office-gobmx/registry/tools/regcompare.cxx

1916 lines
65 KiB
C++
Raw Normal View History

2001-02-15 09:01:07 -06:00
/*************************************************************************
*
* $RCSfile: regcompare.cxx,v $
*
* $Revision: 1.1 $
*
* last change: $Author: jsc $ $Date: 2001-02-15 16:01:07 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#include <stdio.h>
#include <set>
#ifndef _REGISTRY_REGISTRY_HXX_
#include "registry/registry.hxx"
#endif
#ifndef _REGISTRY_REFLREAD_HXX_
#include "registry/reflread.hxx"
#endif
#ifndef _RTL_USTRING_HXX_
#include <rtl/ustring.hxx>
#endif
#ifndef _RTL_ALLOC_H_
#include <rtl/alloc.h>
#endif
using namespace ::rtl;
#define U2S( s ) \
OUStringToOString(s, RTL_TEXTENCODING_UTF8).getStr()
#define S2U( s ) \
OStringToOUString(s, RTL_TEXTENCODING_UTF8)
struct LessString
{
sal_Bool operator()(const OUString& str1, const OUString& str2) const
{
return (str1 < str2);
}
};
typedef ::std::set< OUString, LessString > StringSet;
class Options
{
public:
Options()
: m_bFullCheck(sal_False)
, m_bForceOutput(sal_False)
{}
~Options()
{}
sal_Bool initOptions(int ac, char* av[], sal_Bool bCmdFile=sal_False);
OString prepareHelp();
OString prepareVersion();
const OString& getProgramName()
{ return m_program; }
const OString& getRegName1()
{ return m_regName1; }
const OString& getRegName2()
{ return m_regName2; }
sal_Bool isStartKeyValid()
{ return (m_startKey.getLength() > 0); };
const OString& getStartKey()
{ return m_startKey; }
sal_Bool isExcludeKeyValid()
{ return (m_excludeKey.getLength() > 0); };
const OString& getExcludeKey()
{ return m_excludeKey; }
sal_Bool fullCheck()
{ return m_bFullCheck; }
sal_Bool forceOutput()
{ return m_bForceOutput; }
protected:
OString m_program;
OString m_regName1;
OString m_regName2;
OString m_startKey;
OString m_excludeKey;
sal_Bool m_bFullCheck;
sal_Bool m_bForceOutput;
};
sal_Bool Options::initOptions(int ac, char* av[], sal_Bool bCmdFile)
{
sal_Bool bRet = sal_True;
sal_uInt16 i=0;
if (!bCmdFile)
{
bCmdFile = sal_True;
m_program = av[0];
if (ac < 2)
{
fprintf(stderr, "%s", prepareHelp().getStr());
bRet = sal_False;
}
i = 1;
} else
{
i = 0;
}
char *s=NULL;
for (i; i < ac; i++)
{
if (av[i][0] == '-')
{
switch (av[i][1])
{
case 'r':
case 'R':
{
sal_Bool bFirst = sal_True;
if (av[i][2] == '2')
{
bFirst = sal_False;
} else if (av[i][2] != '1')
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
}
if (av[i][3] == '\0')
{
if (i < ac - 1 && av[i+1][0] != '-')
{
i++;
s = av[i];
} else
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
break;
}
} else
{
s = av[i] + 2;
}
if ( bFirst )
{
m_regName1 = OString(s);
} else
{
m_regName2 = OString(s);
}
}
break;
case 's':
case 'S':
if (av[i][2] == '\0')
{
if (i < ac - 1 && av[i+1][0] != '-')
{
i++;
s = av[i];
} else
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
break;
}
} else
{
s = av[i] + 2;
}
m_startKey = OString(s);
break;
case 'x':
case 'X':
if (av[i][2] == '\0')
{
if (i < ac - 1 && av[i+1][0] != '-')
{
i++;
s = av[i];
} else
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
break;
}
} else
{
s = av[i] + 2;
}
m_excludeKey = OString(s);
break;
case 'c':
case 'C':
if (av[i][2] != '\0')
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
}
m_bFullCheck = sal_True;
break;
case 'f':
case 'F':
if (av[i][2] != '\0')
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
}
m_bForceOutput = sal_True;
break;
case 'h':
case '?':
if (av[i][2] != '\0')
{
fprintf(stderr, "%s: invalid option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
} else
{
fprintf(stdout, "%s", prepareHelp().getStr());
exit(0);
}
break;
default:
fprintf(stderr, "%s: unknown option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
break;
}
} else
{
if (av[i][0] == '@')
{
FILE* cmdFile = fopen(av[i]+1, "r");
if( cmdFile == NULL )
{
fprintf(stderr, "%s", prepareHelp().getStr());
bRet = sal_False;
} else
{
int rargc=0;
char* rargv[512];
char buffer[512];
while ( fscanf(cmdFile, "%s", buffer) != EOF )
{
rargv[rargc]= strdup(buffer);
rargc++;
}
fclose(cmdFile);
bRet = initOptions(rargc, rargv, bCmdFile);
for (long i=0; i < rargc; i++)
{
free(rargv[i]);
}
}
} else
{
fprintf(stderr, "%s: unknown option '%s'\n", m_program.getStr(), av[i]);
bRet = sal_False;
}
}
}
if ( bRet )
{
if ( m_regName1.getLength() == 0 )
{
fprintf(stderr, "%s: missing option '-r1'\n", m_program.getStr());
bRet = sal_False;
}
if ( m_regName2.getLength() == 0 )
{
fprintf(stderr, "%s: missing option '-r2'\n", m_program.getStr());
bRet = sal_False;
}
}
return bRet;
}
OString Options::prepareHelp()
{
OString help("\nusing: ");
help += m_program + " -r1<filename> -r2<filename> [-options] | @<filename>\n";
help += " -r1<filename> = filename specifies the name of the first registry.\n";
help += " -r2<filename> = filename specifies the name of the second registry.\n";
