << legend;
for (j = 0; j < buffer.size() + width - 1; j += width)
{
sprintf (scratch, "%s0x%.4x ", prefix, j);
os << scratch;
std::string line = stringifyHexLine(buffer, j, width);
if (skipDup && lastLine == line)
skip++;
else {
if (skip > 0)
{
os << "... dup " << skip - 1 << "...";
skip = 0;
}
else
os << line;
}
lastLine.swap(line);
os << '\n';
}
os.flush();
}
inline void dumpHex (std::ostream &os, const char *legend, const char *prefix,
const std::string &str, bool skipDup = true,
const unsigned int width = 32)
{
std::vector<char> buffer(str.begin(), str.end());
dumpHex(os, legend, prefix, buffer, skipDup, width);
}
inline std::string dumpHex (const char *legend, const char *prefix,
const std::vector<char>::iterator &startIt,
const std::vector<char>::iterator &endIt,
bool skipDup = true, const unsigned int width = 32)
{
std::ostringstream oss;
std::vector<char> data(startIt, endIt);
dumpHex(oss, legend, prefix, data, skipDup, width);
return oss.str();
}
size_t findInVector(const std::vector<char>& tokens, const char *cstring);
/// Trim spaces from the left. Just spaces.
inline std::string& ltrim(std::string& s)
{
const size_t pos = s.find_first_not_of(' ');
if (pos != std::string::npos)
{
s = s.substr(pos);
}
return s;
}
/// Trim spaces from the left and copy. Just spaces.
inline std::string ltrimmed(const std::string& s)
{
const size_t pos = s.find_first_not_of(' ');
if (pos != std::string::npos)
{
return s.substr(pos);
}
return s;
}
inline std::string& trim(std::string& s, const char ch)
{
const size_t last = s.find_last_not_of(ch);
if (last != std::string::npos)
{
s = s.substr(0, last + 1);
}
else
{
s.clear();
}
return s;
}
/// Trim spaces from both left and right. Just spaces.
inline std::string& trim(std::string& s)
{
const size_t first = s.find_first_not_of(' ');
const size_t last = s.find_last_not_of(' ');
if (first != std::string::npos)
{
if (last != std::string::npos)
{
s = s.substr(first, last + 1 - first);
}
else
{
s = s.substr(first);
}
}
else
{
if (last != std::string::npos)
{
s = s.substr(0, last + 1);
}
else
{
s.clear();
}
}
return s;
}
/// Trim spaces from both left and right and copy. Just spaces.
inline std::string trimmed(const std::string& s)
{
const size_t first = s.find_first_not_of(' ');
const size_t last = s.find_last_not_of(' ');
if (first != std::string::npos)
{
if (last != std::string::npos)
{
return s.substr(first, last + 1 - first);
}
return s.substr(first);
}
if (last != std::string::npos)
{
return s.substr(0, last + 1);
}
return std::string();
}
/// Trim spaces from left and right. Just spaces.
inline std::string trimmed(const char* s)
{
return trimmed(std::string(s));
}
/// Return true iff s starts with t.
inline bool startsWith(const std::string& s, const std::string& t)
{
return s.length() >= t.length() && memcmp(s.c_str(), t.c_str(), t.length()) == 0;
}
/// Return true iff s starts with t.
inline bool startsWith(const std::string& s, const char* t)
{
if (t != nullptr && !s.empty())
{
const size_t len = std::strlen(t);
return s.length() >= len && memcmp(s.c_str(), t, len) == 0;
}
return false;
}
/// Tokenize delimited values until we hit new-line or the end.
inline void tokenize(const char* data, const std::size_t size, const char delimiter,
std::vector<StringToken>& tokens)
{
if (size == 0 || data == nullptr || *data == '\0')
return;
tokens.reserve(16);
const char* start = data;
const char* end = data;
for (std::size_t i = 0; i < size && data[i] != '\n'; ++i, ++end)
{
if (data[i] == delimiter)
{
if (start != end && *start != delimiter)
tokens.emplace_back(start - data, end - start);
start = end;
}
else if (*start == delimiter)
++start;
}
if (start != end && *start != delimiter && *start != '\n')
tokens.emplace_back(start - data, end - start);
}
/// Tokenize single-char delimited values until we hit new-line or the end.
