INTEGRATION: CWS aw051 (1.5.30); FILE MERGED

2007/06/11 14:41:47 aw 1.5.30.4: #i77162# 2nd adaptions to new bezier handling
2007/06/07 09:32:49 aw 1.5.30.3: #i77162# changes to B2DPolygon bezier handling
2007/06/06 15:49:41 aw 1.5.30.2: #i77162# B2DPolygin control point interface changes
2007/05/10 09:48:51 aw 1.5.30.1: #i76891#
This commit is contained in:
Oliver Bolte 2007-07-18 10:06:12 +00:00
parent faf6e9c244
commit cbf1f8734d

View file

@ -4,9 +4,9 @@
*
* $RCSfile: b2dpolygoncutandtouch.cxx,v $
*
* $Revision: 1.5 $
* $Revision: 1.6 $
*
* last change: $Author: obo $ $Date: 2006-09-17 08:01:45 $
* last change: $Author: obo $ $Date: 2007-07-18 11:06:12 $
*
* The Contents of this file are made available subject to
* the terms of GNU Lesser General Public License Version 2.1.
@ -140,93 +140,97 @@ namespace basegfx
B2DPolygon mergeTemporaryPointsAndPolygon(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints)
{
// #i76891# mergeTemporaryPointsAndPolygon redesigned to be able to correctly handle
// single edges with/without control points
if(rTempPoints.size())
{
B2DPolygon aRetval;
sal_uInt32 nNewInd(0L);
const sal_uInt32 nCount(rCandidate.count());
const bool bCurvesInvolved(rCandidate.areControlPointsUsed());
// sort by indices to assure increasing fCut values and increasing indices
::std::sort(rTempPoints.begin(), rTempPoints.end());
// add found cut and touch points
if(bCurvesInvolved)
if(nCount)
{
// merge new polygon by indices
// sort temp points to assure increasing fCut values and increasing indices
::std::sort(rTempPoints.begin(), rTempPoints.end());
// prepare loop
B2DPoint aCurrent(rCandidate.getB2DPoint(0));
B2DPoint aControlPointNext;
B2DPoint aControlPointPrev;
sal_uInt32 nNewInd(0L);
bool bCurveEdge(false);
// add start point
aRetval.append(aCurrent);
for(sal_uInt32 a(0L); a < nCount; a++)
{
// get cubic bezier snippet
B2DCubicBezier aCubicBezier(
rCandidate.getB2DPoint(a),
rCandidate.getControlVectorA(a),
rCandidate.getControlVectorB(a),
rCandidate.getB2DPoint(a + 1L == nCount ? 0L : a + 1L));
double fLeftStart(0.0);
// get next
const sal_uInt32 nNextIndex((a + 1) % nCount);
const B2DPoint aNext(rCandidate.getB2DPoint(nNextIndex));
// add original point
aRetval.append(aCubicBezier.getStartPoint());
if(aCubicBezier.isBezier())
if(rCandidate.areControlPointsUsed())
{
// if really bezier, copy control vectors to added point, too
const sal_uInt32 nRetvalIndex(aRetval.count() - 1L);
aRetval.setControlPointA(nRetvalIndex, aCubicBezier.getControlPointA());
aRetval.setControlPointB(nRetvalIndex, aCubicBezier.getControlPointB());
// get control points
aControlPointNext = rCandidate.getNextControlPoint(a);
aControlPointPrev = rCandidate.getPrevControlPoint(nNextIndex);
bCurveEdge = !aControlPointNext.equal(aCurrent) || !aControlPointPrev.equal(aNext);
}
// now add all points targeted to be at this index
while(nNewInd < rTempPoints.size() && rTempPoints[nNewInd].getIndex() == a)
if(bCurveEdge)
{
const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
// control vectors involved for this edge
double fLeftStart(0.0);
B2DCubicBezier aCubicBezier(
aCurrent, rCandidate.getNextControlPoint(a),
rCandidate.getPrevControlPoint(nNextIndex), aNext);
// split curve segment. Splits need to come sorted and need to be < 1.0. Also,
// since original segment is consumed from left to right, the cut values need
// to be scaled to the remaining part
B2DCubicBezier aLeftPart;
const double fRelativeSplitPoint((rTempPoint.getCut() - fLeftStart) / (1.0 - fLeftStart));