help += " @<filename> = filename specifies a command file.\n";
help += "Options:\n";
help += " -s<name> = name specifies the name of a start key. If no start key\n";
help += " is specified the comparison starts with the root key.n";
help += " -x<name> = name specifies the name of a key which won't be compared.\n";
help += " -f = force the detailed output of any diffenrences. Default\n";
help += " is that only the the number of differences is returned.\n";
help += " -c = make a complete check, that means any differences will be\n";
help += " detected. Default is only a compatibility check that means\n";
help += " only UNO typelibrary entries will be checked.\n";
help += " -h|-? = print this help message and exit.\n";
help += prepareVersion();
return help;
}
OString Options::prepareVersion()
{
OString version("\nSun Microsystems (R) ");
version += m_program + " Version 1.0\n\n";
return version;
}
static Options options;
static const RegistryTypeReaderLoader & getRegistryTypeReaderLoader()
{
static RegistryTypeReaderLoader aLoader;
return aLoader;
}
static sal_Char* getTypeClass(RTTypeClass typeClass)
{
switch (typeClass)
{
case RT_TYPE_INTERFACE:
return "INTERFACE";
case RT_TYPE_MODULE:
return "MODULE";
case RT_TYPE_STRUCT:
return "STRUCT";
case RT_TYPE_ENUM:
return "ENUM";
case RT_TYPE_EXCEPTION:
return "EXCEPTION";
case RT_TYPE_TYPEDEF:
return "TYPEDEF";
case RT_TYPE_SERVICE:
return "SERVICE";
case RT_TYPE_OBJECT:
return "OBJECT";
case RT_TYPE_CONSTANTS:
return "CONSTANTS";
}
return "INVALID";
}
static OString getFieldAccess(RTFieldAccess fieldAccess)
{
OString ret;
if ( (fieldAccess & RT_ACCESS_INVALID) == RT_ACCESS_INVALID )
{
ret += OString("INVALID");
}
if ( (fieldAccess & RT_ACCESS_READONLY) == RT_ACCESS_READONLY )
{
ret += OString(ret.getLength() > 0 ? ",READONLY" : "READONLY");
}
if ( (fieldAccess & RT_ACCESS_OPTIONAL) == RT_ACCESS_OPTIONAL )
{
ret += OString(ret.getLength() > 0 ? ",OPTIONAL" : "OPTIONAL");
}
if ( (fieldAccess & RT_ACCESS_MAYBEVOID) == RT_ACCESS_MAYBEVOID )
{
ret += OString(ret.getLength() > 0 ? ",MAYBEVOID" : "MAYBEVOID");
}
if ( (fieldAccess & RT_ACCESS_BOUND) == RT_ACCESS_BOUND )
{
ret += OString(ret.getLength() > 0 ? ",BOUND" : "BOUND");
}
if ( (fieldAccess & RT_ACCESS_CONSTRAINED) == RT_ACCESS_CONSTRAINED )
{
ret += OString(ret.getLength() > 0 ? ",CONSTRAINED" : "CONSTRAINED");
}
if ( (fieldAccess & RT_ACCESS_TRANSIENT) == RT_ACCESS_TRANSIENT )
{
ret += OString(ret.getLength() > 0 ? ",TRANSIENT" : "TRANSIENT");
}
if ( (fieldAccess & RT_ACCESS_MAYBEAMBIGUOUS) == RT_ACCESS_MAYBEAMBIGUOUS )
{
ret += OString(ret.getLength() > 0 ? ",MAYBEAMBIGUOUS" : "MAYBEAMBIGUOUS");
}
if ( (fieldAccess & RT_ACCESS_MAYBEDEFAULT) == RT_ACCESS_MAYBEDEFAULT )
{
ret += OString(ret.getLength() > 0 ? ",MAYBEDEFAULT" : "MAYBEDEFAULT");
}
if ( (fieldAccess & RT_ACCESS_REMOVEABLE) == RT_ACCESS_REMOVEABLE )
{
ret += OString(ret.getLength() > 0 ? ",REMOVEABLE" : "REMOVEABLE");
}
if ( (fieldAccess & RT_ACCESS_ATTRIBUTE) == RT_ACCESS_ATTRIBUTE )
{
ret += OString(ret.getLength() > 0 ? ",ATTRIBUTE" : "ATTRIBUTE");
}
if ( (fieldAccess & RT_ACCESS_PROPERTY) == RT_ACCESS_PROPERTY )
{
ret += OString(ret.getLength() > 0 ? ",PROPERTY" : "PROPERTY");
}
if ( (fieldAccess & RT_ACCESS_CONST) == RT_ACCESS_CONST )
{
ret += OString(ret.getLength() > 0 ? ",CONST" : "CONST");
}
if ( (fieldAccess & RT_ACCESS_READWRITE) == RT_ACCESS_READWRITE )
{
ret += OString(ret.getLength() > 0 ? ",READWRITE" : "READWRITE");
}
return ret;
}
static sal_Char* getConstValueType(RTConstValue& constValue)
{
switch (constValue.m_type)
{
case RT_TYPE_BOOL:
return "sal_Bool";
case RT_TYPE_BYTE:
return "sal_uInt8";
case RT_TYPE_INT16:
return "sal_Int16";
case RT_TYPE_UINT16:
return "sal_uInt16";
case RT_TYPE_INT32:
return "sal_Int32";
case RT_TYPE_UINT32:
return "sal_uInt32";
// case RT_TYPE_INT64:
// return "sal_Int64";
// case RT_TYPE_UINT64:
// return "sal_uInt64";
case RT_TYPE_FLOAT:
return "float";
case RT_TYPE_DOUBLE:
return "double";
case RT_TYPE_STRING:
return "sal_Unicode*";
}
return "NONE";
}
static void printConstValue(RTConstValue& constValue)
{
switch (constValue.m_type)
{
case RT_TYPE_NONE:
fprintf(stderr, "none");
case RT_TYPE_BOOL:
fprintf(stderr, "%s", constValue.m_value.aBool ? "TRUE" : "FALSE");
case RT_TYPE_BYTE:
fprintf(stderr, "%d", constValue.m_value.aByte);
case RT_TYPE_INT16:
fprintf(stderr, "%d", constValue.m_value.aShort);
case RT_TYPE_UINT16:
fprintf(stderr, "%d", constValue.m_value.aUShort);
case RT_TYPE_INT32:
fprintf(stderr, "%d", constValue.m_value.aLong);
case RT_TYPE_UINT32:
fprintf(stderr, "%d", constValue.m_value.aULong);
// case RT_TYPE_INT64:
// fprintf(stderr, "%d", constValue.m_value.aHyper);
// case RT_TYPE_UINT64:
// fprintf(stderr, "%d", constValue.m_value.aUHyper);
case RT_TYPE_FLOAT:
