office-gobmx/vcl/README.scheduler

281 lines
12 KiB
Text
Raw Normal View History

= Introduction =
The VCL scheduler handles LOs primary event queue. It is simple by design,
currently just a single-linked list, processed in list-order by priority
using round-robin for reoccurring tasks.
The scheduler has the following behaviour:
B.1. Tasks are scheduled just priority based
B.2. Implicitly cooperative AKA non-preemptive
B.3. It's not "fair" in any way (a consequence of B.2)
B.4. Tasks are handled round-robin (per priority)
B.5. Higher priorities have lower values
B.6. A small set of priorities instead of an flexible value AKA int
There are some consequences due to this design.
C.1. Higher priority tasks starve lower priority tasks
As long as a higher task is available, lower tasks are never run!
See Anti-pattern.
C.2. Tasks should be split into sensible blocks
If this can't really be done, process pending tasks by calling
Application::Reschedule(). Or use a thread.
C.3. This is not an OS scheduler
There is no real way to "fix" B.2. and B.3.
If you need to do a preemptive task, use a thread!
Otherwise make your task suspendable and check SalInstance::AnyInput
or call Application::Reschedule regularly.
= Driving the scheduler AKA the system timer =
1. There is just one system timer, which drives LO event loop
2. The timer has to run in the main window thread
3. The scheduler is run with the Solar mutex acquired
4. The system timer is a single-shot timer
5. The scheduler system event / message has a low system priority.
All system events should have a higher priority.
Every time a task is started, the scheduler timer is adjusted. When the timer
fires, it posts an event to the system message queue. If the next most
important task is an Idle (AKA instant, 0ms timeout), the event is pushed to
the back of the queue, so we don't starve system messages, otherwise to the
front. This is especially important to get a correct SalInstance::AnyInput
handling, as this is used to suspend long background Idle tasks.
Every time the scheduler is invoked it searches for the next task to process,
restarts the timer with the timeout for the next event and then invokes the
task. After invoking the task and if the task is still active, it is pushed
to the end of the queue and the timeout is eventually adjusted.
= Locking =
The locking is quite primitive: all interaction with internal Scheduler
structures are locked. This includes the ImplSchedulerContext and the
Task::mpSchedulerData, which is actually a part of the scheduler.
Before invoking the task, we have to release the lock, so others can
Start new Tasks.
= Lifecycle / thread-safety of Scheduler-based objects =
A scheduler object it thread-safe in the way, that it can be associated to
any thread and any thread is free to call any functions on it. The owner must
guarantee that the Invoke() function can be called, while the Scheduler object
exists / is not disposed.
= Anti-pattern: Dependencies via (fine grained) priorities =
"Idle 1" should run before "Idle 2", therefore give "Idle 1" a higher priority
then "Idle 2". This just works correct for low frequency idles, but otherwise
always breaks!
If you have some longer work - even if it can be split by into schedulable,
smaller blocks - you normally don't want to schedule it with a non-default
priority, as it starves all lower priority tasks. Even if a block was processed
in "Idle 1", it is scheduled with the same (higher) priority again. Changing
the "Idle" to a "Timer" also won't work, as this breaks the dependency.
What is needed is task based dependency handling, so if "Task 1" is done, it
has to start "Task 2" and if "Task 1" is started again, it has to stop
"Task 2". This currently has to be done by the implementor, but this feature
can be added to the scheduler reasonably.
= Implementation details =
== General: main thread deferral ==
Currently for Mac and Windows, we run main thread deferrals by disabling the
SolarMutex using a boolean. In the case of the redirect, this makes
tryToaAcquire and doAcquire return true or 1, while a release is ignored.
Also the IsCurrentThread() mutex check function will act accordingly, so all
the DBG_TESTSOLARMUTEX won't fail.
Since we just disable the locks when we start running the deferred code in the
main thread, we won't let the main thread run into stuff, where it would
normally wait for the SolarMutex.
Eventually this will move into the GenericSolarMutex. KDE / Qt also does main
thread redirects using Qt::BlockingQueuedConnection.
== General: processing all current events for DoYield ==
This is easily implemented for all non-priority queue based implementations.
Windows and MacOS both have a timestamp attached to their events / messages,
so simply get the current time and just process anything < timestamp.
For the KDE backend this is already the default behaviour - single event
processing isn't even supported. The headless backend accomplishes this by
just processing a copy of the list of current events.
Problematic in this regard is the Gtk+ backend. g_main_context_iteration
dispatches "only those highest priority event sources". There is no real way
to tell, when these became ready. I've added a workaround idea to the TODO
list. FWIW: Qt runs just a single timer source in the glib main context,
basically the same we're doing with the LO scheduler as a system event.
The gen X11 backend has some levels of redirection, but needs quite some work
to get this fixed.
== MacOS implementation details ==
Generally the Scheduler is handled as expected, except on resize, which is
handled with different runloop-modes in MacOS. In case of a resize, the normal
runloop is suspended in sendEvent, so we can't call the scheduler via posted
main loop-events. Instead the scheduler uses the timer again.