inline StringVector tokenize(const char* data, const std::size_t size,
const char delimiter = ' ')
{
if (size == 0 || data == nullptr || *data == '\0')
return StringVector();
std::vector<StringToken> tokens;
tokenize(data, size, delimiter, tokens);
return StringVector(std::string(data, size), std::move(tokens));
}
/// Tokenize single-char delimited values until we hit new-line or the end.
inline StringVector tokenize(const std::string& s, const char delimiter = ' ')
{
if (s.empty())
return StringVector();
std::vector<StringToken> tokens;
tokenize(s.data(), s.size(), delimiter, tokens);
return StringVector(s, std::move(tokens));
}
/// Tokenize by the delimiter string.
inline StringVector tokenize(const std::string& s, const char* delimiter, int len = -1)
{
if (s.empty() || len == 0 || delimiter == nullptr || *delimiter == '\0')
return StringVector();
if (len < 0)
len = std::strlen(delimiter);
std::size_t start = 0;
std::size_t end = s.find(delimiter, start);
std::vector<StringToken> tokens;
tokens.reserve(16);
tokens.emplace_back(start, end - start);
start = end + len;
while (end != std::string::npos)
{
end = s.find(delimiter, start);
tokens.emplace_back(start, end - start);
start = end + len;
}
return StringVector(s, std::move(tokens));
}
inline StringVector tokenize(const std::string& s, const std::string& delimiter)
{
return tokenize(s, delimiter.data(), delimiter.size());
}
/** Tokenize based on any of the characters in 'delimiters'.
Ie. when there is '\n\r' in there, any of them means a delimiter.
In addition, trim the values so there are no leadiding or trailing spaces.
*/
StringVector tokenizeAnyOf(const std::string& s, const char* delimiters);
#ifdef IOS
inline void *memrchr(const void *s, int c, size_t n)
{
char *p = (char*)s + n - 1;
while (p >= (char*)s)
{
if (*p == c)
return p;
p--;
}
return nullptr;
}
#if 0
// Unit test for the above memrchr()
int main(int argc, char**argv)
{
int success = 1;
char *s;
char *p;
#define TEST(s_,c,n,e) \
s = s_; \
printf("memrchr(\"%s\",'%c',%d)=",s,c,n); \
p = memrchr(s, c, n); \
if (p) \
printf("\"%s\"", p); \
else \
printf("NULL"); \
if (p == e) \
printf(" OK\n"); \
else \
{ \
printf(" FAIL\n"); \
success = 0; \
}
TEST("abc", 'x', 0, NULL);
TEST("abc", 'x', 1, NULL);
TEST("abc", 'x', 3, NULL);
TEST("abc", 'a', 0, NULL);
TEST("abc", 'a', 1, s);
TEST("abc", 'a', 3, s);
TEST("abc", 'b', 0, NULL);
TEST("abc", 'b', 1, NULL);
TEST("abc", 'b', 2, s+1);
TEST("abc", 'b', 3, s+1);
TEST("abc", 'c', 0, NULL);
TEST("abc", 'c', 1, NULL);
TEST("abc", 'c', 2, NULL);
TEST("abc", 'c', 3, s+2);
if (success)
return 0;
else
return 1;
}
#endif
#endif
inline size_t getLastDelimiterPosition(const char* message, const int length, const char delim)
{
if (message && length > 0)
{
const char *founddelim = static_cast<const char *>(memrchr(message, delim, length));
const auto size = (founddelim == nullptr ? length : founddelim - message);
return size;
}
return 0;
}
/// Return the symbolic name for an errno value, or in decimal if not handled here.
inline std::string symbolicErrno(int e)
{
// Errnos from <asm-generic/errno-base.h> and <asm-generic/errno.h> on Linux.