aCubicBezier.split(fRelativeSplitPoint, aLeftPart, aCubicBezier);
fLeftStart = rTempPoint.getCut();
// correct vectors on last added point
const sal_uInt32 nRetvalCount(aRetval.count());
aRetval.setControlPointA(nRetvalCount - 1L, aLeftPart.getControlPointA());
aRetval.setControlPointB(nRetvalCount - 1L, aLeftPart.getControlPointB());
// append new point, use point from rTempPoint for numerical reasons. This
// will guarantee the usage of exactly the same point in different curves
aRetval.append(rTempPoint.getPoint());
// set new vectors for newly added point
aRetval.setControlPointA(nRetvalCount, aCubicBezier.getControlPointA());
aRetval.setControlPointB(nRetvalCount, aCubicBezier.getControlPointB());
}
}
}
else
{
// merge new polygon by indices
for(sal_uInt32 a(0L); a < nCount; a++)
{
// add original point
aRetval.append(rCandidate.getB2DPoint(a));
// add all points targeted to be at this index
while(nNewInd < rTempPoints.size() && rTempPoints[nNewInd].getIndex() == a)
{
const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
const B2DPoint aNewPoint(rTempPoint.getPoint());
// do not add points double
if(!aRetval.getB2DPoint(aRetval.count() - 1L).equal(aNewPoint))
// now add all points targeted to be at this index
while(nNewInd < rTempPoints.size() && rTempPoints[nNewInd].getIndex() == a)
{
aRetval.append(aNewPoint);
const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
// split curve segment. Splits need to come sorted and need to be < 1.0. Also,
// since original segment is consumed from left to right, the cut values need
// to be scaled to the remaining part
B2DCubicBezier aLeftPart;
const double fRelativeSplitPoint((rTempPoint.getCut() - fLeftStart) / (1.0 - fLeftStart));
aCubicBezier.split(fRelativeSplitPoint, aLeftPart, aCubicBezier);
fLeftStart = rTempPoint.getCut();
// add left bow
aRetval.appendBezierSegment(aLeftPart.getControlPointA(), aLeftPart.getControlPointB(), rTempPoint.getPoint());
}
// add remaining bow
aRetval.appendBezierSegment(aCubicBezier.getControlPointA(), aCubicBezier.getControlPointB(), aNext);
}
else
{
// add all points targeted to be at this index
while(nNewInd < rTempPoints.size() && rTempPoints[nNewInd].getIndex() == a)
{
const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
const B2DPoint aNewPoint(rTempPoint.getPoint());
// do not add points double
if(!aRetval.getB2DPoint(aRetval.count() - 1L).equal(aNewPoint))
{
aRetval.append(aNewPoint);
}
}
// add edge end point
aRetval.append(aNext);
}
// prepare next edge
aCurrent = aNext;
}
}
// copy closed flag
aRetval.setClosed(rCandidate.isClosed());
return aRetval;
}
else
@ -334,6 +338,126 @@ namespace basegfx
////////////////////////////////////////////////////////////////////////////////
void findCutsAndTouchesAndCommonForBezier(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
{
// #i76891#
// This new method is necessary since in findEdgeCutsBezierAndEdge and in findEdgeCutsTwoBeziers
// it is not sufficient to use findCuts() recursively. This will indeed find the cuts between the
// segments of the two temporarily adaptive subdivided bezier segments, but not the touches or
// equal points of them.
// It would be possible to find the toches using findTouches(), but at last with commpn points
// the adding of cut points (temporary points) would fail. But for these temporarily adaptive
// subdivided bezier segments, common points may be not very likely, but the bug shows that it
// happens.
