office-gobmx/hwpfilter/source/solver.cpp

960 lines
20 KiB
C++
Raw Normal View History

2003-10-15 08:44:37 -05:00
/*************************************************************************
*
* $RCSfile: solver.cpp,v $
*
* $Revision: 1.1 $
*
* last change: $Author: dvo $ $Date: 2003-10-15 14:42:05 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2001 by Mizi Research Inc.
* Copyright 2003 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Mizi Research Inc.
*
* Copyright: 2001 by Mizi Research Inc.
* Copyright: 2003 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#include <math.h>
#include "solver.h"
//---------------------------------------------------------------------------
float** mgcLinearSystem::NewMatrix (int N)
{
float** A = new float*[N];
if ( !A )
return 0;
for (int row = 0; row < N; row++)
{
A[row] = new float[N];
if ( !A[row] )
{
for (int i = 0; i < row; i++)
delete[] A[i];
return 0;
}
for (int col = 0; col < N; col++)
A[row][col] = 0;
}
return A;
}
//---------------------------------------------------------------------------
void mgcLinearSystem::DeleteMatrix (int N, float** A)
{
for (int row = 0; row < N; row++)
delete[] A[row];
delete[] A;
}
//---------------------------------------------------------------------------
float* mgcLinearSystem::NewVector (int N)
{
float* B = new float[N];
if ( !B )
return 0;
for (int row = 0; row < N; row++)
B[row] = 0;
return B;
}
//---------------------------------------------------------------------------
void mgcLinearSystem::DeleteVector (int , float* B)
{
delete[] B;
}
//---------------------------------------------------------------------------
int mgcLinearSystem::Inverse (int n, float** a)
{
int* indxc = new int[n];
int* indxr = new int[n];
int* ipiv = new int[n];
int i, j, k, irow, icol;
float big, pivinv, save;
for (j = 0; j < n; j++)
ipiv[j] = 0;
for (i = 0; i < n; i++)
{
big = 0;
for (j = 0; j < n; j++)
{
if ( ipiv[j] != 1 )
{
for (k = 0; k < n; k++)
{
if ( ipiv[k] == 0 )
{
if ( fabs(a[j][k]) >= big )
{
big = (float)fabs(a[j][k]);
irow = j;
icol = k;
}
}
else if ( ipiv[k] > 1 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
}
}
}
ipiv[icol]++;
if ( irow != icol )
{
float* rowptr = a[irow];
a[irow] = a[icol];
a[icol] = rowptr;
}
indxr[i] = irow;
indxc[i] = icol;
if ( a[icol][icol] == 0 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
pivinv = 1/a[icol][icol];
a[icol][icol] = 1;
for (k = 0; k < n; k++)
a[icol][k] *= pivinv;
for (j = 0; j < n; j++)
{
if ( j != icol )
{
save = a[j][icol];
a[j][icol] = 0;
for (k = 0; k < n; k++)
a[j][k] -= a[icol][k]*save;
}
}
}
for (j = n-1; j >= 0; j--)
{
if ( indxr[j] != indxc[j] )
{
for (k = 0; k < n; k++)
{
save = a[k][indxr[j]];
a[k][indxr[j]] = a[k][indxc[j]];
a[k][indxc[j]] = save;
}
}
}
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystem::Solve (int n, float** a, float* b)
{
int* indxc = new int[n];
if ( !indxc )
return 0;
int* indxr = new int[n];
if ( !indxr )
{
delete[] indxc;
return 0;
}
int* ipiv = new int[n];
if ( !ipiv ) {
delete[] indxc;
delete[] indxr;
return 0;
}
int i, j, k, irow, icol;
float big, pivinv, save;
for (j = 0; j < n; j++)
ipiv[j] = 0;
for (i = 0; i < n; i++)
{
big = 0;
for (j = 0; j < n; j++)
{
if ( ipiv[j] != 1 )
{
for (k = 0; k < n; k++)
{
if ( ipiv[k] == 0 )
{