switch (e)
{
case EPERM: return "EPERM";
case ENOENT: return "ENOENT";
case ESRCH: return "ESRCH";
case EINTR: return "EINTR";
case EIO: return "EIO";
case ENXIO: return "ENXIO";
case E2BIG: return "E2BIG";
case ENOEXEC: return "ENOEXEC";
case EBADF: return "EBADF";
case ECHILD: return "ECHILD";
case EAGAIN: return "EAGAIN";
case ENOMEM: return "ENOMEM";
case EACCES: return "EACCES";
case EFAULT: return "EFAULT";
case ENOTBLK: return "ENOTBLK";
case EBUSY: return "EBUSY";
case EEXIST: return "EEXIST";
case EXDEV: return "EXDEV";
case ENODEV: return "ENODEV";
case ENOTDIR: return "ENOTDIR";
case EISDIR: return "EISDIR";
case EINVAL: return "EINVAL";
case ENFILE: return "ENFILE";
case EMFILE: return "EMFILE";
case ENOTTY: return "ENOTTY";
case ETXTBSY: return "ETXTBSY";
case EFBIG: return "EFBIG";
case ENOSPC: return "ENOSPC";
case ESPIPE: return "ESPIPE";
case EROFS: return "EROFS";
case EMLINK: return "EMLINK";
case EPIPE: return "EPIPE";
case EDOM: return "EDOM";
case ERANGE: return "ERANGE";
case EDEADLK: return "EDEADLK";
case ENAMETOOLONG: return "ENAMETOOLONG";
case ENOLCK: return "ENOLCK";
case ENOSYS: return "ENOSYS";
case ENOTEMPTY: return "ENOTEMPTY";
case ELOOP: return "ELOOP";
case ENOMSG: return "ENOMSG";
case EIDRM: return "EIDRM";
#ifdef ECHRNG
case ECHRNG: return "ECHRNG";
#endif
#ifdef EL2NSYNC
case EL2NSYNC: return "EL2NSYNC";
#endif
#ifdef EL3HLT
case EL3HLT: return "EL3HLT";
#endif
#ifdef EL3RST
case EL3RST: return "EL3RST";
#endif
#ifdef ELNRNG
case ELNRNG: return "ELNRNG";
#endif
#ifdef EUNATCH
case EUNATCH: return "EUNATCH";
#endif
#ifdef ENOCSI
case ENOCSI: return "ENOCSI";
#endif
#ifdef EL2HLT
case EL2HLT: return "EL2HLT";
#endif
#ifdef EBADE
case EBADE: return "EBADE";
#endif
#ifdef EBADR
case EBADR: return "EBADR";
#endif
#ifdef EXFULL
case EXFULL: return "EXFULL";
#endif
#ifdef ENOANO
case ENOANO: return "ENOANO";
#endif
#ifdef EBADRQC
case EBADRQC: return "EBADRQC";
#endif
#ifdef EBADSLT
case EBADSLT: return "EBADSLT";
#endif
#ifdef EBFONT
case EBFONT: return "EBFONT";
#endif
case ENOSTR: return "ENOSTR";
case ENODATA: return "ENODATA";
case ETIME: return "ETIME";
case ENOSR: return "ENOSR";
#ifdef ENONET
case ENONET: return "ENONET";
#endif
#ifdef ENOPKG
case ENOPKG: return "ENOPKG";
#endif
case EREMOTE: return "EREMOTE";
case ENOLINK: return "ENOLINK";
#ifdef EADV
case EADV: return "EADV";
#endif
#ifdef ESRMNT
case ESRMNT: return "ESRMNT";
#endif
#ifdef ECOMM
case ECOMM: return "ECOMM";
#endif
case EPROTO: return "EPROTO";
case EMULTIHOP: return "EMULTIHOP";
#ifdef EDOTDOT
case EDOTDOT: return "EDOTDOT";
#endif
case EBADMSG: return "EBADMSG";
case EOVERFLOW: return "EOVERFLOW";
#ifdef ENOTUNIQ
case ENOTUNIQ: return "ENOTUNIQ";
#endif
#ifdef EBADFD
case EBADFD: return "EBADFD";
#endif
#ifdef EREMCHG
case EREMCHG: return "EREMCHG";
#endif
#ifdef ELIBACC
case ELIBACC: return "ELIBACC";
#endif
#ifdef ELIBBAD
case ELIBBAD: return "ELIBBAD";
#endif
#ifdef ELIBSCN
case ELIBSCN: return "ELIBSCN";
