|
|
|
|
|
Development Tools |
|
|
|
unopkg |
The new UNO package deployment tool. It comes
with the office installation and can be found in the program
directory of the office installation. |
|
pkgchk |
The old UNO package deployment tool. It comes
also with the office installation and it is
deprecated. |
|
uno |
Tool to provide a UNO runtime environment and
provide configured (deployed) or single components. This tools
comes with the office installation and can be found in the program
directory of the office installation. |
|
|
idlc |
The UNOIDL compiler, generates a common
binary type library format as base for all codemaker tools and
the UNO runtime type library. |
|
cppumaker |
Tool for generating C++ code for the UNOIDL
types stored in a type library. |
|
javamaker |
Tool for generating Java claas files for the
UNOIDL types stored in a type library. |
|
rdbmaker |
Tool for building type libraries with only a
specified set of types and their dependencies. |
|
regcomp |
A simple UNO component registration tool. |
|
regmerge |
Tool to merge several registry (e.g. type
libraries) files into one file. |
|
regview |
Tool to view the content of a registry file
in a human readable manner. Special support for type library
nodes. |
|
xml2cmp |
A small helper tool to extract different
information from xml module description files. |
|
autodoc |
Tool to generate javadoc-like documentation
for C/C++ and UNOIDL files. |
|
|
|
|
|
unopkg |
|
'unopkg' is a tool for easy deployment of UNO packages in an existing
office installation. UNO packages are UNO components (single libraries or
Jar files or more complex zip files that contains one or more libraries|
Jar files, type libraries and configuration items), scripts and
[PRODUCTNAME] Basic libraries as zip package. 'unopkg' is not part of the
SDK but comes with the office directly and is a development tool as well
as an end user tool to deploy extension into an office installation.
More details concerning deployment and this tool can be find in the
Developer's Guide: 4.9.1 UNO Package Installation Using unopkg.
Note: This tool works only in the <office>/program
directory!
Usage:
unopkg add <options> package-path...
unopkg remove <options> package-name...
unopkg list <options> package-name...
unopkg reinstall <options>
unopkg gui
unopkg -V
unopkg -h
Sub-commands:
add |
add packages |
remove |
remove packages by name |
reinstall |
export feature: reinstall all deployed
packages |
list |
list information about deployed packages |
gui |
raise Package Manager Graphical User Interface
(GUI) |
Options:
-h, --help |
show this help on the command line |
-V, --version |
shows version information
|
-v, --verbose |
dump verbose output to stdout |
-f, --force |
force overwriting existing packages |
--log-file <file> |
custom log file; default:
<cache-dir>/log.txt. |
--shared |
expert feature: operate on shared installation
deployment context; run only when no concurrent Office process(es) are
running! |
--deployment-context <context>
|
expert feature: explicit deployment context |
|
|
|
|
|
pkgchk |
|
'pkgchk' is deprecated and you should use the new
'unopkg'
deployment tool.
'pkgchk' is a tool for easy deployment of UNO packages in an existing
office installation. UNO packages are UNO components (single libraries
or Jar files or more complex zip files that contains one or more
libraries|Jar files, type libraries and configuration items) and
[PRODUCTNAME] Basic libraries as zip package. More detailed information
concerning deplyoment can be find in the Developer's Guide: 4.9 Deployment Options for Components.
Note: This tool works only in the <office>/program
directory!