Like the Windows backend, all Cocoa / GUI handling also has to be run in
the main thread. We're emulating Windows out-of-order PeekMessage processing,
via a YieldWakeupEvent and two conditionals. When in a RUNINMAIN call, all
the DBG_TESTSOLARMUTEX calls are disabled, as we can't release the SolarMutex,
but we can prevent running any other SolarMutex based code. Those wakeup
events must be ignored to prevent busy-locks. For more info read the "General:
main thread deferral" section.
We can neither rely on MacOS dispatch_sync code block execution nor the
message handling, as both can't be prioritized or filtered and the first
does also not allow nested execution and is just processed in sequence.
There is also a workaround for a problem for pushing tasks to an empty queue,
as [NSApp postEvent: ... atStart: NO] doesn't append the event, if the
message queue is empty.
Probably that's the reason, why some code comments spoke of lost events and
there was some distinct additional event processing implemented.
== Windows implementation details ==
Posted or sent event messages often trigger processing of WndProc in
PeekMessage, GetMessage or DispatchMessage, independently from the message to
fetch, remove or dispatch ("During this call, the system delivers pending,
nonqueued messages..."). Additionally messages have an inherited priority
based on the function used to generate them. Even if WM_TIMER should have been
the lowest prio, a posted WM_TIMER is processed with the prio of a posted
message.
Therefore the current solution always starts a (threaded) timer even for the
instant Idles and syncs to this timer message in the main dispatch loop.
Using SwitchToThread(), this seem to work reasonably well.
An additional workaround is implemented for the delayed queuing of posted
messages, where PeekMessage in WinSalTimer::Stop() won't be able remove the
just posted timer callback message. We handle this by adding a timestamp to
the timer callback message, which is checked before starting the Scheduler.
This way we can end with multiple timer callback message in the queue, which
we were asserting.
To run the required GUI code in the main thread without unlocking the
SolarMutex, we "disable" it. For more infos read the "General: main thread
deferral" section.
== KDE implementation details ==
This implementation also works as intended. But there is a different Yield
handling, because Qts QAbstractEventDispatcher::processEvents will always
process all pending events.
= TODOs and ideas =
== Task dependencies AKA children ==
Every task can have a list of children / a child.
* When a task is stopped, the children are started.
* When a task is started, the children are stopped.
This should be easy to implement.
== Per priority time-sorted queues ==
This would result in O(1) scheduler. It was used in the Linux kernel for some
time (search Ingo Molnar's O(1) scheduler). This can be a scheduling
optimization, which would prevent walking longer event list. But probably the
management overhead would be too large, as we have many one-shot events.
To find the next task the scheduler just walks the (constant) list of priority
queues and schedules the first ready event of any queue.
The downside of this approach: Insert / Start / Reschedule(for "auto" tasks)
now need O(log(n)) to find the position in the queue of the priority.
== Always process all (higher priority) pending events ==
Currently Application::Reschedule() processes a single event or "all" events,
with "all" defined as "100 events" in most backends. This already is ignored
by the KDE4 backend, as Qt defines its QAbstractEventDispatcher::processEvents
processing all pending events (there are ways to skip event classes, but no
easy way to process just a single event).
Since the Scheduler is always handled by the system message queue, there is
really no more reasoning to stop after 100 events to prevent LO Scheduler
starvation.
== Drop static inherited or composed Task objects ==
The sequence of destruction of static objects is not defined. So a static Task
can not be guaranteed to happen before the Scheduler. When dynamic unloading
is involved, this becomes an even worse problem. This way we could drop the
mbStatic workaround from the Task class.
== Run the LO application in its own thread ==
This would probably get rid of most of the MacOS and Windows implementation
details / workarounds, but is quite probably a large amount of work.
Instead of LO running in the main process / thread, we run it in a 2nd thread
and defer al GUI calls to the main thread. This way it'll hopefully not block
and can process system events.
That's just a theory - it definitely needs more analysis before even attending
an implementation.
== Re-evaluate the MacOS ImplNSAppPostEvent ==
Probably a solution comparable to the Windows backends delayed PostMessage
workaround using a validation timestamp is better then the current peek,
remove, re-postEvent, which has to run in the main thread.
Originally I didn't evaluate, if the event is actually lost or just delayed.
== Drop nMaxEvents from Gtk+ based backends ==
gint last_priority = G_MAXINT;
bool bWasEvent = false;
do {
gint max_priority;
g_main_context_acquire( NULL );
bool bHasPending = g_main_context_prepare( NULL, &max_priority );
g_main_context_release( NULL );
if ( bHasPending )
{
if ( last_priority > max_priority )
{
bHasPending = g_main_context_iteration( NULL, bWait );
bWasEvent = bWasEvent || bHasPending;
}
else
bHasPending = false;
}
}
while ( bHasPending )
The idea is to use g_main_context_prepare and keep the max_priority as an
indicator. We cannot prevent running newer lower events, but we can prevent
running new higher events, which should be sufficient for most stuff.
This also touches user event processing, which currently runs as a high
priority idle in the event loop.
== Drop nMaxEvents from gen (X11) backend ==
A few layers of indirection make this code hard to follow. The SalXLib::Yield
and SalX11Display::Yield architecture makes it impossible to process just the
current events. This really needs a refactorung and rearchitecture step, which
will also affect the Gtk+ and KDE4 backend for the user event handling.