// Touch points are a little bit more likely than common points. All in all it is best to use
// a specialized method here which can profit from knowing that it is working on a special
// family of B2DPolygons: no curve segments included and not closed.
OSL_ENSURE(!rCandidateA.areControlPointsUsed() && !rCandidateB.areControlPointsUsed(), "findCutsAndTouchesAndCommonForBezier only works with subdivided polygons (!)");
OSL_ENSURE(!rCandidateA.isClosed() && !rCandidateB.isClosed(), "findCutsAndTouchesAndCommonForBezier only works with opened polygons (!)");
const sal_uInt32 nPointCountA(rCandidateA.count());
const sal_uInt32 nPointCountB(rCandidateB.count());
if(nPointCountA > 1 && nPointCountB > 1)
{
const sal_uInt32 nEdgeCountA(nPointCountA - 1);
const sal_uInt32 nEdgeCountB(nPointCountB - 1);
B2DPoint aCurrA(rCandidateA.getB2DPoint(0L));
for(sal_uInt32 a(0L); a < nEdgeCountA; a++)
{
const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1L));
const B2DRange aRangeA(aCurrA, aNextA);
B2DPoint aCurrB(rCandidateB.getB2DPoint(0L));
for(sal_uInt32 b(0L); b < nEdgeCountB; b++)
{
const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1L));
const B2DRange aRangeB(aCurrB, aNextB);
if(aRangeA.overlaps(aRangeB))
{
// no null length edges
if(!(aCurrA.equal(aNextA) || aCurrB.equal(aNextB)))
{
const B2DVector aVecA(aNextA - aCurrA);
const B2DVector aVecB(aNextB - aCurrB);
double fCutA(aVecA.cross(aVecB));
if(!fTools::equalZero(fCutA))
{
const double fZero(0.0);
const double fOne(1.0);
fCutA = (aVecB.getY() * (aCurrB.getX() - aCurrA.getX()) + aVecB.getX() * (aCurrA.getY() - aCurrB.getY())) / fCutA;
// use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered
// as 0.0 cut. The 1.0 cut will be registered in the next loop step
if(fTools::moreOrEqual(fCutA, fZero) && fTools::less(fCutA, fOne))
{
// it's a candidate, but also need to test parameter value of cut on line 2
double fCutB;
// choose the more precise version
if(fabs(aVecB.getX()) > fabs(aVecB.getY()))
{
fCutB = (aCurrA.getX() + (fCutA * aVecA.getX()) - aCurrB.getX()) / aVecB.getX();
}
else
{
fCutB = (aCurrA.getY() + (fCutA * aVecA.getY()) - aCurrB.getY()) / aVecB.getY();
}
// use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered
// as 0.0 cut. The 1.0 cut will be registered in the next loop step
if(fTools::moreOrEqual(fCutB, fZero) && fTools::less(fCutB, fOne))
{
// cut is in both ranges. Add points for A and B
if(fTools::equalZero(fCutA))
{
// ignore for start point in first edge; this is handled
// by outer methods and would just produce a double point
if(a)
{
rTempPointsA.push_back(temporaryPoint(aCurrA, a, 0.0));
}
}
else
{
const B2DPoint aCutPoint(interpolate(aCurrA, aNextA, fCutA));
rTempPointsA.push_back(temporaryPoint(aCutPoint, a, fCutA));
}
if(fTools::equalZero(fCutB))
{
// ignore for start point in first edge; this is handled
// by outer methods and would just produce a double point
if(b)
{
rTempPointsB.push_back(temporaryPoint(aCurrB, b, 0.0));
}
}
else
{
const B2DPoint aCutPoint(interpolate(aCurrB, aNextB, fCutB));
rTempPointsB.push_back(temporaryPoint(aCutPoint, b, fCutB));
}
}
}
}
}
}
// prepare next step
aCurrB = aNextB;
}