#endif
#ifdef ELIBMAX
case ELIBMAX: return "ELIBMAX";
#endif
#ifdef ELIBEXEC
case ELIBEXEC: return "ELIBEXEC";
#endif
case EILSEQ: return "EILSEQ";
#ifdef ERESTART
case ERESTART: return "ERESTART";
#endif
#ifdef ESTRPIPE
case ESTRPIPE: return "ESTRPIPE";
#endif
case EUSERS: return "EUSERS";
case ENOTSOCK: return "ENOTSOCK";
case EDESTADDRREQ: return "EDESTADDRREQ";
case EMSGSIZE: return "EMSGSIZE";
case EPROTOTYPE: return "EPROTOTYPE";
case ENOPROTOOPT: return "ENOPROTOOPT";
case EPROTONOSUPPORT: return "EPROTONOSUPPORT";
case ESOCKTNOSUPPORT: return "ESOCKTNOSUPPORT";
case EOPNOTSUPP: return "EOPNOTSUPP";
case EPFNOSUPPORT: return "EPFNOSUPPORT";
case EAFNOSUPPORT: return "EAFNOSUPPORT";
case EADDRINUSE: return "EADDRINUSE";
case EADDRNOTAVAIL: return "EADDRNOTAVAIL";
case ENETDOWN: return "ENETDOWN";
case ENETUNREACH: return "ENETUNREACH";
case ENETRESET: return "ENETRESET";
case ECONNABORTED: return "ECONNABORTED";
case ECONNRESET: return "ECONNRESET";
case ENOBUFS: return "ENOBUFS";
case EISCONN: return "EISCONN";
case ENOTCONN: return "ENOTCONN";
case ESHUTDOWN: return "ESHUTDOWN";
case ETOOMANYREFS: return "ETOOMANYREFS";
case ETIMEDOUT: return "ETIMEDOUT";
case ECONNREFUSED: return "ECONNREFUSED";
case EHOSTDOWN: return "EHOSTDOWN";
case EHOSTUNREACH: return "EHOSTUNREACH";
case EALREADY: return "EALREADY";
case EINPROGRESS: return "EINPROGRESS";
case ESTALE: return "ESTALE";
#ifdef EUCLEAN
case EUCLEAN: return "EUCLEAN";
#endif
#ifdef ENOTNAM
case ENOTNAM: return "ENOTNAM";
#endif
#ifdef ENAVAIL
case ENAVAIL: return "ENAVAIL";
#endif
#ifdef EISNAM
case EISNAM: return "EISNAM";
#endif
#ifdef EREMOTEIO
case EREMOTEIO: return "EREMOTEIO";
#endif
case EDQUOT: return "EDQUOT";
#ifdef ENOMEDIUM
case ENOMEDIUM: return "ENOMEDIUM";
#endif
#ifdef EMEDIUMTYPE
case EMEDIUMTYPE: return "EMEDIUMTYPE";
#endif
case ECANCELED: return "ECANCELED";
#ifdef ENOKEY
case ENOKEY: return "ENOKEY";
#endif
#ifdef EKEYEXPIRED
case EKEYEXPIRED: return "EKEYEXPIRED";
#endif
#ifdef EKEYREVOKED
case EKEYREVOKED: return "EKEYREVOKED";
#endif
#ifdef EKEYREJECTED
case EKEYREJECTED: return "EKEYREJECTED";
#endif
case EOWNERDEAD: return "EOWNERDEAD";
case ENOTRECOVERABLE: return "ENOTRECOVERABLE";
#ifdef ERFKILL
case ERFKILL: return "ERFKILL";
#endif
#ifdef EHWPOISON
case EHWPOISON: return "EHWPOISON";
#endif
default: return std::to_string(e);
}
}
inline size_t getDelimiterPosition(const char* message, const int length, const char delim)
{
if (message && length > 0)
{
const char *founddelim = static_cast<const char *>(std::memchr(message, delim, length));
const size_t size = (founddelim == nullptr ? length : founddelim - message);
return size;
}
return 0;
}
inline
std::string getDelimitedInitialSubstring(const char *message, const int length, const char delim)
{
const size_t size = getDelimiterPosition(message, length, delim);
return std::string(message, size);
}
/// Split a string in two at the delimiter, removing it.