if ( (float)fabs(a[j][k]) >= big )
{
big = (float)fabs(a[j][k]);
irow = j;
icol = k;
}
}
else if ( ipiv[k] > 1 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
}
}
}
ipiv[icol]++;
if ( irow != icol )
{
float* rowptr = a[irow];
a[irow] = a[icol];
a[icol] = rowptr;
save = b[irow];
b[irow] = b[icol];
b[icol] = save;
}
indxr[i] = irow;
indxc[i] = icol;
if ( a[icol][icol] == 0 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
pivinv = 1/a[icol][icol];
a[icol][icol] = 1;
for (k = 0; k < n; k++)
a[icol][k] *= pivinv;
b[icol] *= pivinv;
for (j = 0; j < n; j++)
{
if ( j != icol )
{
save = a[j][icol];
a[j][icol] = 0;
for (k = 0; k < n; k++)
a[j][k] -= a[icol][k]*save;
b[j] -= b[icol]*save;
}
}
}
for (j = n-1; j >= 0; j--)
{
if ( indxr[j] != indxc[j] )
{
for (k = 0; k < n; k++)
{
save = a[k][indxr[j]];
a[k][indxr[j]] = a[k][indxc[j]];
a[k][indxc[j]] = save;
}
}
}
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystem::SolveTri (int n, float* a, float* b, float* c,
float* r, float* u)
{
if ( b[0] == 0 )
return 0;
float* gam = new float[n-1];
if ( !gam )
return 0;
float bet = b[0];
u[0] = r[0]/bet;
int i, j;
for (i = 0, j = 1; j < n; i++, j++)
{
gam[i] = c[i]/bet;
bet = b[j]-a[i]*gam[i];
if ( bet == 0 )
{
delete[] gam;
return 0;
}
u[j] = (r[j]-a[i]*u[i])/bet;
}
for (i = n-1, j = n-2; j >= 0; i--, j--)
u[j] -= gam[j]*u[i];
delete[] gam;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystem::SolveConstTri (int n, float a, float b, float c,
float* r, float* u)
{
if ( b == 0 )
return 0;
float* gam = new float[n-1];
if ( !gam )
return 0;
float bet = b;
u[0] = r[0]/bet;
int i, j;
for (i = 0, j = 1; j < n; i++, j++)
{
gam[i] = c/bet;
bet = b-a*gam[i];
if ( bet == 0 )
{
delete[] gam;
return 0;
}
u[j] = (r[j]-a*u[i])/bet;
}
for (i = n-1, j = n-2; j >= 0; i--, j--)
u[j] -= gam[j]*u[i];
delete[] gam;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystem::SolveSymmetric (int n, float** A, float* b)
{
// A = L D L^t decomposition with diagonal terms of L equal to 1
// Algorithm stores D terms in A[i][i] and off-diagonal L terms in
// A[i][j] for i > j. (G. Golub and C. Van Loan, Matrix Computations)
const float tolerance = 1e-06f;
int i, j, k;
float* v = new float[n];
if ( !v )
return 0;
for (j = 0; j < n; j++)
{
for (i = 0; i < j; i++)
v[i] = A[j][i]*A[i][i];
v[j] = A[j][j];
for (i = 0; i < j; i++)
v[j] -= A[j][i]*v[i];
A[j][j] = v[j];
if ( fabs(v[j]) <= tolerance )
{
delete[] v;
return 0;
}
for (i = j+1; i < n; i++)
{
for (k = 0; k < j; k++)
A[i][j] -= A[i][k]*v[k];
A[i][j] /= v[j];
}
}
delete[] v;
// Solve Ax = b.
// Forward substitution: Let z = DL^t x, then Lz = b. Algorithm
// stores z terms in b vector.
for (i = 0; i < n; i++)
{
for (j = 0; j < i; j++)
b[i] -= A[i][j]*b[j];
}
// Diagonal division: Let y = L^t x, then Dy = z. Algorithm stores
// y terms in b vector.
for (i = 0; i < n; i++)
{
if ( fabs(A[i][i]) <= tolerance )
return 0;
b[i] /= A[i][i];
}
// Back substitution: Solve L^t x = y. Algorithm stores x terms in
// b vector.
for (i = n-2; i >= 0; i--)
{
for (j = i+1; j < n; j++)
b[i] -= A[j][i]*b[j];
}
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystem::SymmetricInverse (int n, float** A, float** Ainv)
{
// Same algorithm as SolveSymmetric, but applied simultaneously to
// columns of identity matrix.
