/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #ifndef _BGFX_TUPLE_B3ITUPLE_HXX #define _BGFX_TUPLE_B3ITUPLE_HXX #include #include #include namespace basegfx { /** Base class for all Points/Vectors with three sal_Int32 values This class provides all methods common to Point avd Vector classes which are derived from here. @derive Use this class to implement Points or Vectors which are based on three sal_Int32 values */ class BASEGFX_DLLPUBLIC SAL_WARN_UNUSED B3ITuple { protected: sal_Int32 mnX; sal_Int32 mnY; sal_Int32 mnZ; public: /** Create a 3D Tuple The tuple is initialized to (0, 0, 0) */ B3ITuple() : mnX(0), mnY(0), mnZ(0) {} /** Create a 3D Tuple @param nX This parameter is used to initialize the X-coordinate of the 3D Tuple. @param nY This parameter is used to initialize the Y-coordinate of the 3D Tuple. @param nZ This parameter is used to initialize the Z-coordinate of the 3D Tuple. */ B3ITuple(sal_Int32 nX, sal_Int32 nY, sal_Int32 nZ) : mnX(nX), mnY(nY), mnZ(nZ) {} /** Create a copy of a 3D Tuple @param rTup The 3D Tuple which will be copied. */ B3ITuple(const B3ITuple& rTup) : mnX( rTup.mnX ), mnY( rTup.mnY ), mnZ( rTup.mnZ ) {} ~B3ITuple() {} /// get X-Coordinate of 3D Tuple sal_Int32 getX() const { return mnX; } /// get Y-Coordinate of 3D Tuple sal_Int32 getY() const { return mnY; } /// get Z-Coordinate of 3D Tuple sal_Int32 getZ() const { return mnZ; } /// set X-Coordinate of 3D Tuple void setX(sal_Int32 nX) { mnX = nX; } /// set Y-Coordinate of 3D Tuple void setY(sal_Int32 nY) { mnY = nY; } /// set Z-Coordinate of 3D Tuple void setZ(sal_Int32 nZ) { mnZ = nZ; } /// Array-access to 3D Tuple const sal_Int32& operator[] (int nPos) const { // Here, normally two if(...)'s should be used. In the assumption that // both sal_Int32 members can be accessed as an array a shortcut is used here. // if(0 == nPos) return mnX; if(1 == nPos) return mnY; return mnZ; return *((&mnX) + nPos); } /// Array-access to 3D Tuple sal_Int32& operator[] (int nPos) { // Here, normally two if(...)'s should be used. In the assumption that // both sal_Int32 members can be accessed as an array a shortcut is used here. // if(0 == nPos) return mnX; if(1 == nPos) return mnY; return mnZ; return *((&mnX) + nPos); } // operators ////////////////////////////////////////////////////////////////////// B3ITuple& operator+=( const B3ITuple& rTup ) { mnX += rTup.mnX; mnY += rTup.mnY; mnZ += rTup.mnZ; return *this; } B3ITuple& operator-=( const B3ITuple& rTup ) { mnX -= rTup.mnX; mnY -= rTup.mnY; mnZ -= rTup.mnZ; return *this; } B3ITuple& operator/=( const B3ITuple& rTup ) { mnX /= rTup.mnX; mnY /= rTup.mnY; mnZ /= rTup.mnZ; return *this; } B3ITuple& operator*=( const B3ITuple& rTup ) { mnX *= rTup.mnX; mnY *= rTup.mnY; mnZ *= rTup.mnZ; return *this; } B3ITuple& operator*=(sal_Int32 t) { mnX *= t; mnY *= t; mnZ *= t; return *this; } B3ITuple& operator/=(sal_Int32 t) { mnX /= t; mnY /= t; mnZ /= t; return *this; } B3ITuple operator-(void) const { return B3ITuple(-mnX, -mnY, -mnZ); } bool operator==( const B3ITuple& rTup ) const { return this == &rTup || (rTup.mnX == mnX && rTup.mnY == mnY && rTup.mnZ == mnZ); } bool operator!=( const B3ITuple& rTup ) const { return !