Usage:
pkgchk <options> [package1 package2 ... ]
Options:
-s, --shared|revoke |
check/install shared components; default:
user |
-r, --renewal |
re-install all packages (useful for cache
inconsistencies). |
-f, --force-overwrite |
force overwrite existing packages when copying
from command line. |
-v, --verbose |
verbose output to stdout. |
-l, --log <file> |
custom log file; default:
<cache>/log.txt. |
--strict_error_handling |
break process immediately if errors occur. |
--supersede_basic_libs |
overwrite existing basic library entries of
same name. |
--check_unorc_only |
check/patch only the unorc (Unix), uni.ini
(Windows). |
--no_unorc_patch |
don't touch unorc (Unix), uni.ini (Windows). |
-h, --help |
print a command line help to stdout. |
|
|
|
|
|
uno |
|
The UNO-starter is for running a component or service process, and
providing a runtime environment. Raising a component might look like
this
[c:\] uno.exe -c MyComponent -l mycomp.dll -r myregistry.rdb
-- foo bar
or
[c:\] uno.exe -s foo.bar.FooBarService -r myregistry.rdb
-- foo bar
The starter loads the component and instantiates it. The component
must export the interface com.sun.star.lang.XMain:
interface XMain : com::sun::star::uno::XInterface
{
/** This method is called to run the component.
@param aArguments command line arguments
@return process error code to be returned to system
*/
long run( [in] sequence< string > arguments );
};
Method run() will be called and returns the error code given, back
to the system. If the uno starter is executed with the -u (URL) option,
then XInitialization is used instead of XMain. The -u option is described
later.
Usage:
uno (-c<ComponentImplementationName> -l <LocationUrl>
| -s <ServiceName>)
[-ro <ReadOnlyRegistry1>] [-ro <ReadOnlyRegistry2>] ... [-rw <ReadWriteRegistry>]
[-u uno:(socket[,host=<HostName>][,port=<nnn>]|pipe[,name=<PipeName>]);iiop|urp;<Name>
[--singleaccept] [--singleinstance]]
[-- <Argument1 Argument2 ...>]
Options:
<HostName> |
Specifying a host name might be necessary to
distinguish the network interface to be used,if a machine is part of
two networks. |
<PipeName> |
Name of a named pipe. |
<Name> |
Identifier for demanded called component
instances. |
<Registries> |
The optional <Registries>
(e.g., c:\myreg.rdb) are used by the ServiceManager. The ro
ones are opened for reading only; whereas, a single rw one
will be opened for reading and writing. If the rw one does
not exist, then it may be created. Components may read and write to
store their persistent state. |
--singleaccept |
The uno starter will accept one connection,
provide the component instance and die. |
--singleinstance |
The uno starter will accept any number of
connections, but will provide the same single component instance any
time instead of creating a new instance for each connection. |
Service com.sun.star.bridge.UnoUrlResolver
You can easily connect to a server started with the
-u (url) option by using this service, giving the same url
to resolve. The service provides you an instance from remote.
|
|
|
|
|
idlc |
|
'idlc' is the UNOIDL compiler. It is a full featured compiler used
to check UNODL type definitions and transform valid type definitions
into a binary type library format, which is later used by all codemaker
tools. It is also used as a dynamic type library for UNO at runtime.
You can find a syntax description for UNOIDL here.
Usage:
idlc [-options] file_1 ... file_n | @<filename>
file_1 ... file_n |
specifies one or more idl files. Only files with
the extension '.idl' are valid. |
@<filename> |
filename specifies the name of a command
file. |
Options:
-O<path> |
path describes the output directory. The
generated output is a registry file with the same name as the idl
input file. |
-I<path> |
path specifies a directory where included files
that will be searched by the preprocessor are located. Multiple
directories can be combined with ';'. |
-D<name> |
name defines a macro for the preprocessor. |
-C |
generates complete type information, including
additional service information and documentation. |
-h|? |
print this help message and exit. |
|
|
|
|
|
cppumaker |
|
The 'cppumaker' generates a C++ representation for idl types. The
cppumaker works on a typelibrary, which is generated by the UNOIDL
compiler (
idlc). It generates the output for all specified types and for all
types the specified types depend on.
