INTEGRATION: CWS presfixes01 (1.3.10); FILE MERGED

2005/02/07 01:08:40 thb 1.3.10.5: #i38960# Kicked out lag-functionality, which is no longer used and obscured things a lot. Reverted magic values to explicit bools, fixed ugly sign bug in adjustTime() (resulting in obscene offsets generated).
2005/02/03 23:21:46 thb 1.3.10.4: #i37777# Added some comments
2005/02/02 22:41:36 dbo 1.3.10.3: #i37777# adjustTimer(), holdTimer(), releaseTimer()
2005/02/02 09:43:11 dbo 1.3.10.2: #i37777# minimize perf count value
2005/01/27 15:53:43 dbo 1.3.10.1: #i39662##i37777### added pause, lag functionality
This commit is contained in:
Vladimir Glazounov 2005-03-10 10:55:30 +00:00
parent ca43babf1c
commit af434b27eb

View file

@ -2,9 +2,9 @@
*
* $RCSfile: elapsedtime.cxx,v $
*
* $Revision: 1.3 $
* $Revision: 1.4 $
*
* last change: $Author: rt $ $Date: 2004-11-26 17:07:54 $
* last change: $Author: vg $ $Date: 2005-03-10 11:55:30 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
@ -59,11 +59,9 @@
*
************************************************************************/
#ifndef _OSL_TIME_H_
#include <osl/time.h>
#endif
#include <canvas/elapsedtime.hxx>
#include "osl/time.h"
#include "osl/diagnose.h"
#include "canvas/elapsedtime.hxx"
#if defined(WIN) || defined(WNT)
@ -76,109 +74,185 @@
#include <mmsystem.h>
#endif
#include <algorithm>
#include <limits>
namespace canvas
namespace canvas {
namespace tools {
#if defined(WIN) || defined(WNT)
// TODO(Q2): is 0 okay for the failure case here?
double ElapsedTime::getSystemTime()
{
namespace tools
// TEMP!!!
// Awaiting corresponding functionality in OSL
//
// is there a performance counter available?
static bool bTimeSetupDone( false );
static bool bPerfTimerAvailable( false );
static LONGLONG nPerfCountFreq;
// TODO(F1): This _might_ cause problems, as it prevents correct
// time handling for very long lifetimes of this class's
// surrounding component in memory. When the difference between
// current sys time and nInitialCount exceeds IEEE double's
// mantissa, time will start to run jerky.
static LONGLONG nInitialCount;
if( !bTimeSetupDone )
{
namespace
if( QueryPerformanceFrequency(
reinterpret_cast<LARGE_INTEGER *>(&nPerfCountFreq) ) )
{
#if defined(WIN) || defined(WNT)
static double fTimeFactor;
#endif
double getTimeFactor()
{
#if defined(WIN) || defined(WNT)
// value is hardware-dependent
return fTimeFactor;
#else
// value is in nanoseconds
return 10e-10;
#endif
}
sal_uInt64 getCurrentTime()
{
#if defined(WIN) || defined(WNT)
sal_uInt64 bRet( 0 );
// TEMP!!!
// Awaiting corresponding functionality in OSL
//
// is there a performance counter available?
static bool bTimeSetupDone( false );
static bool bPerfTimerAvailable;
if( !bTimeSetupDone )
{
LONGLONG nPerfCount;
if( QueryPerformanceFrequency((LARGE_INTEGER *) &nPerfCount) )
{
// yes, timer choice flag
bPerfTimerAvailable = true;
// set scaling factor
fTimeFactor = 1.0/nPerfCount;
}
else
{
// no performance counter, read in using timeGetTime
bPerfTimerAvailable = false;
// set timer scaling factor
fTimeFactor = 0.001;
}
bTimeSetupDone = true;
}
if( bPerfTimerAvailable )
{
LONGLONG nCurrTime;
// read initial time
QueryPerformanceCounter((LARGE_INTEGER *) &nCurrTime);
bRet = nCurrTime;
}
else
{
bRet = timeGetTime();
}
#else
TimeValue aTimeVal;
sal_uInt64 bRet( 0 );
if( osl_getSystemTime( &aTimeVal ) )
{
// combine to seconds + fraction of second
bRet = ((sal_uInt64)aTimeVal.Seconds) * (sal_uInt64)1000000000 + (sal_uInt64)aTimeVal.Nanosec;
}
#endif
return bRet; // TODO(Q2): is 0 okay for the failure case here?
