INTEGRATION: CWS presfixes01 (1.2.8); FILE MERGED

2005/02/07 15:47:42 mbu 1.2.8.4: .
2005/02/07 15:34:51 mbu 1.2.8.3: more sort optimizations
2005/02/04 16:48:33 mbu 1.2.8.2: fixed strided element access in radix sort
2005/02/04 11:00:41 mbu 1.2.8.1: #i38960 performing radix sort now
This commit is contained in:
Vladimir Glazounov 2005-03-10 12:38:47 +00:00
parent d7a915a8d1
commit 4ee5a8dba0

View file

@ -2,9 +2,9 @@
*
* $RCSfile: b2dpolypolygonrasterconverter.cxx,v $
*
* $Revision: 1.2 $
* $Revision: 1.3 $
*
* last change: $Author: rt $ $Date: 2004-11-26 18:39:11 $
* last change: $Author: vg $ $Date: 2005-03-10 13:38:47 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
@ -72,9 +72,249 @@
#include <algorithm>
namespace basegfx
{
class radixSort {
//! public interface
public:
//! default constructor
radixSort( void );
//! destructor
~radixSort( void );
bool sort( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride );
inline sal_uInt32 *indices( void ) const { return m_indices1; }
//! private attributes
private:
// current size of index list
sal_uInt32 m_current_size;
// last known size of index list
sal_uInt32 m_previous_size;
// index lists
sal_uInt32 *m_indices1;
sal_uInt32 *m_indices2;
sal_uInt32 m_counter[256*4];
sal_uInt32 m_offset[256];
//! private methods
private:
bool resize( sal_uInt32 nNumElements );
void reset_indices( void );
bool prepareCounters( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride );
};
inline radixSort::radixSort( void ) {
m_indices1 = NULL;
m_indices2 = NULL;
m_current_size = 0;
m_previous_size = 0;
reset_indices();
}
inline radixSort::~radixSort( void ) {
delete [] m_indices2;
delete [] m_indices1;
}
bool radixSort::resize( sal_uInt32 nNumElements ) {
if(nNumElements==m_previous_size)
return true;
if(nNumElements > m_current_size) {
// release index lists
if(m_indices2)
delete [] m_indices2;
if(m_indices1)
delete [] m_indices1;
// allocate new index lists
m_indices1 = new sal_uInt32[nNumElements];
m_indices2 = new sal_uInt32[nNumElements];
// check for out of memory situation
if(!((sal_uInt32)m_indices1|(sal_uInt32)m_indices2)) {
delete [] m_indices1;
delete [] m_indices2;
m_indices1 = NULL;
m_indices2 = NULL;
m_current_size = 0;
return false;
}
m_current_size = nNumElements;
}
m_previous_size = nNumElements;
// initialize indices
reset_indices();
return true;
}
inline void radixSort::reset_indices( void ) {
for(sal_uInt32 i=0;i<m_current_size;i++)
m_indices1[i] = i;
}
bool radixSort::prepareCounters( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride ) {
// clear counters
sal_uInt32 *ptr = m_counter;
for(int i=0; i<64; ++i) {
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
*ptr++ = NULL;
}
// prepare pointers to relevant memory addresses
sal_uInt8 *p = (sal_uInt8*)pInput;
sal_uInt8 *pe = p+(nNumElements*dwStride);
sal_uInt32 *h0= &m_counter[0];
sal_uInt32 *h1= &m_counter[256];
sal_uInt32 *h2= &m_counter[512];
sal_uInt32 *h3= &m_counter[768];
sal_uInt32 *Indices = m_indices1;
float previous_value = *(float *)(((sal_uInt8 *)pInput)+(m_indices1[0]*dwStride));
bool bSorted = true;
while(p!=pe) {
float value = *(float *)(((sal_uInt8 *)pInput)+((*Indices++)*dwStride));
if(value<previous_value) {
bSorted = false;
break;
}
previous_value = value;
h0[*p++]++;
h1[*p++]++;
h2[*p++]++;
h3[*p++]++;
p += dwStride-4;
}
if(bSorted)
return true;
while(p!=pe) {
h0[*p++]++;
h1[*p++]++;
h2[*p++]++;
h3[*p++]++;
p += dwStride-4;
}
return false;
}
bool radixSort::sort( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride ) {
if(!(pInput))
return false;
if(!(nNumElements))
return false;
if(!(resize(nNumElements)))
return false;
// prepare radix counters, return if already sorted
if(prepareCounters(pInput,nNumElements,dwStride))
return true;
// count number of negative values
sal_uInt32 num_negatives = 0;
sal_uInt32 *h3= &m_counter[768];
for(sal_uInt32 i=128;i<256;i++)
num_negatives += h3[i];
// perform passes, one for each byte
for(sal_uInt32 j=0;j<4;j++) {
// ignore this pass if all values have the same byte
bool bRun = true;
sal_uInt32 *current_counter = &m_counter[j<<8];
sal_uInt8 unique_value = *(((sal_uInt8*)pInput)+j);
if(current_counter[unique_value]==nNumElements)
bRun=false;
// does the incoming byte contain the sign bit?