Usage:
cppumaker [-options] file_1 ... file_n
Options:
-O<path> |
path describes the root directory for the
generated output. The output directory tree is generated under this
directory. |
-T<name>
|-T<t1>;<t2>... |
name specifies a type or a list of types. The
output for this type and all dependent types are generated. If no '-T'
option is specified, then output for all types is generated. It is also
possible to use a wildcard 'xy.*' to generate a complete module
inclusive all subdirectories. The use of '-T*' is equivalent to no '-T'
option. Example: 'com.sun.star.uno.XInterface' or
'com.sun.star.uno.*' are valid types.
|
-B<name> |
name specifies the base node. All types are
searched under this node. Default is the root '/' of the registry
files. |
-L|-C |
In general, the cppumaker tool generates
getCppuType() functions in three ways:
- no option (default)
This generates headers so that UNO runs correctly as long as:
-
-- one compiler compiled all code (no bridging needed for
inter-component communication)
-
-- no marshaling is needed (no bridging needed for interprocess
communication)
-
-- no scripting is needed (in general, this needs full type
description support)
- -L (_ONLY_ usable on Windows!)
This option generates the shortest getCppuType() functions, but needs
a running type description manager (+provider) reading all type
information from the applicat.rdb! ==> !! Cannot be used at setup
startup, because no applicat.rdb is involved at this early stage!!
- -C (fully comprehensive type information)
This options generates the longest form of getCppuType() functions,
including a comprehensive description of a type, thus there is no
need for a type description manager (+provider) reading types from
applicat.rdb:
-
-- limitation: only previously used types are provided by the
runtime (i.e., only types which were previously registered due
to a getCppuType() call are accessible by name)
|
-G |
generate only target files which do not
exist. |
-Gc |
generate only target files whose content will
be changed. |
-X<name> |
extra types which will not be taken into account
for generation. |
|
|
|
|
|
javamaker |
|
The 'javamaker' generates the appropriate Java class file for each idl
type. The javamaker works on a typelibrary which is generated by the
UNOIDL compiler (
idlc). It generates the output for all specified types and for all
types the specified types depend on.
Usage:
javamaker [-options] file_1 ... file_n -Xfile_n+1 -Xfile_n+2
Options:
-O<path> |
path describes the root directory for the
generated output. The output directory tree is generated under this
directory. |
-T<name>|-T<t1>;<t2>... |
name specifies a type or a list of types. The
output for this type and all dependent types are generated. If no '-T'
option is specified, then output for all types is generated. It is also
possible to use a wildcard 'xy.*' to generate a complete module
inclusive all subdirectories. The use of '-T*' is equivalent to no '-T'
option. Example: 'com.sun.star.uno.XInterface'
or 'com.sun.star.uno.*' are valid types.
|
-B<name> |
name specifies the base node. All types are
searched under this node. Default is the root '/' of the registry
files. |
-nD |
no dependent types are generated. |
-G |
generate only target files which does not
exists. |
-Gc |
generate only target files which content will
be changed. |
-X<name> |
extra types which will not be taken into account
for generation. |
|
|
|
|
|
rdbmaker |
|
The rdbmaker generates subsets of the typelibrary. It generates a
subset of the typelibrary, which contains all specified types and all
types the specified types depend on. This can be used to provide all
and only necessary types for a component.
The rdbmaker supports 2 modes:
- using the internal UNO type description manager -> use
-R<regname>
where regname specifies the type library used by the UNO type description
manager after UNO is bootstrapped. This option disables the use of any
other type libraries.
- using one or more type library files -> use file_1 ... file_n
file_1 .. file_n specifies one or more valid type library files which
are used to find the needed type information. The used type libraries
have to support the same base node (-B option).
