/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * This file is part of LibreOffice published API. */ #ifndef INCLUDED_RTL_STRINGUTILS_HXX #define INCLUDED_RTL_STRINGUTILS_HXX #include "sal/config.h" #include #include #if defined LIBO_INTERNAL_ONLY #include #include #include #endif #include "sal/types.h" // The unittest uses slightly different code to help check that the proper // calls are made. The class is put into a different namespace to make // sure the compiler generates a different (if generating also non-inline) // copy of the function and does not merge them together. The class // is "brought" into the proper rtl namespace by a typedef below. #ifdef RTL_STRING_UNITTEST #define rtl rtlunittest #endif namespace rtl { #ifdef RTL_STRING_UNITTEST #undef rtl #endif #if defined LIBO_INTERNAL_ONLY /// @cond INTERNAL // A simple wrapper around a single char. Can be useful in string concatenation contexts, like in // // OString s = ...; // char c = ...; // s += OStringChar(c); // struct SAL_WARN_UNUSED OStringChar { constexpr OStringChar(char theC): c(theC) {} template OStringChar( T, std::enable_if_t || std::is_enum_v, int> = 0) = delete; constexpr operator std::string_view() const { return {&c, 1}; } char const c; }; /** A simple wrapper around a single sal_Unicode character. Can be useful to pass a sal_Unicode constant into an OUString-related function that is optimized for UTF-16 string literal arguments. That is, instead of sal_Unicode const WILDCARD = '%'; ... if (s[i] == WILDCARD) ... ... if (s.endsWith(OUString(WILDCARD))) ... use sal_Unicode const WILDCARD = '%'; ... if (s[i] == WILDCARD) ... ... if (s.endsWith(OUStringChar(WILDCARD))) ... to avoid creating a temporary OUString instance, and instead pick the endsWith overload actually designed to take an argument of type sal_Unicode const[N]. (Because of the above use case, instances of OUStringChar need to be const, as those literal-optimized functions take the literal argument by non-const lvalue reference, for technical reasons. For actual arrays, it is important to distinguish string literals from other char or sal_Unicode arrays, which may contain junk after the first NUL character or may be non-ASCII in the case of char arrays. This is not so much a concern for single char and sal_Unicode values, where NUL is assumed to always be meant as an actual character.) Can also be useful in string concatenation contexts, like in sal_Unicode const * s = ...; sal_Unicode c = ...; OUString t = s + OUStringChar(c); @since LibreOffice 5.0 */ struct SAL_WARN_UNUSED OUStringChar_ { constexpr OUStringChar_(sal_Unicode theC): c(theC) {} constexpr OUStringChar_(char theC): c(theC) { assert(c <= 0x7F); } template OUStringChar_( T, std::enable_if_t || std::is_enum_v, int> = 0) = delete; constexpr operator std::u16string_view() const { return {&c, 1}; } sal_Unicode const c; }; using OUStringChar = OUStringChar_ const; /// @endcond #endif namespace libreoffice_internal { #if defined LIBO_INTERNAL_ONLY template && std::is_signed_v, int> = 0> constexpr bool IsValidStrLen(I i, sal_Int32 margin = 0) { assert(margin >= 0); constexpr sal_uInt32 maxLen = std::numeric_limits::max(); return i >= 0 && static_cast>(i) <= maxLen - margin; } template && std::is_unsigned_v, int> = 0> constexpr bool IsValidStrLen(I i, sal_Int32 margin = 0) { assert(margin >= 0); constexpr sal_uInt32 maxLen = std::numeric_limits::max(); return i <= maxLen - margin; } template , int> = 0> sal_Int32 ThrowIfInvalidStrLen(I i, sal_Int32 margin = 0) { if (!IsValidStrLen(i, margin)) throw std::bad_alloc(); return i; } #endif /* These templates use SFINAE (Substitution failure is not an error) to help distinguish the various plain C string types: char*, const char*, char[N], const char[N], char[] and const char[]. There are 2 cases: 1) Only string literal (i.e. const char[N]) is wanted, not any of the others. In this case it is necessary