fprintf(stderr, "%f", constValue.m_value.aFloat);
case RT_TYPE_DOUBLE:
fprintf(stderr, "%f", constValue.m_value.aDouble);
case RT_TYPE_STRING:
fprintf(stderr, "%s", constValue.m_value.aString);
}
}
static sal_uInt32 checkConstValue(const OUString& keyName,
RTTypeClass typeClass,
sal_Bool& bDump,
RTConstValue& constValue1,
RTConstValue& constValue2,
sal_uInt16 index)
{
switch (constValue1.m_type)
{
case RT_TYPE_BOOL:
if (constValue1.m_value.aBool != constValue2.m_value.aBool)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %s != Value2 = %s\n", index,
constValue1.m_value.aBool ? "TRUE" : "FALSE",
constValue2.m_value.aBool ? "TRUE" : "FALSE");
}
return 1;
}
break;
case RT_TYPE_BYTE:
if (constValue1.m_value.aByte != constValue2.m_value.aByte)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aByte, constValue2.m_value.aByte);
}
return 1;
}
break;
case RT_TYPE_INT16:
if (constValue1.m_value.aShort != constValue2.m_value.aShort)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aShort, constValue2.m_value.aShort);
}
return 1;
}
break;
case RT_TYPE_UINT16:
if (constValue1.m_value.aUShort != constValue2.m_value.aUShort)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aUShort, constValue2.m_value.aUShort);
}
return 1;
}
break;
case RT_TYPE_INT32:
if (constValue1.m_value.aLong != constValue2.m_value.aLong)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aLong, constValue2.m_value.aLong);
}
return 1;
}
break;
case RT_TYPE_UINT32:
if (constValue1.m_value.aULong != constValue2.m_value.aULong)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aULong, constValue2.m_value.aULong);
}
return 1;
}
break;
// case RT_TYPE_INT64:
// if (constValue1.m_value.aHyper != constValue2.m_value.aHyper)
// {
// if ( options.forceOutput() )
// {
// if ( bDump )
// {
// fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
// bDump = sal_False;
// }
// fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
// constValue1.m_value.aHyper, constValue2.m_value.aHyper);
// }
// return 1;
// }
// break;
// case RT_TYPE_UINT64:
// if (constValue1.m_value.aUHyper != constValue2.m_value.aUHyper)
// {
// if ( options.forceOutput() )
// {
// if ( bDump )
// {
// fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
// bDump = sal_False;
// }
// fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
// constValue1.m_value.aUHyper, constValue2.m_value.aUHyper);
// }
// return 1;
// }
// break;
case RT_TYPE_FLOAT:
if (constValue1.m_value.aFloat != constValue2.m_value.aFloat)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aFloat, constValue2.m_value.aFloat);
}
return 1;
}
break;
case RT_TYPE_DOUBLE:
if (constValue1.m_value.aDouble != constValue2.m_value.aDouble)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aDouble, constValue2.m_value.aDouble);
}
return 1;
}
break;
case RT_TYPE_STRING:
if (rtl_ustr_compare(constValue1.m_value.aString, constValue2.m_value.aString) != 0)
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s\n", U2S(keyName));
fprintf(stderr, " TypeClass = %s\n", getTypeClass(typeClass));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Value1 = %d != Value2 = %d\n", index,
constValue1.m_value.aString, constValue2.m_value.aString);
}
return 1;
}
}
return 0;
}
static sal_uInt32 checkField(const OUString& keyName,
RTTypeClass typeClass,
sal_Bool& bDump,
RegistryTypeReader& reader1,
RegistryTypeReader& reader2,
sal_uInt16 index)
{
sal_uInt32 nError = 0;
if ( reader1.getFieldName(index) !=
reader2.getFieldName(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Name1 = %s != Name2 = %s\n", index,
U2S(reader1.getFieldName(index)), U2S(reader2.getFieldName(index)));
}
nError++;
}
if ( reader1.getFieldType(index) !=
reader2.getFieldType(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Type1 = %s != Type2 = %s\n", index,
U2S(reader1.getFieldType(index)), U2S(reader2.getFieldType(index)));
}
nError++;
} else
{
RTConstValue constValue1 = reader1.getFieldConstValue(index);
RTConstValue constValue2 = reader2.getFieldConstValue(index);
if ( constValue1.m_type != constValue2.m_type )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Access1 = %s != Access2 = %s\n", index,
getConstValueType(constValue1), getConstValueType(constValue2));
fprintf(stderr, " Field %d: Value1 = ", index);
printConstValue(constValue1);
fprintf(stderr, " != Value2 = ");
printConstValue(constValue1);
fprintf(stderr, "\n;");
}
nError++;
} else
{
nError += checkConstValue(keyName, typeClass, bDump, constValue1, constValue2, index);
}
}
if ( reader1.getFieldAccess(index) != reader2.getFieldAccess(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: FieldAccess1 = %s != FieldAccess2 = %s\n", index,
getFieldAccess(reader1.getFieldAccess(index)).getStr(),
getFieldAccess(reader1.getFieldAccess(index)).getStr());
}
nError++;
}
