/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_chart2.hxx" #include "ExponentialRegressionCurveCalculator.hxx" #include "macros.hxx" #include "RegressionCalculationHelper.hxx" #include #include using namespace ::com::sun::star; using ::rtl::OUString; using ::rtl::OUStringBuffer; namespace chart { ExponentialRegressionCurveCalculator::ExponentialRegressionCurveCalculator() : m_fLogSlope( 0.0 ), m_fLogIntercept( 0.0 ) { ::rtl::math::setNan( & m_fLogSlope ); ::rtl::math::setNan( & m_fLogIntercept ); } ExponentialRegressionCurveCalculator::~ExponentialRegressionCurveCalculator() {} // ____ XRegressionCurveCalculator ____ void SAL_CALL ExponentialRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& aXValues, const uno::Sequence< double >& aYValues ) throw (uno::RuntimeException) { RegressionCalculationHelper::tDoubleVectorPair aValues( RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndYPositive())); const size_t nMax = aValues.first.size(); if( nMax == 0 ) { ::rtl::math::setNan( & m_fLogSlope ); ::rtl::math::setNan( & m_fLogIntercept ); ::rtl::math::setNan( & m_fCorrelationCoeffitient );// actual it is coefficient of determination return; } double fAverageX = 0.0, fAverageY = 0.0; size_t i = 0; for( i = 0; i < nMax; ++i ) { fAverageX += aValues.first[i]; fAverageY += log( aValues.second[i] ); } const double fN = static_cast< double >( nMax ); fAverageX /= fN; fAverageY /= fN; double fQx = 0.0, fQy = 0.0, fQxy = 0.0; for( i = 0; i < nMax; ++i ) { double fDeltaX = aValues.first[i] - fAverageX; double fDeltaY = log( aValues.second[i] ) - fAverageY; fQx += fDeltaX * fDeltaX; fQy += fDeltaY * fDeltaY; fQxy += fDeltaX * fDeltaY; } m_fLogSlope = fQxy / fQx; m_fLogIntercept = fAverageY - m_fLogSlope * fAverageX; m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy ); } double SAL_CALL ExponentialRegressionCurveCalculator::getCurveValue( double x ) throw (lang::IllegalArgumentException, uno::RuntimeException) { double fResult; ::rtl::math::setNan( & fResult ); if( ! ( ::rtl::math::isNan( m_fLogSlope ) || ::rtl::math::isNan( m_fLogIntercept ))) { fResult = exp(m_fLogIntercept + x * m_fLogSlope); } return fResult; } uno::Sequence< geometry::RealPoint2D > SAL_CALL ExponentialRegressionCurveCalculator::getCurveValues( double min, double max, ::sal_Int32 nPointCount, const uno::Reference< chart2::XScaling >& xScalingX, const uno::Reference< chart2::XScaling >& xScalingY, ::sal_Bool bMaySkipPointsInCalculation ) throw (lang::IllegalArgumentException, uno::RuntimeException) { if( bMaySkipPointsInCalculation && isLinearScaling( xScalingX ) && isLogarithmicScaling( xScalingY )) { // optimize result uno::Sequence< geometry::RealPoint2D > aResult( 2 ); aResult[0].X = min; aResult[0].Y = this->getCurveValue( min ); aResult[1].X = max; aResult[1].Y = this->getCurveValue( max ); return aResult; } return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation ); } OUString ExponentialRegressionCurveCalculator::ImplGetRepresentation( const uno::Reference< util::XNumberFormatter >& xNumFormatter, ::sal_Int32 nNumberFormatKey ) const { double fIntercept = exp(m_fLogIntercept); double fSlope = exp(m_fLogSlope); bool bHasSlope = !rtl::math::approxEqual( fSlope, 1.0 ); bool bHasIntercept = !rtl::math::approxEqual( fIntercept, 1.0 ); OUStringBuffer aBuf( C2U( "f(x) = " )); if ( fIntercept == 0.0) { // underflow, a true zero is impossible aBuf.append( C2U( "exp( " )); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept) ); aBuf.append( (m_fLogSlope < 0.0) ? C2U( " - " ) : C2U( " + " )); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope)) ); aBuf.append( C2U( " x )" )); } else { if (bHasIntercept) { aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fIntercept) ); aBuf.append( C2U( " exp( " )); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogSlope) ); aBuf.append( C2U( " x )" )); } else { // show logarithmic output, if intercept and slope both are near one // otherwise drop output of intercept, which is 1 here aBuf.append( C2U( " exp( " )); if (!bHasSlope) { aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogIntercept) ); aBuf.append( (m_fLogSlope < 0.0) ? C2U( " - " ) : C2U( " + " )); aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fLogSlope)) ); } else { aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fLogSlope) ); } aBuf.append( C2U( " x )" )); } } return aBuf.makeStringAndClear(); } } // namespace chart /* vim:set shiftwidth=4 softtabstop=4 expandtab: */