Usage:
rdbmaker [-options] (-R<regname> | file_1 [... file_n])
Options:
-O<fileName> |
filename specifies the name of the generated
registry or text file. |
-L |
specifies that only a text file is generated
with the names of the specified types and their dependencies. Default
is that a registry file will be created. |
-T<name>
|-T<t1>;<t2>... |
name specifies a type or a list of types. The
output for this type is generated.Example: 'com.sun.star.uno.XInterface'
is a valid type. |
-FT<name>
|-T<t1>;<t2>... |
name specifies a type or a list of types. For
this types, nothing will be generated. |
-F<file> |
file specifies a text file. For the specified
types in this file, nothing will be generated. |
-B<name> |
name specifies the base node. All types are
searched under this node. Default is the root '/' of the registry
files. This option takes effect using run mode 2 only. |
-b<name> |
name specifies the base node of the output
registry. All types will be generated under this node. Default is the
root '/' of the registry file. |
|
|
|
|
|
regcomp |
|
'regcomp' is a tool to register|revoke external UNO components
into|from a registry which is used in a UNO environment.
Usage:
regcomp -revoke [-br<registryfile>] -r <registryfile> -c <locationUrl>[-l<componentLoaderName>]
Options:
-register|revoke |
register means that the components will be
installed and revoke means that they will be removed. |
-br<registryfile> |
the name of the registry used for bootstrapping
the program. If the bootstrap registry is specified and has the same
name as the registration registry, '-r' is optional. |
-r<registryfile> |
the name of the registry (will be created if
it does not exist) where the component should be registered. |
-c<locationUrls> |
the location of a component (DLL, Class name,
or an url of a jar file) or a list of urls separated by ';'s. Note
that, if a list of urls is specified, the components must all need
the same loader. |
-l<componentLoaderName> |
the name of the needed loader, if no loader is
specified the 'com.sun.star.loader.SharedLibrary' is used. Supported
loaders: 'com.sun.star.loader.SharedLibrary' |
'com.sun.star.loader.Java'. |
|
|
|
|
|
regmerge |
|
'regmerge' is a small tool to merge different registry files under a
specified key into another registry file. If a value already exists in
the target file the value is overwritten by the value of the source
file.
Usage:
regmerge [-v|--verbose] <mergefile> <mergeKeyName> <regfile_1> ... <regfile_n>
Options:
-v|--verbose |
verbose output on stdout. |
<mergefile> |
specifies the merged registry file. If this file
doesn't exists, it is created. |
<mergeKeyName> |
specifies the merge key, everything is merged
under this key. If this key doesn't exists, it is created. |
<regfile_1> ... <regfile_n> |
specifies one or more registry files which are
merged. |
|
|
|
|
|
regview |
|
'regview' is a tool to show the contents of a registry file. The tool
dumps the hierarchical structure and the values of the nodes in a human
readable manner to stdout.
Usage:
regview <registryfile> [<keyName>]
Options:
-br<registryfile> |
the name of the registry whose contents should
be viewed. |
<keyName> |
the name of a registry key. The name must be
fully qualified; for example, '/' means the root key and
'/UCR/com/sun/star/uno/XInterface' shows the type specification of the
XInterface type. If no key is specified, the tool dumps the whole
content of the registry file. |
|
|
|
|
|
xml2cmp |
|
The 'xml2cmp' tool parses .xml files, which contain the descriptions
of components that implement UNO services. Each .xml file refers to one
library. The library may contain one or more component descriptions.
There are two ways of using xml2cmp:
Usage:
xml2cmp [-func <funcFile>] [-html <htmlFile>] [-types <typeFile>] <Xml_FileName>
This version parses the file <xml_filename> and produces three
possible types of output, each of which is optional, but there must be at
least one of them.
Options:
-func <funcFile> |
produces a file with the name
<funcfile> . This should be .c|.cxx|.cpp or similar
kind of source code file. This file contains the definition of the
function 'const sal_Char * SAL_CALL
component_getDescriptionFunc();' which returns the parsed
file as ASCII text. |
-html <htmlFile> |
produces a file with the name
<htmlfile> . It should be a .htm|.html file. That
file contains the contents of the parsed file in HTML-readable
form. |
-types <typeFile> |
produces a textfile with the name
<typefile> . This textfile is intended to be
included in a makefile and contains the definition of a variable
<libraryName>_XML2CMPTYPES= \
<type_used_by_LibraryName_1> \
<type_used_by_LibraryName_2> \
...