if ( options.fullCheck() &&
(reader1.getFieldDoku(index) != reader2.getFieldDoku(index)) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: Doku1 = %s != Doku2 = %s\n", index,
U2S(reader1.getFieldDoku(index)), U2S(reader2.getFieldDoku(index)));
}
nError++;
}
if ( options.fullCheck() &&
(reader1.getFieldFileName(index) != reader2.getFieldFileName(index)) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Field %d: FileName1 = %s != FileName2 = %s\n", index,
U2S(reader1.getFieldFileName(index)), U2S(reader2.getFieldFileName(index)));
}
nError++;
}
return nError;
}
static sal_Char* getMethodMode(RTMethodMode methodMode)
{
switch ( methodMode )
{
case RT_MODE_ONEWAY:
return "ONEWAY";
case RT_MODE_ONEWAY_CONST:
return "ONEWAY,CONST";
case RT_MODE_TWOWAY:
return "NONE";
case RT_MODE_TWOWAY_CONST:
return "CONST";
}
return "INVALID";
}
static sal_Char* getParamMode(RTParamMode paramMode)
{
switch ( paramMode )
{
case RT_PARAM_IN:
return "IN";
case RT_PARAM_OUT:
return "OUT";
case RT_PARAM_INOUT:
return "INOUT";
}
return "INVALID";
}
static sal_uInt32 checkMethod(const OUString& keyName,
RTTypeClass typeClass,
sal_Bool& bDump,
RegistryTypeReader& reader1,
RegistryTypeReader& reader2,
sal_uInt16 index)
{
sal_uInt32 nError = 0;
if ( reader1.getMethodName(index) !=
reader2.getMethodName(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method1 %d: Name1 = %s != Name2 = %s\n", index,
U2S(reader1.getMethodName(index)),
U2S(reader2.getMethodName(index)));
}
nError++;
}
if ( reader1.getMethodReturnType(index) !=
reader2.getMethodReturnType(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method1 %d: ReturnType1 = %s != ReturnType2 = %s\n", index,
U2S(reader1.getMethodReturnType(index)),
U2S(reader2.getMethodReturnType(index)));
}
nError++;
}
sal_uInt16 nParams1 = (sal_uInt16)reader1.getMethodParamCount(index);
sal_uInt16 nParams2 = (sal_uInt16)reader2.getMethodParamCount(index);
if ( nParams1 != nParams2 )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d : nParameters1 = %d != nParameters2 = %d\n", index, nParams1, nParams2);
}
nError++;
}
sal_uInt16 i=0;
for (i=0; i < nParams1 && i < nParams2; i++)
{
if ( reader1.getMethodParamType(index, i) != reader2.getMethodParamType(index, i) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d, Parameter %d: Type1 = %s != Type2 = %s\n", index, i,
U2S(reader1.getMethodParamType(index, i)),
U2S(reader2.getMethodParamType(index, i)));
}
nError++;
}
if ( options.fullCheck() &&
(reader1.getMethodParamName(index, i) != reader2.getMethodParamName(index, i)) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d, Parameter %d: Name1 = %s != Name2 = %s\n", index, i,
U2S(reader1.getMethodParamName(index, i)),
U2S(reader2.getMethodParamName(index, i)));
}
nError++;
}
if ( reader1.getMethodParamMode(index, i) != reader2.getMethodParamMode(index, i) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d, Parameter %d: Mode1 = %s != Mode2 = %s\n", index, i,
getParamMode(reader1.getMethodParamMode(index, i)),
getParamMode(reader2.getMethodParamMode(index, i)));
}
nError++;
}
}
if ( i < nParams1 && options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Registry1: Method %d contains %d more parameters\n", nParams1 - i);
}
if ( i < nParams2 && options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Registry2: Method %d contains %d more parameters\n", nParams2 - i);
}
sal_uInt16 nExcep1 = (sal_uInt16)reader1.getMethodExcCount(index);
sal_uInt16 nExcep2 = (sal_uInt16)reader2.getMethodExcCount(index);
if ( nExcep1 != nExcep2 )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " nExceptions1 = %d != nExceptions2 = %d\n", nExcep1, nExcep2);
}
nError++;
}
for (i=0; i < nExcep1 && i < nExcep2; i++)
{
if ( reader1.getMethodExcType(index, i) != reader2.getMethodExcType(index, i) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d, Exception %d: Name1 = %s != Name2 = %s\n", index, i,
U2S(reader1.getMethodExcType(index, i)),
U2S(reader2.getMethodExcType(index, i)));
}
nError++;
}
}
if ( i < nExcep1 && options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Registry1: Method %d contains %d more exceptions\n", nExcep1 - i);
}
if ( i < nExcep2 && options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Registry2: Method %d contains %d more exceptions\n", nExcep2 - i);
}
if ( reader1.getMethodMode(index) != reader2.getMethodMode(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d: Mode1 = %s != Mode2 = %s\n", index,
getMethodMode(reader1.getMethodMode(index)),
getMethodMode(reader2.getMethodMode(index)));
}
nError++;
}
if ( options.fullCheck() &&
(reader1.getMethodDoku(index) != reader2.getMethodDoku(index)) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Method %d: Doku1 = %s != Doku2 = %s\n", index,
U2S(reader1.getMethodDoku(index)),
U2S(reader2.getMethodDoku(index)));