to distinguish between const char[N] and char[N], as the latter would be automatically converted to the const variant, which is not wanted (not a string literal with known size of the content). In this case ConstCharArrayDetector is used to ensure the function is called only with const char[N] arguments. There's no other plain C string type overload. (Note that OUStringChar is also covered by ConstCharArrayDetector's TypeUtf16 check, but provides a pointer to a string that is not NUL-terminated, unlike the char16_t const[N] arrays normally covered by that check, and which are assumed to represent NUL-terminated string literals.) 2) All plain C string types are wanted, and const char[N] needs to be handled differently. In this case const char[N] would match const char* argument type (not exactly sure why, but it's consistent in all of gcc, clang and msvc). Using a template with a reference to const of the type avoids this problem, and CharPtrDetector ensures that the function is called only with char pointer arguments. The const in the argument is necessary to handle the case when something is explicitly cast to const char*. Additionally (non-const) char[N] needs to be handled, but with the reference being const, it would also match const char[N], so another overload with a reference to non-const and NonConstCharArrayDetector are used to ensure the function is called only with (non-const) char[N]. Additionally, char[] and const char[] (i.e. size unknown) are rather tricky. Their usage with 'T&' would mean it would be 'char(&)[]', which seems to be invalid. But gcc and clang somehow manage when it is a template. while msvc complains about no conversion from char[] to char[1]. And the reference cannot be avoided, because 'const char[]' as argument type would match also 'const char[N]' So char[] and const char[] should always be used with their contents specified (which automatically turns them into char[N] or const char[N]), or char* and const char* should be used. */ struct Dummy {}; template< typename T1, typename T2 = void > struct CharPtrDetector { static const bool ok = false; }; template< typename T > struct CharPtrDetector< const char*, T > { typedef T Type; static const bool ok = true; }; template< typename T > struct CharPtrDetector< char*, T > { typedef T Type; static const bool ok = true; }; #if defined LIBO_INTERNAL_ONLY template struct CharPtrDetector { using TypeUtf16 = T; }; template struct CharPtrDetector { using TypeUtf16 = T; }; template struct CharPtrDetector { using TypeUtf16 = T; }; template struct CharPtrDetector { using TypeUtf16 = T; }; #endif template< typename T1, typename T2 > struct NonConstCharArrayDetector { }; template< typename T, int N > struct NonConstCharArrayDetector< char[ N ], T > { typedef T Type; }; #ifdef RTL_STRING_UNITTEST // never use, until all compilers handle this template< typename T > struct NonConstCharArrayDetector< char[], T > { typedef T Type; }; template< typename T > struct NonConstCharArrayDetector< const char[], T > { typedef T Type; }; #endif #if defined LIBO_INTERNAL_ONLY template struct NonConstCharArrayDetector { using TypeUtf16 = T; }; #endif template< typename T1, typename T2 = void > struct ConstCharArrayDetector { static const bool ok = false; }; template< std::size_t N, typename T > struct ConstCharArrayDetector< const char[ N ], T > { typedef T Type; static const std::size_t length = N - 1; static const bool ok = true; #if defined LIBO_INTERNAL_ONLY constexpr #endif static bool isValid(char const (& literal)[N]) { for (std::size_t i = 0; i != N - 1; ++i) { if (literal[i] == '\0') { return false; } } return literal[N - 1] == '\0'; } #if defined LIBO_INTERNAL_ONLY constexpr #endif static char const * toPointer(char const (& literal)[N]) { return literal; } }; #if defined(__COVERITY__) && __COVERITY_MAJOR__ <= 2023 //to silence over zealous warnings that the loop is logically dead //for the single char case template< typename T > struct ConstCharArrayDetector< const char[ 1 ], T > { typedef T Type; static const std::size_t length = 0; static const bool ok = true; #if defined LIBO_INTERNAL_ONLY constexpr #endif static bool isValid(char const (& literal)[1]) { return literal[0] == '\0'; } #if defined LIBO_INTERNAL_ONLY constexpr #endif static char const * toPointer(char const (& literal)[1]) { return literal; } }; #endif #if defined LIBO_INTERNAL_ONLY \ && !