// prepare next step
aCurrA = aNextA;
}
}
}
////////////////////////////////////////////////////////////////////////////////
void findEdgeCutsBezierAndEdge(
const B2DCubicBezier& rCubicA,
const B2DPoint& rCurrB, const B2DPoint& rNextB,
@ -349,10 +473,13 @@ namespace basegfx
temporaryPointVector aTempPointVectorEdge;
// create subdivided polygons and find cuts between them
rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT, true);
aTempPolygonA.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT);
aTempPolygonEdge.append(rCurrB);
aTempPolygonEdge.append(rNextB);
findCuts(aTempPolygonA, aTempPolygonEdge, aTempPointVectorA, aTempPointVectorEdge);
// #i76891# using findCuts recursively is not sufficient here
findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonEdge, aTempPointVectorA, aTempPointVectorEdge);
if(aTempPointVectorA.size())
{
@ -385,9 +512,13 @@ namespace basegfx
temporaryPointVector aTempPointVectorB;
// create subdivided polygons and find cuts between them
rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT, true);
rCubicB.adaptiveSubdivideByCount(aTempPolygonB, SUBDIVIDE_FOR_CUT_TEST_COUNT, true);
findCuts(aTempPolygonA, aTempPolygonB, aTempPointVectorA, aTempPointVectorB);
aTempPolygonA.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT);
aTempPolygonB.append(rCubicB.getStartPoint());
rCubicB.adaptiveSubdivideByCount(aTempPolygonB, SUBDIVIDE_FOR_CUT_TEST_COUNT);
// #i76891# using findCuts recursively is not sufficient here
findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonB, aTempPointVectorA, aTempPointVectorB);
if(aTempPointVectorA.size())
{
@ -415,7 +546,8 @@ namespace basegfx
temporaryPointVector aTempPointVector;
// create subdivided polygon and find cuts on it
rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT, true);
aTempPolygon.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT);
findCuts(aTempPolygon, aTempPointVector);
if(aTempPointVector.size())
@ -445,21 +577,27 @@ namespace basegfx
{
for(sal_uInt32 a(0L); a < nEdgeCount - 1L; a++)
{
const B2DCubicBezier aCubicA(
rCandidate.getB2DPoint(a),
rCandidate.getControlVectorA(a),
rCandidate.getControlVectorB(a),
rCandidate.getB2DPoint(a + 1L == nPointCount ? 0L : a + 1L));
const sal_uInt32 nNextIndexA((a + 1) % nEdgeCount);
B2DCubicBezier aCubicA(
rCandidate.getB2DPoint(a), rCandidate.getNextControlPoint(a),
rCandidate.getPrevControlPoint(nNextIndexA), rCandidate.getB2DPoint(nNextIndexA));
aCubicA.testAndSolveTrivialBezier();
const bool bEdgeAIsCurve(aCubicA.isBezier());
const B2DRange aRangeA(aCubicA.getRange());
if(bEdgeAIsCurve)
{
// curved segments may have self-intersections, do not forget those (!)
findEdgeCutsOneBezier(aCubicA, a, rTempPoints);
}
for(sal_uInt32 b(a + 1L); b < nEdgeCount; b++)
{
const B2DCubicBezier aCubicB(
rCandidate.getB2DPoint(b),
rCandidate.getControlVectorA(b),
rCandidate.getControlVectorB(b),
rCandidate.getB2DPoint(b + 1L == nPointCount ? 0L : b + 1L));
const sal_uInt32 nNextIndexB((b + 1) % nEdgeCount);
B2DCubicBezier aCubicB(
rCandidate.getB2DPoint(b), rCandidate.getNextControlPoint(b),
rCandidate.getPrevControlPoint(nNextIndexB), rCandidate.getB2DPoint(nNextIndexB));