The variable <libraryName>_XML2CMPTYPES contains a list of the
types used by that library. |
All output of this first version of xml2cmp is put into the working
directory.
xml2cmp -ix <sourcedirectory> <outputdirectory> [<tagname1> [<tagname2> ...]]
This version parses all .xml files that are found in
<sourcedirectory> or its subdirectories. It produces
the .html output of all parsed .xml files (as in version 1 above). Also,
it produces a file named xmlindex.html. This is an HTML file which
contains tables alphabetically ordered on the left side, which allows
assigning from one 'XML-tags' content to another (of all original
parsed .xml files). The following tables are produced ("Module
" refers to a library):
SupportedService -> ModuleName
ModuleName -> SupportedService
<tagname1> -> ComponentName
<tagname2> -> ComponentName
...
All output files of the second version of xml2cmp are put to the
<outputDirectory>
|
|
|
|
|
autodoc |
|
The 'autodoc' tool is used for creating javadoc-like documentation
from C++ and UNOIDL source code.
There are some conventions to follow when documenting C++- or
UNOIDL-sourcecode. See also the UNOIDL Documentation Guidelines.
If you are not familiar with these, but do know javadoc: For simple C++
sourcecode documentation, using javadoc-style comments will work.
Usage:
autodoc [ -v <VerboseNr> ] [ -name "<TitleForTheDocu>" ] -html <OutputDirectory> -lg <SourcecodeLanguage>
{ [ -p <ProjectName> <ProjectRootDirectory> ] -t <SourceTree>* | -d <SourceDirectory>* | -f <SourceFile>* }*
Options:
-v <VerboseNr> |
<VerboseNr> == 5 displays the parsed source
code tokens, so you can locate which piece caused an parsing error.
<VerboseNr> == 2 displays not only the parsed source code,
but also the comments.
This option must be the first one, if it is used. |
-name "<Title>" |
<Title> occurs as the title of the start
page of the HTML output. If this option is omitted, a default title is
created. |
-html <OutputDirectory> |
specifies the root directory where the HTML output
is created.
Autodoc does not remove old files there, though it overwrites them. |
-lg <SourcecodeLanguage> |
Possible values are: c++ | idl.
This also specifies which files will be parsed: "c++" parses
all files with the endings .hxx and .h, "idl" parses all
files with the ending '.idl' .
To change this behaviour, see at option -f . |
-p <ProjectName> <ProjectDirectory> |
this option can be used to divide large code
bases into different projects.
<ProjectName> gives a user-defined name for the project.
<ProjectDirectory> is the root to which all paths, given with the
following options -t,-d and -f , are
relative.
This option can be omitted when there are no projects and all paths in
the following options are relative to the working directory.
The "{ ... }*" around the options -p,-t,-d,-f
indicates, that this whole block of options can be repeated, each block
starting with a new -p . |
-t <SourceTree> |
specifies that all files in the directory
<SourceTree> and it's subdirectories are parsed, where the file
ending matches the option -lg .
There can be given multiple directories after one -t
option.
All relative paths are relative to the project-rootdirectory,
given with the -p option.
|
-d <SourceDirectory> |
Specifies that all files in th directory
<SourceDirectory>, but NOT it's subdirectories, are parsed, where
the file ending matches the option -lg .
There can be multiple directories given after one -d
option.
All relative paths are relative to the project-rootdirectory,
given with the -p option. |
-f <SourceFile> |
parses the given file. The ending does not have
to match the -lg option.
There can be multiple files given after one -f option.
All relative paths are relative to the project-rootdirectory,
given with the -p option. |
Remark: The sequence of options matters! Use them in the order given
in the "Usage"-paragraph.
|
|
|
|
Copyright 2004 Sun Microsystems, Inc.
|