}
nError++;
}
return nError;
}
static sal_Char* getReferenceType(RTReferenceType refType)
{
switch (refType)
{
case RT_REF_SUPPORTS:
return "RT_REF_SUPPORTS";
case RT_REF_OBSERVES:
return "RT_REF_OBSERVES";
case RT_REF_EXPORTS:
return "RT_REF_EXPORTS";
case RT_REF_NEEDS:
return "RT_REF_NEEDS";
}
return "RT_REF_INVALID";
}
static sal_uInt32 checkReference(const OUString& keyName,
RTTypeClass typeClass,
sal_Bool& bDump,
RegistryTypeReader& reader1,
RegistryTypeReader& reader2,
sal_uInt16 index)
{
sal_uInt32 nError = 0;
if ( reader1.getReferenceName(index) !=
reader2.getReferenceName(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Reference %d: Name1 = %s != Name2 = %s\n", index,
U2S(reader1.getReferenceName(index)),
U2S(reader2.getReferenceName(index)));
}
nError++;
}
if ( reader1.getReferenceType(index) !=
reader2.getReferenceType(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Reference %d: Type1 = %s != Type2 = %s\n", index,
getReferenceType(reader1.getReferenceType(index)),
getReferenceType(reader2.getReferenceType(index)));
}
nError++;
}
if ( options.fullCheck() &&
(reader1.getReferenceDoku(index) != reader2.getReferenceDoku(index)) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Reference %d: Doku1 = %s != Doku2 = %s\n", index,
U2S(reader1.getReferenceDoku(index)),
U2S(reader2.getReferenceDoku(index)));
}
nError++;
}
if ( reader1.getReferenceAccess(index) !=
reader2.getReferenceAccess(index) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Reference %d: Access1 = %s != Access2 = %s\n", index,
getFieldAccess(reader1.getReferenceAccess(index)).getStr(),
getFieldAccess(reader1.getReferenceAccess(index)).getStr());
}
nError++;
}
return nError;
}
static sal_uInt32 checkBlob(const OUString& keyName, RegistryTypeReader& reader1, sal_uInt32 size1,
RegistryTypeReader& reader2, sal_uInt32 size2)
{
sal_uInt32 nError = 0;
sal_Bool bDump = sal_True;
if ( options.fullCheck() && (size1 != size2) )
{
if ( options.forceOutput() )
{
fprintf(stderr, " Size1 = %d Size2 = %d\n", size1, size2);
}
}
if ( reader1.getTypeClass() != reader2.getTypeClass() )
{
if ( options.forceOutput() )
{
fprintf(stderr, "?: %s\n", U2S(keyName));
bDump = sal_False;
fprintf(stderr, " TypeClass1 = %s != TypeClass2 = %s\n",
getTypeClass(reader1.getTypeClass()),
getTypeClass(reader2.getTypeClass()));
}
return ++nError;
}
RTTypeClass typeClass = reader1.getTypeClass();
if ( reader1.getTypeName() != reader2.getTypeName() )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " TypeName1 = %s != TypeName2 = %s\n",
U2S(reader1.getTypeName()), U2S(reader2.getTypeName()));
}
nError++;
}
if ( (typeClass == RT_TYPE_INTERFACE ||
typeClass == RT_TYPE_STRUCT ||
typeClass == RT_TYPE_EXCEPTION) &&
reader1.getSuperTypeName() != reader2.getSuperTypeName() )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " SuperTypeName1 = %s != SuperTypeName2 = %s\n",
U2S(reader1.getSuperTypeName()), U2S(reader2.getSuperTypeName()));
}
nError++;
}
if ( typeClass == RT_TYPE_INTERFACE )
{
RTUik uik1, uik2;
reader1.getUik(uik1);
reader2.getUik(uik2);
if ( uik1.m_Data1 != uik2.m_Data1 ||
uik1.m_Data2 != uik2.m_Data2 ||
uik1.m_Data3 != uik2.m_Data3 ||
uik1.m_Data4 != uik2.m_Data4 ||
uik1.m_Data5 != uik2.m_Data5 )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " uik1.m_data1 = %X uik2.m_data1 = %X\n", uik1.m_Data1, uik2.m_Data1);
fprintf(stderr, " uik1.m_data2 = %X uik2.m_data2 = %X\n", uik1.m_Data2, uik2.m_Data2);
fprintf(stderr, " uik1.m_data3 = %X uik2.m_data3 = %X\n", uik1.m_Data3, uik2.m_Data3);
fprintf(stderr, " uik1.m_data4 = %X uik2.m_data4 = %X\n", uik1.m_Data4, uik2.m_Data4);
fprintf(stderr, " uik1.m_data5 = %X uik2.m_data5 = %X\n", uik1.m_Data5, uik2.m_Data5);
}
nError++;
}
}
sal_uInt16 nFields1 = (sal_uInt16)reader1.getFieldCount();
sal_uInt16 nFields2 = (sal_uInt16)reader2.getFieldCount();
if ( nFields1 != nFields2 )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " nFields1 = %d != nFields2 = %d\n", nFields1, nFields2);
}
nError++;
}
sal_uInt16 i=0;
for (i=0; i < nFields1 && i < nFields2; i++)
{
nError += checkField(keyName, typeClass, bDump, reader1, reader2, i);
}
if ( i < nFields1 && options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Registry1 contains %d more fields\n", nFields1 - i);
}
if ( i < nFields2 && options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Registry2 contains %d more fields\n", nFields2 - i);
}
if ( typeClass == RT_TYPE_INTERFACE )
{
sal_uInt16 nMethods1 = (sal_uInt16)reader1.getMethodCount();
sal_uInt16 nMethods2 = (sal_uInt16)reader2.getMethodCount();
if ( nMethods1 != nMethods2 )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " nMethods1 = %d != nMethods2 = %d\n", nMethods1, nMethods2);
}
nError++;
}
for (i=0; i < nMethods1 && i < nMethods2; i++)
{