sal_uInt32 i;
if(j!=3) {
if(bRun) {
m_offset[0] = 0;
for(i=1;i<256;i++)
m_offset[i] = m_offset[i-1] + current_counter[i-1];
sal_uInt8 *InputBytes = (sal_uInt8 *)pInput;
sal_uInt32 *Indices = m_indices1;
sal_uInt32 *IndicesEnd = &m_indices1[nNumElements];
InputBytes += j;
while(Indices!=IndicesEnd) {
sal_uInt32 id = *Indices++;
m_indices2[m_offset[InputBytes[id*dwStride]]++] = id;
}
sal_uInt32 *Tmp = m_indices1;
m_indices1 = m_indices2;
m_indices2 = Tmp;
}
}
else {
if(bRun) {
m_offset[0] = num_negatives;
for(i=1;i<128;i++)
m_offset[i] = m_offset[i-1] + current_counter[i-1];
m_offset[255] = 0;
for(i=0;i<127;i++)
m_offset[254-i] = m_offset[255-i] + current_counter[255-i];
for(i=128;i<256;i++)
m_offset[i] += current_counter[i];
for(i=0;i<nNumElements;i++) {
sal_uInt32 Radix = (*(sal_uInt32 *)(((sal_uInt8 *)pInput)+(m_indices1[i]*dwStride)))>>24;
if(Radix<128) m_indices2[m_offset[Radix]++] = m_indices1[i];
else m_indices2[--m_offset[Radix]] = m_indices1[i];
}
sal_uInt32 *Tmp = m_indices1;
m_indices1 = m_indices2;
m_indices2 = Tmp;
}
else {
if(unique_value>=128) {
for(i=0;i<nNumElements;i++)
m_indices2[i] = m_indices1[nNumElements-i-1];
sal_uInt32 *Tmp = m_indices1;
m_indices1 = m_indices2;
m_indices2 = Tmp;
}
}
}
}
return true;
}
//************************************************************
// Internal vertex storage of B2DPolyPolygonRasterConverter
//************************************************************
@ -103,9 +343,10 @@ namespace basegfx
{
class ImplLineNode
{
public:
sal_Int32 mnYCounter;
double mfXPos;
double mfXDelta;
float mfXPos;
float mfXDelta;
bool mbDownwards;
public:
@ -114,27 +355,30 @@ namespace basegfx
*/
ImplLineNode(const B2DPoint& rP1, const B2DPoint& rP2, bool bDown) :
mnYCounter( fround(rP2.getY()) - fround(rP1.getY()) ),
mfXPos( rP1.getX() ),
mfXDelta( (rP2.getX() - rP1.getX()) / mnYCounter ),
mfXPos( (float)(rP1.getX()) ),
mfXDelta((float) ((rP2.getX() - rP1.getX()) / mnYCounter) ),
mbDownwards( bDown )
{
}
/// get current x position
const double& getXPos() const
const float& getXPos() const
{
return mfXPos;
}
/// returns true, if line ends on this Y value
void nextLine()
float nextLine()
{
if(mnYCounter>=0)
{
// go one step in Y
mfXPos += mfXDelta;
--mnYCounter;
return mfXDelta;
}
return 0.0f;
}
bool isEnded()
@ -306,6 +550,193 @@ namespace basegfx
// it crosses or touches the current scanline.
VectorOfLineNodes aActiveVertices;
#if 1
// mickey's optimized version...