int i, j, k;
float* v = new float[n];
if ( !v )
return 0;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
Ainv[i][j] = ( i != j ? 0.0f : 1.0f );
}
for (j = 0; j < n; j++)
{
for (i = 0; i < j; i++)
v[i] = A[j][i]*A[i][i];
v[j] = A[j][j];
for (i = 0; i < j; i++)
v[j] -= A[j][i]*v[i];
A[j][j] = v[j];
for (i = j+1; i < n; i++)
{
for (k = 0; k < j; k++)
A[i][j] -= A[i][k]*v[k];
A[i][j] /= v[j];
}
}
delete[] v;
for (int col = 0; col < n; col++)
{
// forward substitution
for (i = 0; i < n; i++)
{
for (j = 0; j < i; j++)
Ainv[i][col] -= A[i][j]*Ainv[j][col];
}
// diagonal division
const float tolerance = 1e-06f;
for (i = 0; i < n; i++)
{
if ( fabs(A[i][i]) <= tolerance )
return 0;
Ainv[i][col] /= A[i][i];
}
// back substitution
for (i = n-2; i >= 0; i--)
{
for (j = i+1; j < n; j++)
Ainv[i][col] -= A[j][i]*Ainv[j][col];
}
}
return 1;
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
double** mgcLinearSystemD::NewMatrix (int N)
{
double** A = new double*[N];
if ( !A )
return 0;
for (int row = 0; row < N; row++)
{
A[row] = new double[N];
if ( !A[row] )
{
for (int i = 0; i < row; i++)
delete[] A[i];
return 0;
}
for (int col = 0; col < N; col++)
A[row][col] = 0;
}
return A;
}
//---------------------------------------------------------------------------
void mgcLinearSystemD::DeleteMatrix (int N, double** A)
{
for (int row = 0; row < N; row++)
delete[] A[row];
delete[] A;
}
//---------------------------------------------------------------------------
double* mgcLinearSystemD::NewVector (int N)
{
double* B = new double[N];
if ( !B )
return 0;
for (int row = 0; row < N; row++)
B[row] = 0;
return B;
}
//---------------------------------------------------------------------------
void mgcLinearSystemD::DeleteVector (int , double* B)
{
delete[] B;
}
//---------------------------------------------------------------------------
int mgcLinearSystemD::Inverse (int n, double** a)
{
int* indxc = new int[n];
int* indxr = new int[n];
int* ipiv = new int[n];
int i, j, k, irow, icol;
double big, pivinv, save;
for (j = 0; j < n; j++)
ipiv[j] = 0;
for (i = 0; i < n; i++)
{
big = 0;
for (j = 0; j < n; j++)
{
if ( ipiv[j] != 1 )
{
for (k = 0; k < n; k++)
{
if ( ipiv[k] == 0 )
{
if ( fabs(a[j][k]) >= big )
{
big = fabs(a[j][k]);
irow = j;
icol = k;
}
}
else if ( ipiv[k] > 1 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
}
}
}
ipiv[icol]++;
if ( irow != icol )
{
double* rowptr = a[irow];
a[irow] = a[icol];
a[icol] = rowptr;
}
indxr[i] = irow;
indxc[i] = icol;
if ( a[icol][icol] == 0 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
pivinv = 1/a[icol][icol];
a[icol][icol] = 1;
for (k = 0; k < n; k++)
a[icol][k] *= pivinv;
for (j = 0; j < n; j++)
{
if ( j != icol )
{
save = a[j][icol];
a[j][icol] = 0;
for (k = 0; k < n; k++)
a[j][k] -= a[icol][k]*save;
}
}
}
for (j = n-1; j >= 0; j--)
{
if ( indxr[j] != indxc[j] )
{
for (k = 0; k < n; k++)
{
save = a[k][indxr[j]];
a[k][indxr[j]] = a[k][indxc[j]];
a[k][indxc[j]] = save;
}
}
}
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystemD::Solve (int n, double** a, double* b)
{
int* indxc = new int[n];
if ( !indxc )
return 0;
int* indxr = new int[n];
if ( !indxr ) {
delete[] indxc;
return 0;
}
int* ipiv = new int[n];
if ( !ipiv ) {
delete[] indxc;
delete[] indxr;
return 0;
}
int i, j, k, irow, icol;
double big, pivinv, save;
for (j = 0; j < n; j++)
ipiv[j] = 0;
for (i = 0; i < n; i++)
{
big = 0;
for (j = 0; j < n; j++)
{
if ( ipiv[j] != 1 )
{
for (k = 0; k < n; k++)
{
if ( ipiv[k] == 0 )
{
if ( fabs(a[j][k]) >= big )
{
big = fabs(a[j][k]);
irow = j;
icol = k;
}
}
else if ( ipiv[k] > 1 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
}
}
}
ipiv[icol]++;
if ( irow != icol )
{
double* rowptr = a[irow];
a[irow] = a[icol];
a[icol] = rowptr;
save = b[irow];
b[irow] = b[icol];
b[icol] = save;
}
indxr[i] = irow;
indxc[i] = icol;
if ( a[icol][icol] == 0 )
{
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 0;