nError += checkMethod(keyName, typeClass, bDump, reader1, reader2, i);
}
if ( i < nMethods1 && options.forceOutput() )
{
fprintf(stderr, " Registry1 contains %d more methods\n", nMethods1 - i);
}
if ( i < nMethods2 && options.forceOutput() )
{
fprintf(stderr, " Registry2 contains %d more methods\n", nMethods2 - i);
}
}
if ( typeClass == RT_TYPE_SERVICE )
{
sal_uInt16 nReference1 = (sal_uInt16)reader1.getReferenceCount();
sal_uInt16 nReference2 = (sal_uInt16)reader2.getReferenceCount();
if ( nReference1 != nReference2 )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " nReferences1 = %d != nReferences2 = %d\n", nReference1, nReference2);
}
nError++;
}
for (i=0; i < nReference1 && i < nReference2; i++)
{
nError += checkReference(keyName, typeClass, bDump, reader1, reader2, i);
}
if ( i < nReference1 && options.forceOutput() )
{
fprintf(stderr, " Registry1 contains %d more references\n", nReference1 - i);
}
if ( i < nReference2 && options.forceOutput() )
{
fprintf(stderr, " Registry2 contains %d more references\n", nReference2 - i);
}
}
if ( options.fullCheck() && (reader1.getDoku() != reader2.getDoku()) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
bDump = sal_False;
}
fprintf(stderr, " Doku1 = %s != Doku2 = %s\n",
U2S(reader1.getDoku()), U2S(reader2.getDoku()));
}
nError++;
}
if ( options.fullCheck() && (reader1.getFileName() != reader2.getFileName()) )
{
if ( options.forceOutput() )
{
if ( bDump )
{
fprintf(stderr, "%s: %s\n", getTypeClass(typeClass), U2S(keyName));
}
fprintf(stderr, " FileName1 = %s != FileName2 = %s\n",
U2S(reader1.getFileName()), U2S(reader2.getFileName()));
}
nError++;
}
return nError;
}
static sal_uInt32 checkValueDifference(RegistryKey& key1, RegValueType valueType1, sal_uInt32 size1,
RegistryKey& key2, RegValueType valueType2, sal_uInt32 size2)
{
OUString tmpName;
sal_uInt32 nError = 0;
if ( valueType1 == valueType2 )
{
sal_Bool bEqual = sal_True;
if ( valueType1 == RG_VALUETYPE_LONGLIST ||
valueType1 == RG_VALUETYPE_STRINGLIST ||
valueType1 == RG_VALUETYPE_UNICODELIST )
{
switch (valueType1)
{
case RG_VALUETYPE_LONGLIST:
{
RegistryValueList<sal_Int32> valueList1;
RegistryValueList<sal_Int32> valueList2;
key1.getLongListValue(tmpName, valueList1);
key2.getLongListValue(tmpName, valueList2);
sal_uInt32 length1 = valueList1.getLength();
sal_uInt32 length2 = valueList1.getLength();
if ( length1 != length2 )
{
bEqual = sal_False;
break;
}
for (sal_uInt32 i=0; i<length1; i++)
{
if ( valueList1.getElement(i) != valueList2.getElement(i) )
{
bEqual = sal_False;
break;
}
}
}
break;
case RG_VALUETYPE_STRINGLIST:
{
RegistryValueList<sal_Char*> valueList1;
RegistryValueList<sal_Char*> valueList2;
key1.getStringListValue(tmpName, valueList1);
key2.getStringListValue(tmpName, valueList2);
sal_uInt32 length1 = valueList1.getLength();
sal_uInt32 length2 = valueList1.getLength();
if ( length1 != length2 )
{
bEqual = sal_False;
break;
}
for (sal_uInt32 i=0; i<length1; i++)
{
if ( strcmp(valueList1.getElement(i), valueList2.getElement(i)) != 0 )
{
bEqual = sal_False;
break;
}
}
}
break;
case RG_VALUETYPE_UNICODELIST:
{
RegistryValueList<sal_Unicode*> valueList1;
RegistryValueList<sal_Unicode*> valueList2;
key1.getUnicodeListValue(tmpName, valueList1);
key2.getUnicodeListValue(tmpName, valueList2);
sal_uInt32 length1 = valueList1.getLength();
sal_uInt32 length2 = valueList1.getLength();
if ( length1 != length2 )
{
bEqual = sal_False;
break;
}
for (sal_uInt32 i=0; i<length1; i++)
{
if ( rtl_ustr_compare(valueList1.getElement(i), valueList2.getElement(i)) != 0 )
{
bEqual = sal_False;
break;
}
}
}
break;
}
}
if ( bEqual)
{
RegValue value1 = rtl_allocateMemory(size1);
RegValue value2 = rtl_allocateMemory(size2);
key1.getValue(tmpName, value1);
key2.getValue(tmpName, value2);
bEqual = (rtl_compareMemory(value1, value2, size1) == 0 );
if ( !bEqual && valueType1 == RG_VALUETYPE_BINARY && valueType1 == RG_VALUETYPE_BINARY )
{
RegistryTypeReader reader1(getRegistryTypeReaderLoader(),
(sal_uInt8*)value1, size1, sal_False);
RegistryTypeReader reader2(getRegistryTypeReaderLoader(),
(sal_uInt8*)value2, size2, sal_False);
if ( reader1.isValid() && reader2.isValid() )
{
return checkBlob(key1.getName(), reader1, size1, reader2, size2);
}
}
rtl_freeMemory(value1);
rtl_freeMemory(value2);
if ( bEqual )
{
return 0;
} else
{
if ( options.forceOutput() )
{
fprintf(stderr, "Difference: key values of key \"%s\" are different\n",
U2S(key1.getName()));
}
nError++;
}
}
}
if ( options.forceOutput() )
{
switch (valueType1)
{
case RG_VALUETYPE_NOT_DEFINED:
fprintf(stderr, " Registry 1: key has no value\n");
break;
case RG_VALUETYPE_LONG:
case RG_VALUETYPE_STRING:
case RG_VALUETYPE_UNICODE:
{
RegValue value1 = rtl_allocateMemory(size1);
key1.getValue(tmpName, value1);
switch (valueType1)
{
case RG_VALUETYPE_LONG:
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_LONG\n");