}
}
ElapsedTime::ElapsedTime() :
mnStartTime( getCurrentTime() ),
mfTimeFactor( getTimeFactor() )
{
}
void ElapsedTime::reset()
{
mnStartTime = getCurrentTime();
}
double ElapsedTime::getElapsedTime() const
{
sal_uInt64 nCurrTime( getCurrentTime() );
return mfTimeFactor * (nCurrTime - mnStartTime);
// read initial time:
QueryPerformanceCounter(
reinterpret_cast<LARGE_INTEGER *>(&nInitialCount) );
bPerfTimerAvailable = true;
}
bTimeSetupDone = true;
}
if( bPerfTimerAvailable )
{
LONGLONG nCurrCount;
QueryPerformanceCounter(
reinterpret_cast<LARGE_INTEGER *>(&nCurrCount) );
nCurrCount -= nInitialCount;
return (double)nCurrCount / nPerfCountFreq;
}
else
{
LONGLONG nCurrTime = timeGetTime();
return (double)nCurrTime / 1000.0;
}
}
#else // ! WNT
// TODO(Q2): is 0 okay for the failure case here?
double ElapsedTime::getSystemTime()
{
TimeValue aTimeVal;
if( osl_getSystemTime( &aTimeVal ) )
return ((aTimeVal.Nanosec * 10e-10) + aTimeVal.Seconds);
else
return 0.0;
}
#endif
ElapsedTime::ElapsedTime()
: m_pTimeBase(),
m_fLastQueriedTime( 0.0 ),
m_fStartTime( getSystemTime() ),
m_fFrozenTime( 0.0 ),
m_bInPauseMode( false ),
m_bInHoldMode( false )
{
}
ElapsedTime::ElapsedTime(
boost::shared_ptr<ElapsedTime> const & pTimeBase )
: m_pTimeBase( pTimeBase ),
m_fLastQueriedTime( 0.0 ),
m_fStartTime( getCurrentTime() ),
m_fFrozenTime( 0.0 ),
m_bInPauseMode( false ),
m_bInHoldMode( false )
{
}
boost::shared_ptr<ElapsedTime> const & ElapsedTime::getTimeBase() const
{
return m_pTimeBase;
}
void ElapsedTime::reset()
{
m_fLastQueriedTime = 0.0;
m_fStartTime = getCurrentTime();
m_fFrozenTime = 0.0;
m_bInPauseMode = false;
m_bInHoldMode = false;
}
void ElapsedTime::adjustTimer( double fOffset, bool bLimitToLastQueriedTime )
{
#if 0
if (bLimitToLastQueriedTime) {
const double fCurrentTime = getElapsedTimeImpl();
if (m_fLastQueriedTime > (fCurrentTime + fOffset)) {
// TODO(Q3): Once the dust has settled, reduce to
// OSL_TRACE here!
OSL_ENSURE( false, "### adjustTimer(): clamping!" );
fOffset = (m_fLastQueriedTime - fCurrentTime);
}
}
#endif
// to make getElapsedTime() become _larger_, have to reduce
// m_fStartTime.
m_fStartTime -= fOffset;
// also adjust frozen time, this method must _always_ affect the
// value returned by getElapsedTime()!
if (m_bInHoldMode || m_bInPauseMode)
m_fFrozenTime += fOffset;
}
double ElapsedTime::getCurrentTime() const
{
return m_pTimeBase.get() == 0
? getSystemTime() : m_pTimeBase->getElapsedTimeImpl();
}
double ElapsedTime::getElapsedTime() const
{
m_fLastQueriedTime = getElapsedTimeImpl();
return m_fLastQueriedTime;
}
double ElapsedTime::getElapsedTimeImpl() const
{
if (m_bInHoldMode || m_bInPauseMode)
return m_fFrozenTime;
return getCurrentTime() - m_fStartTime;
}
void ElapsedTime::pauseTimer()
{
m_fFrozenTime = getElapsedTimeImpl();
m_bInPauseMode = true;
}
void ElapsedTime::continueTimer()
{
m_bInPauseMode = false;
// stop pausing, time runs again. Note that
// getElapsedTimeImpl() honors hold mode, i.e. a
// continueTimer() in hold mode will preserve the latter
const double fPauseDuration( getElapsedTimeImpl() - m_fFrozenTime );
// adjust start time, such that subsequent getElapsedTime() calls
// will virtually start from m_fFrozenTime.
m_fStartTime += fPauseDuration;
}
void ElapsedTime::holdTimer()
{
// when called during hold mode (e.g. more than once per time
// object), the original hold time will be maintained.
m_fFrozenTime = getElapsedTimeImpl();
m_bInHoldMode = true;
}
void ElapsedTime::releaseTimer()
{
m_bInHoldMode = false;
}
} // namespace tools
} // namespace canvas