}
pivinv = 1/a[icol][icol];
a[icol][icol] = 1;
for (k = 0; k < n; k++)
a[icol][k] *= pivinv;
b[icol] *= pivinv;
for (j = 0; j < n; j++)
{
if ( j != icol )
{
save = a[j][icol];
a[j][icol] = 0;
for (k = 0; k < n; k++)
a[j][k] -= a[icol][k]*save;
b[j] -= b[icol]*save;
}
}
}
for (j = n-1; j >= 0; j--)
{
if ( indxr[j] != indxc[j] )
{
for (k = 0; k < n; k++)
{
save = a[k][indxr[j]];
a[k][indxr[j]] = a[k][indxc[j]];
a[k][indxc[j]] = save;
}
}
}
delete[] ipiv;
delete[] indxr;
delete[] indxc;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystemD::SolveTri (int n, double* a, double* b, double* c,
double* r, double* u)
{
if ( b[0] == 0 )
return 0;
double* gam = new double[n-1];
if ( !gam )
return 0;
double bet = b[0];
u[0] = r[0]/bet;
int i, j;
for (i = 0, j = 1; j < n; i++, j++)
{
gam[i] = c[i]/bet;
bet = b[j]-a[i]*gam[i];
if ( bet == 0 )
{
delete[] gam;
return 0;
}
u[j] = (r[j]-a[i]*u[i])/bet;
}
for (i = n-1, j = n-2; j >= 0; i--, j--)
u[j] -= gam[j]*u[i];
delete[] gam;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystemD::SolveConstTri (int n, double a, double b, double c,
double* r, double* u)
{
if ( b == 0 )
return 0;
double* gam = new double[n-1];
if ( !gam )
return 0;
double bet = b;
u[0] = r[0]/bet;
int i, j;
for (i = 0, j = 1; j < n; i++, j++)
{
gam[i] = c/bet;
bet = b-a*gam[i];
if ( bet == 0 )
{
delete[] gam;
return 0;
}
u[j] = (r[j]-a*u[i])/bet;
}
for (i = n-1, j = n-2; j >= 0; i--, j--)
u[j] -= gam[j]*u[i];
delete[] gam;
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystemD::SolveSymmetric (int n, double** A, double* b)
{
// A = L D L^t decomposition with diagonal terms of L equal to 1
// Algorithm stores D terms in A[i][i] and off-diagonal L terms in
// A[i][j] for i > j. (G. Golub and C. Van Loan, Matrix Computations)
const double tolerance = 1e-06;
int i, j, k;
double* v = new double[n];
if ( !v )
return 0;
for (j = 0; j < n; j++)
{
for (i = 0; i < j; i++)
v[i] = A[j][i]*A[i][i];
v[j] = A[j][j];
for (i = 0; i < j; i++)
v[j] -= A[j][i]*v[i];
A[j][j] = v[j];
if ( fabs(v[j]) <= tolerance )
{
delete[] v;
return 0;
}
for (i = j+1; i < n; i++)
{
for (k = 0; k < j; k++)
A[i][j] -= A[i][k]*v[k];
A[i][j] /= v[j];
}
}
delete[] v;
// Solve Ax = b.
// Forward substitution: Let z = DL^t x, then Lz = b. Algorithm
// stores z terms in b vector.
for (i = 0; i < n; i++)
{
for (j = 0; j < i; j++)
b[i] -= A[i][j]*b[j];
}
// Diagonal division: Let y = L^t x, then Dy = z. Algorithm stores
// y terms in b vector.
for (i = 0; i < n; i++)
{
if ( fabs(A[i][i]) <= tolerance )
return 0;
b[i] /= A[i][i];
}
// Back substitution: Solve L^t x = y. Algorithm stores x terms in
// b vector.
for (i = n-2; i >= 0; i--)
{
for (j = i+1; j < n; j++)
b[i] -= A[j][i]*b[j];
}
return 1;
}
//---------------------------------------------------------------------------
int mgcLinearSystemD::SymmetricInverse (int n, double** A, double** Ainv)
{
// Same algorithm as SolveSymmetric, but applied simultaneously to
// columns of identity matrix.
int i, j, k;
double* v = new double[n];
if ( !v )
return 0;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
Ainv[i][j] = ( i != j ? 0 : 1 );
}
for (j = 0; j < n; j++)
{
for (i = 0; i < j; i++)
v[i] = A[j][i]*A[i][i];
v[j] = A[j][j];
for (i = 0; i < j; i++)
v[j] -= A[j][i]*v[i];
A[j][j] = v[j];
for (i = j+1; i < n; i++)
{
for (k = 0; k < j; k++)
A[i][j] -= A[i][k]*v[k];
A[i][j] /= v[j];
}
}
delete[] v;
for (int col = 0; col < n; col++)
{
// forward substitution
for (i = 0; i < n; i++)
{
for (j = 0; j < i; j++)
Ainv[i][col] -= A[i][j]*Ainv[j][col];
}
// diagonal division
const double tolerance = 1e-06;
for (i = 0; i < n; i++)
{
if ( fabs(A[i][i]) <= tolerance )
return 0;
Ainv[i][col] /= A[i][i];
}
// back substitution
for (i = n-2; i >= 0; i--)
{
for (j = i+1; j < n; j++)
Ainv[i][col] -= A[j][i]*Ainv[j][col];
}
}
return 1;
}
//---------------------------------------------------------------------------