fprintf(stderr, " Size = %d\n", size1);
fprintf(stderr, " Data = %d\n", (sal_Int32)value1);
break;
case RG_VALUETYPE_STRING:
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_STRING\n");
fprintf(stderr, " Size = %d\n", size1);
fprintf(stderr, " Data = \"%s\"\n", (sal_Char*)value1);
break;
case RG_VALUETYPE_UNICODE:
{
OUString uStrValue((sal_Unicode*)value1);
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_UNICODE\n");
fprintf(stderr, " Size = %d\n", size1);
fprintf(stderr, " Data = \"%s\"\n", U2S(uStrValue));
}
break;
}
rtl_freeMemory(value1);
}
break;
case RG_VALUETYPE_BINARY:
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_BINARY\n");
break;
case RG_VALUETYPE_LONGLIST:
{
RegistryValueList<sal_Int32> valueList;
key1.getLongListValue(tmpName, valueList);
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_LONGLIST\n");
fprintf(stderr, " Size = %d\n", size1);
sal_uInt32 length = valueList.getLength();
for (sal_uInt32 i=0; i<length; i++)
{
fprintf(stderr, " Data[%d] = %d\n", i, valueList.getElement(i));
}
}
break;
case RG_VALUETYPE_STRINGLIST:
{
RegistryValueList<sal_Char*> valueList;
key1.getStringListValue(tmpName, valueList);
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_STRINGLIST\n");
fprintf(stderr, " Size = %d\n", size1);
sal_uInt32 length = valueList.getLength();
for (sal_uInt32 i=0; i<length; i++)
{
fprintf(stderr, " Data[%d] = \"%s\"\n", i, valueList.getElement(i));
}
}
break;
case RG_VALUETYPE_UNICODELIST:
{
RegistryValueList<sal_Unicode*> valueList;
key1.getUnicodeListValue(tmpName, valueList);
fprintf(stderr, " Registry 1: Value: Type = RG_VALUETYPE_UNICODELIST\n");
fprintf(stderr, " Size = %d\n", size1);
sal_uInt32 length = valueList.getLength();
OUString uStrValue;
for (sal_uInt32 i=0; i<length; i++)
{
uStrValue = OUString(valueList.getElement(i));
fprintf(stderr, " Data[%d] = \"%s\"\n", i, U2S(uStrValue));
}
}
break;
}
switch (valueType2)
{
case RG_VALUETYPE_NOT_DEFINED:
fprintf(stderr, " Registry 2: key has no value\n");
break;
case RG_VALUETYPE_LONG:
case RG_VALUETYPE_STRING:
case RG_VALUETYPE_UNICODE:
{
RegValue value2 = rtl_allocateMemory(size2);
key2.getValue(tmpName, value2);
switch (valueType2)
{
case RG_VALUETYPE_LONG:
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_LONG\n");
fprintf(stderr, " Size = %d\n", size2);
fprintf(stderr, " Data = %d\n", (sal_Int32)value2);
break;
case RG_VALUETYPE_STRING:
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_STRING\n");
fprintf(stderr, " Size = %d\n", size2);
fprintf(stderr, " Data = \"%s\"\n", (sal_Char*)value2);
break;
case RG_VALUETYPE_UNICODE:
{
OUString uStrValue((sal_Unicode*)value2);
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_UNICODE\n");
fprintf(stderr, " Size = %d\n", size2);
fprintf(stderr, " Data = \"%s\"\n", U2S(uStrValue));
}
break;
}
rtl_freeMemory(value2);
}
break;
case RG_VALUETYPE_BINARY:
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_BINARY\n");
break;
case RG_VALUETYPE_LONGLIST:
{
RegistryValueList<sal_Int32> valueList;
key2.getLongListValue(tmpName, valueList);
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_LONGLIST\n");
fprintf(stderr, " Size = %d\n", size2);
sal_uInt32 length = valueList.getLength();
for (sal_uInt32 i=0; i<length; i++)
{
fprintf(stderr, " Data[%d] = %d\n", i, valueList.getElement(i));
}
}
break;
case RG_VALUETYPE_STRINGLIST:
{
RegistryValueList<sal_Char*> valueList;
key2.getStringListValue(tmpName, valueList);
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_STRINGLIST\n");
fprintf(stderr, " Size = %d\n", size2);
sal_uInt32 length = valueList.getLength();
for (sal_uInt32 i=0; i<length; i++)
{
fprintf(stderr, " Data[%d] = \"%s\"\n", i, valueList.getElement(i));
}
}
break;
case RG_VALUETYPE_UNICODELIST:
{
RegistryValueList<sal_Unicode*> valueList;
key2.getUnicodeListValue(tmpName, valueList);
fprintf(stderr, " Registry 2: Value: Type = RG_VALUETYPE_UNICODELIST\n");
fprintf(stderr, " Size = %d\n", size2);
sal_uInt32 length = valueList.getLength();
OUString uStrValue;
for (sal_uInt32 i=0; i<length; i++)
{
uStrValue = OUString(valueList.getElement(i));
fprintf(stderr, " Data[%d] = \"%s\"\n", i, U2S(uStrValue));
}
}
break;
}
}
return nError;
}
static sal_uInt32 checkDifferences(StringSet& keys, RegistryKeyNames& subKeyNames1,
RegistryKeyNames& subKeyNames2)
{
sal_uInt32 nError = 0;
sal_uInt32 length1 = subKeyNames1.getLength();
sal_uInt32 length2 = subKeyNames2.getLength();
sal_uInt32 i,j;
sal_Bool bFound = sal_False;
for (i=0; i<length1; i++)
{
for (j=0; j<length2; j++)
{
if ( subKeyNames1.getElement(i) == subKeyNames2.getElement(j) )
{
bFound = sal_True;
keys.insert(subKeyNames1.getElement(i));
break;
}
}
if ( !bFound && options.fullCheck())
{
if ( options.forceOutput() )
{