radixSort rs;
sal_uInt32 nb,nb_previous;
sal_uInt32 nb_sort;
bool bSort = false;
nb_previous = 0;
nb_sort = 0;
// process each scanline
for( sal_Int32 y(0); y <= nScanlines; ++y )
{
// add vertices which start at current scanline into
// active vertex vector
::std::for_each( maScanlines[y].begin(),
maScanlines[y].end(),
LineNodeGenerator( aActiveVertices ) );
nb = aActiveVertices.size();
if(nb != nb_previous) {
nb_previous = nb;
bSort = true;
}
// sort with increasing X
if(bSort) {
bSort = false;
float *pInput = &((*aActiveVertices.begin()).mfXPos);
rs.sort(pInput,nb,sizeof(ImplLineNode));
++nb_sort;
#if 0
sal_uInt32 *sorted = rs.indices();
OSL_TRACE("%d\n",nb);
float last = aActiveVertices[sorted[0]].getXPos();
for(int n=0; n<nb; ++n) {
float current = aActiveVertices[sorted[n]].getXPos();
if(last > current) {
OSL_TRACE("error\n");
}
OSL_TRACE("%f\n",current);
last = current;
}
OSL_TRACE("-------\n",nb);
#endif
}
const ::std::size_t nLen( nb );
if( !nLen )
{
// empty scanline - call derived with an 'off' span
// for the full width
span( maPolyPolyRectangle.getMinX(),
maPolyPolyRectangle.getMaxX(),
nMinY + y,
false );
}
else
{
const sal_Int32 nCurrY( nMinY + y );
// scanline not empty - forward all scans to derived,
// according to selected fill rule
// TODO(P1): Maybe allow these 'off' span calls to be
// switched off (or all 'on' span calls, depending on
// use case scenario)
// sorting didn't change the order of the elements
// in memory but prepared a list of indices in sorted order.
// thus we now process the nodes with an additional indirection.
sal_uInt32 *sorted = rs.indices();
// call derived with 'off' span for everything left of first active span
if( aActiveVertices[sorted[0]].getXPos() > maPolyPolyRectangle.getMinX() )
{
span( maPolyPolyRectangle.getMinX(),
aActiveVertices[sorted[0]].getXPos(),
nCurrY,
false );
}
switch( eFillRule )
{
default:
OSL_ENSURE(false,
"B2DPolyPolygonRasterConverter::rasterConvert(): Unexpected fill rule");
return;
case FillRule_EVEN_ODD:
// process each span in current scanline, with
// even-odd fill rule
for( ::std::size_t i(0), nLen(aActiveVertices.size());
i+1 < nLen;
++i )
{
sal_uInt32 nIndex = sorted[i];
sal_uInt32 nNextIndex = sorted[i+1];
span( aActiveVertices[nIndex].getXPos(),
aActiveVertices[nNextIndex].getXPos(),
nCurrY,
i % 2 == 0 );
float delta = aActiveVertices[nIndex].nextLine();
if(delta > 0.0f) {
if(aActiveVertices[nIndex].getXPos() > aActiveVertices[nNextIndex].getXPos())
bSort = true;
}
else if(delta < 0.0f) {
if(i) {
sal_uInt32 nPrevIndex = sorted[i-1];
if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
bSort = true;
}
}
}
break;
case FillRule_NONZERO_WINDING_NUMBER:
// process each span in current scanline, with
// non-zero winding numbe fill rule
sal_Int32 nWindingNumber(0);
for( ::std::size_t i(0), nLen(aActiveVertices.size());
i+1 < nLen;
++i )
{
sal_uInt32 nIndex = sorted[i];
sal_uInt32 nNextIndex = sorted[i+1];
nWindingNumber += -1 + 2*aActiveVertices[nIndex].isDownwards();
span( aActiveVertices[nIndex].getXPos(),
aActiveVertices[nNextIndex].getXPos(),
nCurrY,
nWindingNumber != 0 );
float delta = aActiveVertices[nIndex].nextLine();
if(delta > 0.0f) {
if(aActiveVertices[nIndex].getXPos() > aActiveVertices[nNextIndex].getXPos())
bSort = true;
}
else if(delta < 0.0f) {
if(i) {
sal_uInt32 nPrevIndex = sorted[i-1];
if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
bSort = true;
}
}
}
break;
}
// call derived with 'off' span for everything right of last active span
if( aActiveVertices[sorted[nb-1]].getXPos() < maPolyPolyRectangle.getMaxX() )
{
span( aActiveVertices[sorted[nb-1]].getXPos()+1.0,
maPolyPolyRectangle.getMaxX(),
nCurrY,
false );
}
// also call nextLine on very last line node
sal_uInt32 nIndex = sorted[nb-1];
float delta = aActiveVertices[nIndex].nextLine();
if(delta < 0.0f) {
if(nb) {
sal_uInt32 nPrevIndex = sorted[nb-2];
if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
bSort = true;
}
}
}
// remove line nodes which have ended on the current scanline
aActiveVertices.erase( ::std::remove_if( aActiveVertices.begin(),
aActiveVertices.end(),
::boost::mem_fn( &ImplLineNode::isEnded ) ),
aActiveVertices.end() );
nb = aActiveVertices.size();
if(nb != nb_previous) {
nb_previous = nb;
bSort = true;
}
}
//printf("%d %d",nb_sort,nScanlines);
#else
// process each scanline
for( sal_Int32 y(0); y <= nScanlines; ++y )
{
@ -427,7 +858,7 @@ namespace basegfx
aActiveVertices.end(),
LineNodeComparator() );
}
#endif
}
}
// eof