inline
std::pair<std::string, std::string> split(const char* s, const int length, const char delimiter = ' ', bool removeDelim = true)
{
const size_t size = getDelimiterPosition(s, length, delimiter);
std::string after;
int after_pos = size + (removeDelim? 1: 0);
if (after_pos < length)
after = std::string(s + after_pos, length - after_pos);
return std::make_pair(std::string(s, size), after);
}
/// Split a string in two at the delimiter, removing it.
inline
std::pair<std::string, std::string> split(const std::string& s, const char delimiter = ' ', bool removeDelim = true)
{
return split(s.c_str(), s.size(), delimiter, removeDelim);
}
/// Split a string in two at the delimiter.
inline
std::pair<std::string, std::string> splitLast(const char* s, const int length, const char delimiter = ' ', bool removeDelim = true)
{
const size_t size = getLastDelimiterPosition(s, length, delimiter);
std::string after;
int after_pos = size + (removeDelim? 1: 0);
if (after_pos < length)
after = std::string(s + after_pos, length - after_pos);
return std::make_pair(std::string(s, size), after);
}
/// Split a string in two at the delimiter, removing it.
inline
std::pair<std::string, std::string> splitLast(const std::string& s, const char delimiter = ' ', bool removeDelim = true)
{
return splitLast(s.c_str(), s.size(), delimiter, removeDelim);
}
/// Append a length bytes to a vector, or strlen of data as a C string if not provided
/// returns count of bytes appended.
inline void vectorAppend(std::vector<char> &vector, const char *data, ssize_t length = -1)
{
size_t vlen = vector.size();
if (!data)
{
return;
}
size_t dataLen = length;
if (length < 0)
dataLen = strlen(data);
vector.resize(vlen+dataLen);
std::memcpy(vector.data() + vlen, data, dataLen);
}
/// Append a number as hexadecimal to a vector
inline void vectorAppendHex(std::vector<char> &vector, uint64_t number)
{
char output[32];
sprintf(output, "%" PRIx64, number);
vectorAppend(vector, output);
}
/// Splits a URL into path (with protocol), filename, extension, parameters.
/// All components are optional, depending on what the URL represents (can be a unix path).
std::tuple<std::string, std::string, std::string, std::string> splitUrl(const std::string& url);
/// Check for the URI scheme validity.
/// For now just a basic sanity check, can be extended if necessary.
bool isValidURIScheme(const std::string& scheme);
/// Check for the URI host validity.
/// For now just a basic sanity check, can be extended if necessary.
bool isValidURIHost(const std::string& host);
/// Anonymize a sensitive string to avoid leaking it.
/// Called on strings to be logged or exposed.
std::string anonymize(const std::string& text, const std::uint64_t nAnonymizationSalt);
/// Sets the anonymized version of a given plain-text string.
/// After this, 'anonymize(plain)' will return 'anonymized'.
void mapAnonymized(const std::string& plain, const std::string& anonymized);
/// Anonymize the basename of filenames only, preserving the path and extension.
std::string anonymizeUrl(const std::string& url, const std::uint64_t nAnonymizationSalt);
/// Extract and return the filename given a url or path.
std::string getFilenameFromURL(const std::string& url);
/// Given one or more patterns to allow, and one or more to deny,
/// the match member will return true if, and only if, the subject
/// matches the allowed list, but not the deny.