fprintf(stderr, "EXISTENCE: key \"%s\" exists only in registry \"%s\"\n",
U2S(subKeyNames1.getElement(i)), options.getRegName1().getStr());
}
nError++;
} else
bFound = sal_False;
}
for (i=0; i<length2; i++)
{
for (j=0; j<length1; j++)
{
if ( subKeyNames2.getElement(i) == subKeyNames1.getElement(j) )
{
bFound = sal_True;
keys.insert(subKeyNames2.getElement(i));
break;
}
}
if ( !bFound && options.fullCheck() )
{
if ( options.forceOutput() )
{
fprintf(stderr, "EXISTENCE: key \"%s\" exists only in registry \"%s\"\n",
U2S(subKeyNames2.getElement(i)), options.getRegName1().getStr());
}
nError++;
} else
bFound = sal_False;
}
return nError;
}
static sal_uInt32 compareKeys(RegistryKey& key1, RegistryKey& key2)
{
sal_uInt32 nError = 0;
RegValueType valueType1 = RG_VALUETYPE_NOT_DEFINED;
RegValueType valueType2 = RG_VALUETYPE_NOT_DEFINED;
sal_uInt32 size1 = 0;
sal_uInt32 size2 = 0;
OUString tmpName;
RegError e1 = key1.getValueInfo(tmpName, &valueType1, &size1);
RegError e2 = key2.getValueInfo(tmpName, &valueType2, &size2);
if ( e1 == e2 && e1 != REG_VALUE_NOT_EXISTS && e1 != REG_INVALID_VALUE )
{
nError += checkValueDifference(key1, valueType1, size1, key2, valueType2, size2);
} else
{
if ( e1 != REG_INVALID_VALUE || e2 != REG_INVALID_VALUE )
{
if ( options.forceOutput() )
{
fprintf(stderr, "VALUES: key values of key \"%s\" are different\n", U2S(key1.getName()));
}
nError++;
}
}
RegistryKeyNames subKeyNames1;
RegistryKeyNames subKeyNames2;
key1.getKeyNames(tmpName, subKeyNames1);
key2.getKeyNames(tmpName, subKeyNames2);
StringSet keys;
nError += checkDifferences(keys, subKeyNames1, subKeyNames2);
StringSet::iterator iter = keys.begin();
StringSet::iterator end = keys.end();
RegistryKey subKey1, subKey2;
OUString keyName;
while ( iter != end )
{
keyName = OUString(*iter);
if ( options.isExcludeKeyValid() &&
(keyName == S2U(options.getExcludeKey())) )
{
iter++;
continue;
}
keyName = keyName.getToken(keyName.getTokenCount('/')-1, '/');
if ( key1.openKey(keyName, subKey1) )
{
if ( options.forceOutput() )
{
fprintf(stderr, "ERROR: could not open key \"%s\" in registry \"%s\"\n",
U2S(*iter), options.getRegName1().getStr());
}
nError++;
}
if ( key2.openKey(keyName, subKey2) )
{
if ( options.forceOutput() )
{
fprintf(stderr, "ERROR: could not open key \"%s\" in registry \"%s\"\n",
U2S(*iter), options.getRegName2().getStr());
}
nError++;
}
if ( subKey1.isValid() && subKey2.isValid() )
{
nError += compareKeys(subKey1, subKey2);
}
subKey1.closeKey();
subKey2.closeKey();
iter++;
}
return nError;
}
#if (defined UNX) || (defined OS2)
void main( int argc, char * argv[] )
#else
void _cdecl main( int argc, char * argv[] )
#endif
{
if ( !options.initOptions(argc, argv) )
{
exit(1);
}
OUString regName1( S2U(options.getRegName1()) );
OUString regName2( S2U(options.getRegName2()) );
RegistryLoader regLoader;
Registry reg1(regLoader);
Registry reg2(regLoader);
if ( reg1.open(regName1, REG_READONLY) )
{
fprintf(stderr, "%s: open registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName1().getStr());
exit(2);
}
if ( reg2.open(regName2, REG_READONLY) )
{
fprintf(stderr, "%s: open registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName2().getStr());
exit(3);
}
RegistryKey key1, key2;
if ( reg1.openRootKey(key1) )
{
fprintf(stderr, "%s: open root key of registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName1().getStr());
exit(4);
}
if ( reg2.openRootKey(key2) )
{
fprintf(stderr, "%s: open root key of registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName2().getStr());
exit(5);
}
if ( options.isStartKeyValid() )
{
if ( options.isExcludeKeyValid() &&
(options.getStartKey() == options.getExcludeKey()) )
{
fprintf(stderr, "%s: start key is equal to exclude key\n",
options.getProgramName().getStr());
exit(6);
}
RegistryKey sk1, sk2;
if ( key1.openKey(S2U(options.getStartKey()), sk1) )
{
fprintf(stderr, "%s: open start key of registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName1().getStr());
exit(7);
}
if ( key2.openKey(S2U(options.getStartKey()), sk2) )
{
fprintf(stderr, "%s: open start key of registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName2().getStr());
exit(8);
}
key1 = sk1;
key2 = sk2;
}
sal_uInt32 nError = 0;
if ( nError = compareKeys(key1, key2) )
{
fprintf(stderr, "%s: registries contain %d differences!\n",
options.getProgramName().getStr(), nError);
} else
{
fprintf(stderr, "%s: registries are equal!\n",
options.getProgramName().getStr());
}
key1.closeKey();
key2.closeKey();
if ( reg1.close() )
{
fprintf(stderr, "%s: closing registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName1().getStr());
exit(9);
}
if ( reg2.close() )
{
fprintf(stderr, "%s: closing registry \"%s\" failed\n",
options.getProgramName().getStr(), options.getRegName2().getStr());
exit(10);
}
if ( nError > 0 )
exit(11);
else
exit(0);
}