(*this == rTup); } B3ITuple& operator=( const B3ITuple& rTup ) { mnX = rTup.mnX; mnY = rTup.mnY; mnZ = rTup.mnZ; return *this; } }; // external operators ////////////////////////////////////////////////////////////////////////// inline B3ITuple minimum(const B3ITuple& rTupA, const B3ITuple& rTupB) { return B3ITuple( std::min(rTupB.getX(), rTupA.getX()), std::min(rTupB.getY(), rTupA.getY()), std::min(rTupB.getZ(), rTupA.getZ())); } inline B3ITuple maximum(const B3ITuple& rTupA, const B3ITuple& rTupB) { return B3ITuple( std::max(rTupB.getX(), rTupA.getX()), std::max(rTupB.getY(), rTupA.getY()), std::max(rTupB.getZ(), rTupA.getZ())); } inline B3ITuple absolute(const B3ITuple& rTup) { B3ITuple aAbs( (0 > rTup.getX()) ? -rTup.getX() : rTup.getX(), (0 > rTup.getY()) ? -rTup.getY() : rTup.getY(), (0 > rTup.getZ()) ? -rTup.getZ() : rTup.getZ()); return aAbs; } inline B3ITuple interpolate(const B3ITuple& rOld1, const B3ITuple& rOld2, double t) { if(rOld1 == rOld2) { return rOld1; } else if(0.0 >= t) { return rOld1; } else if(1.0 <= t) { return rOld2; } else { return B3ITuple( basegfx::fround(((rOld2.getX() - rOld1.getX()) * t) + rOld1.getX()), basegfx::fround(((rOld2.getY() - rOld1.getY()) * t) + rOld1.getY()), basegfx::fround(((rOld2.getZ() - rOld1.getZ()) * t) + rOld1.getZ())); } } inline B3ITuple average(const B3ITuple& rOld1, const B3ITuple& rOld2) { return B3ITuple( rOld1.getX() == rOld2.getX() ? rOld1.getX() : basegfx::fround((rOld1.getX() + rOld2.getX()) * 0.5), rOld1.getY() == rOld2.getY() ? rOld1.getY() : basegfx::fround((rOld1.getY() + rOld2.getY()) * 0.5), rOld1.getZ() == rOld2.getZ() ? rOld1.getZ() : basegfx::fround((rOld1.getZ() + rOld2.getZ()) * 0.5)); } inline B3ITuple average(const B3ITuple& rOld1, const B3ITuple& rOld2, const B3ITuple& rOld3) { return B3ITuple( (rOld1.getX() == rOld2.getX() && rOld2.getX() == rOld3.getX()) ? rOld1.getX() : basegfx::fround((rOld1.getX() + rOld2.getX() + rOld3.getX()) * (1.0 / 3.0)), (rOld1.getY() == rOld2.getY() && rOld2.getY() == rOld3.getY()) ? rOld1.getX() : basegfx::fround((rOld1.getY() + rOld2.getY() + rOld3.getY()) * (1.0 / 3.0)), (rOld1.getZ() == rOld2.getZ() && rOld2.getZ() == rOld3.getZ()) ? rOld1.getX() : basegfx::fround((rOld1.getZ() + rOld2.getZ() + rOld3.getZ()) * (1.0 / 3.0))); } inline B3ITuple operator+(const B3ITuple& rTupA, const B3ITuple& rTupB) { B3ITuple aSum(rTupA); aSum += rTupB; return aSum; } inline B3ITuple operator-(const B3ITuple& rTupA, const B3ITuple& rTupB) { B3ITuple aSub(rTupA); aSub -= rTupB; return aSub; } inline B3ITuple operator/(const B3ITuple& rTupA, const B3ITuple& rTupB) { B3ITuple aDiv(rTupA); aDiv /= rTupB; return aDiv; } inline B3ITuple operator*(const B3ITuple& rTupA, const B3ITuple& rTupB) { B3ITuple aMul(rTupA); aMul *= rTupB; return aMul; } inline B3ITuple operator*(const B3ITuple& rTup, sal_Int32 t) { B3ITuple aNew(rTup); aNew *= t; return aNew; } inline B3ITuple operator*(sal_Int32 t, const B3ITuple& rTup) { B3ITuple aNew(rTup); aNew *= t; return aNew; } inline B3ITuple operator/(const B3ITuple& rTup, sal_Int32 t) { B3ITuple aNew(rTup); aNew /= t; return aNew; } inline B3ITuple operator/(sal_Int32 t, const B3ITuple& rTup) { B3ITuple aNew(t, t, t); B3ITuple aTmp(rTup); aNew /= aTmp; return aNew; } } // end of namespace basegfx #endif /* _BGFX_TUPLE_B3ITUPLE_HXX */ /* vim:set shiftwidth=4 softtabstop=4 expandtab: */