(defined _MSC_VER && _MSC_VER >= 1930 && _MSC_VER <= 1939 && defined _MANAGED) template struct ConstCharArrayDetector { using Type = T; static constexpr bool const ok = true; static constexpr std::size_t const length = N - 1; static constexpr bool isValid(char8_t const (& literal)[N]) { for (std::size_t i = 0; i != N - 1; ++i) { if (literal[i] == u8'\0') { return false; } } return literal[N - 1] == u8'\0'; } static constexpr char const * toPointer(char8_t const (& literal)[N]) { return reinterpret_cast(literal); } }; #endif #if defined LIBO_INTERNAL_ONLY template struct ConstCharArrayDetector { using TypeUtf16 = T; static constexpr bool const ok = true; static constexpr std::size_t const length = N - 1; static constexpr bool isValid(sal_Unicode const (& literal)[N]) { for (std::size_t i = 0; i != N - 1; ++i) { if (literal[i] == '\0') { return false; } } return literal[N - 1] == '\0'; } static constexpr sal_Unicode const * toPointer( sal_Unicode const (& literal)[N]) { return literal; } }; #if defined(__COVERITY__) && __COVERITY_MAJOR__ <= 2023 //to silence over zealous warnings that the loop is logically dead //for the single char case template struct ConstCharArrayDetector { using TypeUtf16 = T; static constexpr bool const ok = true; static constexpr std::size_t const length = 0; static constexpr bool isValid(sal_Unicode const (& literal)[1]) { return literal[0] == '\0'; } static constexpr sal_Unicode const * toPointer( sal_Unicode const (& literal)[1]) { return literal; } }; #endif template struct ConstCharArrayDetector< OUStringChar, T> { using TypeUtf16 = T; static constexpr bool const ok = true; static constexpr std::size_t const length = 1; static constexpr bool isValid(OUStringChar) { return true; } static constexpr sal_Unicode const * toPointer( OUStringChar_ const & literal) { return &literal.c; } }; #endif #if defined LIBO_INTERNAL_ONLY && defined RTL_STRING_UNITTEST // this one is used to rule out only const char[N] template< typename T > struct ExceptConstCharArrayDetector { typedef Dummy Type; }; template< int N > struct ExceptConstCharArrayDetector< const char[ N ] > { }; template struct ExceptConstCharArrayDetector {}; template<> struct ExceptConstCharArrayDetector< OUStringChar > {}; // this one is used to rule out only const char[N] // (const will be brought in by 'const T&' in the function call) // msvc needs const char[N] here (not sure whether gcc or msvc // are right, it doesn't matter). template< typename T > struct ExceptCharArrayDetector { typedef Dummy Type; }; template< int N > struct ExceptCharArrayDetector< char[ N ] > { }; template< int N > struct ExceptCharArrayDetector< const char[ N ] > { }; template struct ExceptCharArrayDetector {}; template struct ExceptCharArrayDetector {}; template<> struct ExceptCharArrayDetector {}; #endif template< typename T1, typename T2 = void > struct SalUnicodePtrDetector { static const bool ok = false; }; template< typename T > struct SalUnicodePtrDetector< const sal_Unicode*, T > { typedef T Type; static const bool ok = true; }; template< typename T > struct SalUnicodePtrDetector< sal_Unicode*, T > { typedef T Type; static const bool ok = true; }; // SFINAE helper class template< typename T, bool > struct Enable { }; template< typename T > struct Enable< T, true > { typedef T Type; }; } /* Namespace */ } /* Namespace */ #endif // INCLUDED_RTL_STRINGUTILS_HXX /* vim:set shiftwidth=4 softtabstop=4 expandtab: */