/// By default, everything is denied.
class RegexListMatcher
{
public:
RegexListMatcher() :
_allowByDefault(false)
{
}
RegexListMatcher(const bool allowByDefault) :
_allowByDefault(allowByDefault)
{
}
RegexListMatcher(std::initializer_list<std::string> allowed) :
_allowByDefault(false),
_allowed(allowed)
{
}
RegexListMatcher(std::initializer_list<std::string> allowed,
std::initializer_list<std::string> denied) :
_allowByDefault(false),
_allowed(allowed),
_denied(denied)
{
}
RegexListMatcher(const bool allowByDefault,
std::initializer_list<std::string> denied) :
_allowByDefault(allowByDefault),
_denied(denied)
{
}
void allow(const std::string& pattern) { _allowed.insert(pattern); }
void deny(const std::string& pattern)
{
_allowed.erase(pattern);
_denied.insert(pattern);
}
void clear()
{
_allowed.clear();
_denied.clear();
}
bool match(const std::string& subject) const
{
return (_allowByDefault || match(_allowed, subject)) && !match(_denied, subject);
}
private:
static bool match(const std::set<std::string>& set, const std::string& subject)
{
if (set.find(subject) != set.end())
{
return true;
}
// Not a perfect match, try regex.
for (const auto& value : set)
{
try
{
// Not performance critical to warrant caching.
Poco::RegularExpression re(value, Poco::RegularExpression::RE_CASELESS);
Poco::RegularExpression::Match reMatch;
// Must be a full match.
if (re.match(subject, reMatch) && reMatch.offset == 0 && reMatch.length == subject.size())
{
return true;
}
}
catch (const std::exception& exc)
{
// Nothing to do; skip.
}
}
return false;
}
private:
const bool _allowByDefault;
std::set<std::string> _allowed;
std::set<std::string> _denied;
};
/// A logical constant that is allowed to initialize
/// exactly once and checks usage before initialization.
template <typename T>
class RuntimeConstant
{
T _value;
std::atomic<bool> _initialized;
public:
RuntimeConstant()
: _value()
, _initialized(false)
{
}
/// Use a compile-time const instead.
RuntimeConstant(const T& value) = delete;
const T& get()
{
if (_initialized)
{
return _value;
}
throw std::runtime_error("RuntimeConstant instance read before being initialized.");
}
void set(const T& value)
{
assert(!_initialized);
_initialized = true;
_value = value;
}
};
//// Return current time in HTTP format.
std::string getHttpTimeNow();
//// Return time in HTTP format.
std::string getHttpTime(std::chrono::system_clock::time_point time);
//// Return timestamp of file
std::chrono::system_clock::time_point getFileTimestamp(const std::string& str_path);
//// Return time in ISO8061 fraction format
std::string getIso8601FracformatTime(std::chrono::system_clock::time_point time);
/// Convert a time_point to iso8601 formatted string.
std::string time_point_to_iso8601(std::chrono::system_clock::time_point tp);
/// Convert time from ISO8061 fraction format
std::chrono::system_clock::time_point iso8601ToTimestamp(const std::string& iso8601Time, const std::string& logName);
/// conversion from steady_clock for debugging / tracing
std::string getSteadyClockAsString(const std::chrono::steady_clock::time_point &time);
/// Automatically execute code at end of current scope.
/// Used for exception-safe code.
class ScopeGuard
{
public:
template <typename T>
explicit ScopeGuard(T const &func) : m_func(func) {}
~ScopeGuard()
{
if (m_func)
m_func();
}
private:
ScopeGuard(const ScopeGuard &) = delete;
ScopeGuard &operator=(const ScopeGuard &) = delete;
std::function<void()> m_func;
};
/**
* Avoid using the configuration layer and rely on defaults which is only useful for special
* test tool targets (typically fuzzing) where start-up speed is critical.
*/
bool isFuzzing();
/**
* Splits string into vector<string>. Does not accept referenced variables for easy
* usage like (splitString("test", ..)) or (splitString(getStringOnTheFly(), ..))