aCubicB.testAndSolveTrivialBezier();
const bool bEdgeBIsCurve(aCubicB.isBezier());
const B2DRange aRangeB(aCubicB.getRange());
@ -591,7 +729,8 @@ namespace basegfx
temporaryPointVector aTempPointVector;
// create subdivided polygon and find cuts on it
rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT, true);
aTempPolygon.append(rCubicA.getStartPoint());
rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT);
findTouches(aTempPolygon, rPointPolygon, aTempPointVector);
if(aTempPointVector.size())
@ -613,11 +752,12 @@ namespace basegfx
if(nPointCount && nEdgePointCount)
{
const sal_uInt32 nEdgeCount(rEdgePolygon.isClosed() ? nEdgePointCount : nEdgePointCount - 1L);
B2DPoint aCurr(rEdgePolygon.getB2DPoint(0));
for(sal_uInt32 a(0L); a < nEdgeCount; a++)
{
const B2DPoint aCurr(rEdgePolygon.getB2DPoint(a));
const B2DPoint aNext(rEdgePolygon.getB2DPoint(a + 1L == nEdgePointCount ? 0L : a + 1L));
const sal_uInt32 nNextIndex((a + 1) % nEdgePointCount);
const B2DPoint aNext(rEdgePolygon.getB2DPoint(nNextIndex));
if(!aCurr.equal(aNext))
{
@ -625,14 +765,14 @@ namespace basegfx
if(rEdgePolygon.areControlPointsUsed())
{
const B2DVector aCVecA(rEdgePolygon.getControlVectorA(a));
const B2DVector aCVecB(rEdgePolygon.getControlVectorB(a));
const bool bEdgeIsCurve(!aCVecA.equalZero() || !aCVecB.equalZero());
const B2DPoint aNextControlPoint(rEdgePolygon.getNextControlPoint(a));
const B2DPoint aPrevControlPoint(rEdgePolygon.getPrevControlPoint(nNextIndex));
const bool bEdgeIsCurve(!aNextControlPoint.equal(aCurr) || !aPrevControlPoint.equal(aNext));
if(bEdgeIsCurve)
{
bHandleAsSimpleEdge = false;
const B2DCubicBezier aCubicA(aCurr, aCVecA, aCVecB, aNext);
const B2DCubicBezier aCubicA(aCurr, aNextControlPoint, aPrevControlPoint, aNext);
findTouchesOnCurve(aCubicA, rPointPolygon, a, rTempPoints);
}
}
@ -642,6 +782,9 @@ namespace basegfx
findTouchesOnEdge(aCurr, aNext, rPointPolygon, a, rTempPoints);
}
}
// next step
aCurr = aNext;
}
}
}
@ -679,21 +822,21 @@ namespace basegfx
{
for(sal_uInt32 a(0L); a < nEdgeCountA; a++)
{
const B2DCubicBezier aCubicA(
rCandidateA.getB2DPoint(a),
rCandidateA.getControlVectorA(a),
rCandidateA.getControlVectorB(a),
rCandidateA.getB2DPoint(a + 1L == nPointCountA ? 0L : a + 1L));
const sal_uInt32 nNextIndexA((a + 1) % nPointCountA);
B2DCubicBezier aCubicA(
rCandidateA.getB2DPoint(a), rCandidateA.getNextControlPoint(a),
rCandidateA.getPrevControlPoint(nNextIndexA), rCandidateA.getB2DPoint(nNextIndexA));
aCubicA.testAndSolveTrivialBezier();
const bool bEdgeAIsCurve(aCubicA.isBezier());
const B2DRange aRangeA(aCubicA.getRange());
for(sal_uInt32 b(0L); b < nEdgeCountB; b++)
{
const B2DCubicBezier aCubicB(
rCandidateB.getB2DPoint(b),
rCandidateB.getControlVectorA(b),
rCandidateB.getControlVectorB(b),
rCandidateB.getB2DPoint(b + 1L == nPointCountB ? 0L : b + 1L));
const sal_uInt32 nNextIndexB((b + 1) % nPointCountB);
B2DCubicBezier aCubicB(
rCandidateB.getB2DPoint(b), rCandidateB.getNextControlPoint(b),
rCandidateB.getPrevControlPoint(nNextIndexB), rCandidateB.getB2DPoint(nNextIndexB));
aCubicB.testAndSolveTrivialBezier();
const bool bEdgeBIsCurve(aCubicB.isBezier());
const B2DRange aRangeB(aCubicB.getRange());