*/
inline std::vector<std::string> splitStringToVector(const std::string& str, const char delim)
{
size_t start;
size_t end = 0;
std::vector<std::string> result;
while ((start = str.find_first_not_of(delim, end)) != std::string::npos)
{
end = str.find(delim, start);
result.emplace_back(str.substr(start, end - start));
}
return result;
}
void setApplicationPath(const std::string& path);
std::string getApplicationPath();
/**
* Converts vector of strings to map. Strings should have formed like this: key + delimiter + value.
* In case of a misformed string or zero length vector, passes that item and warns the developer.
*/
std::map<std::string, std::string> stringVectorToMap(std::vector<std::string> sVector, const char delimiter);
#if !MOBILEAPP
// If OS is not mobile, it must be Linux.
std::string getLinuxVersion();
#endif
/// Convert a string to 32-bit signed int.
/// Returs the parsed value and a boolean indiciating success or failure.
inline std::pair<std::int32_t, bool> i32FromString(const std::string& input)
{
const char* str = input.data();
char* endptr = nullptr;
const auto value = std::strtol(str, &endptr, 10);
return std::make_pair(value, endptr > str && errno != ERANGE);
}
/// Convert a string to 32-bit signed int. On failure, returns the default
/// value, and sets the bool to false (to signify that parsing had failed).
inline std::pair<std::int32_t, bool> i32FromString(const std::string& input,
const std::int32_t def)
{
const auto pair = i32FromString(input);
return pair.second ? pair : std::make_pair(def, false);
}
/// Convert a string to 32-bit unsigned int.
/// Returs the parsed value and a boolean indiciating success or failure.
inline std::pair<std::uint32_t, bool> u32FromString(const std::string& input)
{
const char* str = input.data();
char* endptr = nullptr;
const auto value = std::strtoul(str, &endptr, 10);
return std::make_pair(value, endptr > str && errno != ERANGE);
}
/// Convert a string to 32-bit usigned int. On failure, returns the default
/// value, and sets the bool to false (to signify that parsing had failed).
inline std::pair<std::uint32_t, bool> u32FromString(const std::string& input,
const std::uint32_t def)
{
const auto pair = u32FromString(input);
return pair.second ? pair : std::make_pair(def, false);
}
/// Convert a string to 64-bit signed int.
/// Returs the parsed value and a boolean indiciating success or failure.
inline std::pair<std::int64_t, bool> i64FromString(const std::string& input)
{
const char* str = input.data();
char* endptr = nullptr;
const auto value = std::strtol(str, &endptr, 10);
return std::make_pair(value, endptr > str && errno != ERANGE);
}
/// Convert a string to 64-bit signed int. On failure, returns the default
/// value, and sets the bool to false (to signify that parsing had failed).
inline std::pair<std::int64_t, bool> i64FromString(const std::string& input,
const std::int64_t def)
{
const auto pair = i64FromString(input);
return pair.second ? pair : std::make_pair(def, false);
}
/// Convert a string to 64-bit unsigned int.
/// Returs the parsed value and a boolean indiciating success or failure.
inline std::pair<std::uint64_t, bool> u64FromString(const std::string& input)
{
const char* str = input.data();
char* endptr = nullptr;
const auto value = std::strtoul(str, &endptr, 10);
return std::make_pair(value, endptr > str && errno != ERANGE);
}
/// Convert a string to 64-bit usigned int. On failure, returns the default
/// value, and sets the bool to false (to signify that parsing had failed).
inline std::pair<std::uint64_t, bool> u64FromString(const std::string& input,
const std::uint64_t def)
{
const auto pair = u64FromString(input);
return pair.second ? pair : std::make_pair(def, false);
}
/// Get system_clock now in miliseconds.
inline int64_t getNowInMS()
{
return std::chrono::time_point_cast<std::chrono::milliseconds>(std::chrono::system_clock::now()).time_since_epoch().count();
}
/**
* Constructs an object of type T and wraps it in a std::unique_ptr.
*
* Can be replaced by std::make_unique when we allow C++14.
*/
template<typename T, typename... Args>
typename std::unique_ptr<T> make_unique(Args&& ... args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
} // end namespace Util
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */