/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include namespace basegfx::utils { // B3DPolygon tools void checkClosed(B3DPolygon& rCandidate) { while(rCandidate.count() > 1 && rCandidate.getB3DPoint(0).equal(rCandidate.getB3DPoint(rCandidate.count() - 1))) { rCandidate.setClosed(true); rCandidate.remove(rCandidate.count() - 1); } } sal_uInt32 getIndexOfSuccessor(sal_uInt32 nIndex, const B3DPolygon& rCandidate) { OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)"); if(nIndex + 1 < rCandidate.count()) { return nIndex + 1; } else { return 0; } } B3DRange getRange(const B3DPolygon& rCandidate) { B3DRange aRetval; const sal_uInt32 nPointCount(rCandidate.count()); for(sal_uInt32 a(0); a < nPointCount; a++) { const B3DPoint aTestPoint(rCandidate.getB3DPoint(a)); aRetval.expand(aTestPoint); } return aRetval; } double getLength(const B3DPolygon& rCandidate) { double fRetval(0.0); const sal_uInt32 nPointCount(rCandidate.count()); if(nPointCount > 1) { const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); for(sal_uInt32 a(0); a < nLoopCount; a++) { const sal_uInt32 nNextIndex(getIndexOfSuccessor(a, rCandidate)); const B3DPoint aCurrentPoint(rCandidate.getB3DPoint(a)); const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex)); const B3DVector aVector(aNextPoint - aCurrentPoint); fRetval += aVector.getLength(); } } return fRetval; } void applyLineDashing( const B3DPolygon& rCandidate, const std::vector& rDotDashArray, B3DPolyPolygon* pLineTarget, double fDotDashLength) { // clear targets in any case if(pLineTarget) { pLineTarget->clear(); } // provide callback as lambda const auto& rLineCallback( nullptr == pLineTarget ? std::function() : [&pLineTarget](const basegfx::B3DPolygon& rSnippet){ pLineTarget->append(rSnippet); }); // call version that uses callbacks applyLineDashing( rCandidate, rDotDashArray, rLineCallback, fDotDashLength); } static void implHandleSnippet( const B3DPolygon& rSnippet, const std::function& rTargetCallback, B3DPolygon& rFirst, B3DPolygon& rLast) { if(rSnippet.isClosed()) { if(!rFirst.count()) { rFirst = rSnippet; } else { if(rLast.count()) { rTargetCallback(rLast); } rLast = rSnippet; } } else { rTargetCallback(rSnippet); } } static void implHandleFirstLast( const std::function& rTargetCallback, B3DPolygon& rFirst, B3DPolygon& rLast) { if(rFirst.count() && rLast.count() && rFirst.getB3DPoint(0).equal(rLast.getB3DPoint(rLast.count() - 1))) { // start of first and end of last are the same -> merge them rLast.append(rFirst); rLast.removeDoublePoints(); rFirst.clear(); } if(rLast.count()) { rTargetCallback(rLast); } if(rFirst.count()) { rTargetCallback(rFirst); } } void applyLineDashing( const B3DPolygon& rCandidate, const std::vector& rDotDashArray, const std::function& rLineTargetCallback, double fDotDashLength) { const sal_uInt32 nPointCount(rCandidate.count()); const sal_uInt32 nDotDashCount(rDotDashArray.size()); if(fDotDashLength <= 0.0) { fDotDashLength = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0); } if(fDotDashLength <= 0.0 || !rLineTargetCallback || !nPointCount) { // parameters make no sense, just add source to targets if (rLineTargetCallback) rLineTargetCallback(rCandidate); return; } // precalculate maximal acceptable length of candidate polygon assuming // we want to create a maximum of fNumberOfAllowedSnippets. In 3D // use less for fNumberOfAllowedSnippets, ca. 6553.6, double due to line & gap. // Less in 3D due to potentially blowing up to rounded line segments. static const double fNumberOfAllowedSnippets(6553.5 * 2.0); const double fAllowedLength((fNumberOfAllowedSnippets * fDotDashLength) / double(rDotDashArray.size())); const double fCandidateLength(basegfx::utils::getLength(rCandidate)); std::vector aDotDashArray(rDotDashArray); if(fCandidateLength > fAllowedLength) { // we would produce more than fNumberOfAllowedSnippets, so // adapt aDotDashArray to exactly produce assumed number. Also // assert this to let the caller know about it. // If this asserts: Please think about checking your DotDashArray // before calling this function or evtl. use the callback version // to *not* produce that much of data. Even then, you may still // think about producing too much runtime (!) assert(true && "applyLineDashing: potentially too expensive to do the requested dismantle - please consider stretched LineDash pattern (!)"); // calculate correcting factor, apply to aDotDashArray and fDotDashLength // to enlarge these as needed const double fFactor(fCandidateLength / fAllowedLength); std::for_each(aDotDashArray.begin(), aDotDashArray.end(), [&fFactor](double &f){ f *= fFactor; }); } // prepare current edge's start B3DPoint aCurrentPoint(rCandidate.getB3DPoint(0)); const bool bIsClosed(rCandidate.isClosed()); const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1); // prepare DotDashArray iteration and the line/gap switching bool sal_uInt32 nDotDashIndex(0); bool bIsLine(true); double fDotDashMovingLength(aDotDashArray[0]); B3DPolygon aSnippet; // remember 1st and last snippets to try to merge after execution // is complete and hand to callback B3DPolygon aFirstLine, aLastLine; // iterate over all edges for(sal_uInt32 a(0); a < nEdgeCount; a++) { // update current edge const sal_uInt32 nNextIndex((a + 1) % nPointCount); const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex)); const double fEdgeLength(B3DVector(aNextPoint - aCurrentPoint).getLength()); if(!fTools::equalZero(fEdgeLength)) { double fLastDotDashMovingLength(0.0); while(fTools::less(fDotDashMovingLength, fEdgeLength)) { // new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength] if(bIsLine) { if(!aSnippet.count()) { aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fLastDotDashMovingLength / fEdgeLength)); } aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fDotDashMovingLength / fEdgeLength)); implHandleSnippet(aSnippet, rLineTargetCallback, aFirstLine, aLastLine); aSnippet.clear(); } // prepare next DotDashArray step and flip line/gap flag fLastDotDashMovingLength = fDotDashMovingLength; fDotDashMovingLength += aDotDashArray[(++nDotDashIndex) % nDotDashCount]; bIsLine = !bIsLine; } // append snippet [fLastDotDashMovingLength, fEdgeLength] if(bIsLine) { if(!aSnippet.count()) { aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fLastDotDashMovingLength / fEdgeLength)); } aSnippet.append(aNextPoint); } // prepare move to next edge fDotDashMovingLength -= fEdgeLength; } // prepare next edge step (end point gets new start point) aCurrentPoint = aNextPoint; } // append last intermediate results (if exists) if(aSnippet.count()) { if(bIsLine) { implHandleSnippet(aSnippet, rLineTargetCallback, aFirstLine, aLastLine); } } if(bIsClosed) { implHandleFirstLast(rLineTargetCallback, aFirstLine, aLastLine); } } B3DPolygon applyDefaultNormalsSphere( const B3DPolygon& rCandidate, const B3DPoint& rCenter) { B3DPolygon aRetval(rCandidate); for(sal_uInt32 a(0); a < aRetval.count(); a++) { B3DVector aVector(aRetval.getB3DPoint(a) - rCenter); aVector.normalize(); aRetval.setNormal(a, aVector); } return aRetval; } B3DPolygon invertNormals( const B3DPolygon& rCandidate) { B3DPolygon aRetval(rCandidate); if(aRetval.areNormalsUsed()) { for(sal_uInt32 a(0); a < aRetval.count(); a++) { aRetval.setNormal(a, -aRetval.getNormal(a)); } } return aRetval; } B3DPolygon applyDefaultTextureCoordinatesParallel( const B3DPolygon& rCandidate, const B3DRange& rRange, bool bChangeX, bool bChangeY) { B3DPolygon aRetval(rCandidate); if(bChangeX || bChangeY) { // create projection of standard texture coordinates in (X, Y) onto // the 3d coordinates straight const double fWidth(rRange.getWidth()); const double fHeight(rRange.getHeight()); const bool bWidthSet(!fTools::equalZero(fWidth)); const bool bHeightSet(!fTools::equalZero(fHeight)); const double fOne(1.0); for(sal_uInt32 a(0); a < aRetval.count(); a++) { const B3DPoint aPoint(aRetval.getB3DPoint(a)); B2DPoint aTextureCoordinate(aRetval.getTextureCoordinate(a)); if(bChangeX) { if(bWidthSet) { aTextureCoordinate.setX((aPoint.getX() - rRange.getMinX()) / fWidth); } else { aTextureCoordinate.setX(0.0); } } if(bChangeY) { if(bHeightSet) { aTextureCoordinate.setY(fOne - ((aPoint.getY() - rRange.getMinY()) / fHeight)); } else { aTextureCoordinate.setY(fOne); } } aRetval.setTextureCoordinate(a, aTextureCoordinate); } } return aRetval; } B3DPolygon applyDefaultTextureCoordinatesSphere( const B3DPolygon& rCandidate, const B3DPoint& rCenter, bool bChangeX, bool bChangeY) { B3DPolygon aRetval(rCandidate); if(bChangeX || bChangeY) { // create texture coordinates using sphere projection to cartesian coordinates, // use object's center as base const double fOne(1.0); const sal_uInt32 nPointCount(aRetval.count()); bool bPolarPoints(false); sal_uInt32 a; // create center cartesian coordinates to have a possibility to decide if on boundary // transitions which value to choose const B3DRange aPlaneRange(getRange(rCandidate)); const B3DPoint aPlaneCenter(aPlaneRange.getCenter() - rCenter); const double fXCenter(fOne - ((atan2(aPlaneCenter.getZ(), aPlaneCenter.getX()) + M_PI) / (2 * M_PI))); for(a = 0; a < nPointCount; a++) { const B3DVector aVector(aRetval.getB3DPoint(a) - rCenter); const double fY(fOne - ((atan2(aVector.getY(), aVector.getXZLength()) + M_PI_2) / M_PI)); B2DPoint aTexCoor(aRetval.getTextureCoordinate(a)); if(fTools::equalZero(fY)) { // point is a north polar point, no useful X-coordinate can be created. if(bChangeY) { aTexCoor.setY(0.0); if(bChangeX) { bPolarPoints = true; } } } else if(fTools::equal(fY, fOne)) { // point is a south polar point, no useful X-coordinate can be created. Set // Y-coordinate, though if(bChangeY) { aTexCoor.setY(fOne); if(bChangeX) { bPolarPoints = true; } } } else { double fX(fOne - ((atan2(aVector.getZ(), aVector.getX()) + M_PI) / (2 * M_PI))); // correct cartesian point coordinate dependent from center value if(fX > fXCenter + 0.5) { fX -= fOne; } else if(fX < fXCenter - 0.5) { fX += fOne; } if(bChangeX) { aTexCoor.setX(fX); } if(bChangeY) { aTexCoor.setY(fY); } } aRetval.setTextureCoordinate(a, aTexCoor); } if(bPolarPoints) { // correct X-texture coordinates if polar points are contained. Those // coordinates cannot be correct, so use prev or next X-coordinate for(a = 0; a < nPointCount; a++) { B2DPoint aTexCoor(aRetval.getTextureCoordinate(a)); if(fTools::equalZero(aTexCoor.getY()) || fTools::equal(aTexCoor.getY(), fOne)) { // get prev, next TexCoor and test for pole const B2DPoint aPrevTexCoor(aRetval.getTextureCoordinate(a ? a - 1 : nPointCount - 1)); const B2DPoint aNextTexCoor(aRetval.getTextureCoordinate((a + 1) % nPointCount)); const bool bPrevPole(fTools::equalZero(aPrevTexCoor.getY()) || fTools::equal(aPrevTexCoor.getY(), fOne)); const bool bNextPole(fTools::equalZero(aNextTexCoor.getY()) || fTools::equal(aNextTexCoor.getY(), fOne)); if(!bPrevPole && !bNextPole) { // both no poles, mix them aTexCoor.setX((aPrevTexCoor.getX() + aNextTexCoor.getX()) / 2.0); } else if(!bNextPole) { // copy next aTexCoor.setX(aNextTexCoor.getX()); } else { // copy prev, even if it's a pole, hopefully it is already corrected aTexCoor.setX(aPrevTexCoor.getX()); } aRetval.setTextureCoordinate(a, aTexCoor); } } } } return aRetval; } bool isInside(const B3DPolygon& rCandidate, const B3DPoint& rPoint, bool bWithBorder) { if(bWithBorder && isPointOnPolygon(rCandidate, rPoint)) { return true; } else { bool bRetval(false); const B3DVector aPlaneNormal(rCandidate.getNormal()); if(!aPlaneNormal.equalZero()) { const sal_uInt32 nPointCount(rCandidate.count()); if(nPointCount) { B3DPoint aCurrentPoint(rCandidate.getB3DPoint(nPointCount - 1)); const double fAbsX(fabs(aPlaneNormal.getX())); const double fAbsY(fabs(aPlaneNormal.getY())); const double fAbsZ(fabs(aPlaneNormal.getZ())); if(fAbsX > fAbsY && fAbsX > fAbsZ) { // normal points mostly in X-Direction, use YZ-Polygon projection for check // x -> y, y -> z for(sal_uInt32 a(0); a < nPointCount; a++) { const B3DPoint aPreviousPoint(aCurrentPoint); aCurrentPoint = rCandidate.getB3DPoint(a); // cross-over in Z? const bool bCompZA(fTools::more(aPreviousPoint.getZ(), rPoint.getZ())); const bool bCompZB(fTools::more(aCurrentPoint.getZ(), rPoint.getZ())); if(bCompZA != bCompZB) { // cross-over in Y? const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY())); const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY())); if(bCompYA == bCompYB) { if(bCompYA) { bRetval = !bRetval; } } else { const double fCompare( aCurrentPoint.getY() - (aCurrentPoint.getZ() - rPoint.getZ()) * (aPreviousPoint.getY() - aCurrentPoint.getY()) / (aPreviousPoint.getZ() - aCurrentPoint.getZ())); if(fTools::more(fCompare, rPoint.getY())) { bRetval = !bRetval; } } } } } else if(fAbsY > fAbsX && fAbsY > fAbsZ) { // normal points mostly in Y-Direction, use XZ-Polygon projection for check // x -> x, y -> z for(sal_uInt32 a(0); a < nPointCount; a++) { const B3DPoint aPreviousPoint(aCurrentPoint); aCurrentPoint = rCandidate.getB3DPoint(a); // cross-over in Z? const bool bCompZA(fTools::more(aPreviousPoint.getZ(), rPoint.getZ())); const bool bCompZB(fTools::more(aCurrentPoint.getZ(), rPoint.getZ())); if(bCompZA != bCompZB) { // cross-over in X? const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX())); const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX())); if(bCompXA == bCompXB) { if(bCompXA) { bRetval = !bRetval; } } else { const double fCompare( aCurrentPoint.getX() - (aCurrentPoint.getZ() - rPoint.getZ()) * (aPreviousPoint.getX() - aCurrentPoint.getX()) / (aPreviousPoint.getZ() - aCurrentPoint.getZ())); if(fTools::more(fCompare, rPoint.getX())) { bRetval = !bRetval; } } } } } else { // normal points mostly in Z-Direction, use XY-Polygon projection for check // x -> x, y -> y for(sal_uInt32 a(0); a < nPointCount; a++) { const B3DPoint aPreviousPoint(aCurrentPoint); aCurrentPoint = rCandidate.getB3DPoint(a); // cross-over in Y? const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY())); const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY())); if(bCompYA != bCompYB) { // cross-over in X? const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX())); const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX())); if(bCompXA == bCompXB) { if(bCompXA) { bRetval = !bRetval; } } else { const double fCompare( aCurrentPoint.getX() - (aCurrentPoint.getY() - rPoint.getY()) * (aPreviousPoint.getX() - aCurrentPoint.getX()) / (aPreviousPoint.getY() - aCurrentPoint.getY())); if(fTools::more(fCompare, rPoint.getX())) { bRetval = !bRetval; } } } } } } } return bRetval; } } bool isPointOnLine(const B3DPoint& rStart, const B3DPoint& rEnd, const B3DPoint& rCandidate, bool bWithPoints) { if(rCandidate.equal(rStart) || rCandidate.equal(rEnd)) { // candidate is in epsilon around start or end -> inside return bWithPoints; } else if(rStart.equal(rEnd)) { // start and end are equal, but candidate is outside their epsilon -> outside return false; } else { const B3DVector aEdgeVector(rEnd - rStart); const B3DVector aTestVector(rCandidate - rStart); if(areParallel(aEdgeVector, aTestVector)) { double fParamTestOnCurr(0.0); if(aEdgeVector.getX() > aEdgeVector.getY()) { if(aEdgeVector.getX() > aEdgeVector.getZ()) { // X is biggest fParamTestOnCurr = aTestVector.getX() / aEdgeVector.getX(); } else { // Z is biggest fParamTestOnCurr = aTestVector.getZ() / aEdgeVector.getZ(); } } else { if(aEdgeVector.getY() > aEdgeVector.getZ()) { // Y is biggest fParamTestOnCurr = aTestVector.getY() / aEdgeVector.getY(); } else { // Z is biggest fParamTestOnCurr = aTestVector.getZ() / aEdgeVector.getZ(); } } if(fParamTestOnCurr > 0.0 && fTools::less(fParamTestOnCurr, 1.0)) { return true; } } return false; } } bool isPointOnPolygon(const B3DPolygon& rCandidate, const B3DPoint& rPoint) { const sal_uInt32 nPointCount(rCandidate.count()); if(nPointCount > 1) { const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); B3DPoint aCurrentPoint(rCandidate.getB3DPoint(0)); for(sal_uInt32 a(0); a < nLoopCount; a++) { const B3DPoint aNextPoint(rCandidate.getB3DPoint((a + 1) % nPointCount)); if(isPointOnLine(aCurrentPoint, aNextPoint, rPoint, true/*bWithPoints*/)) { return true; } aCurrentPoint = aNextPoint; } } else if(nPointCount) { return rPoint.equal(rCandidate.getB3DPoint(0)); } return false; } bool getCutBetweenLineAndPlane(const B3DVector& rPlaneNormal, const B3DPoint& rPlanePoint, const B3DPoint& rEdgeStart, const B3DPoint& rEdgeEnd, double& fCut) { if(!rPlaneNormal.equalZero() && !rEdgeStart.equal(rEdgeEnd)) { const B3DVector aTestEdge(rEdgeEnd - rEdgeStart); const double fScalarEdge(rPlaneNormal.scalar(aTestEdge)); if(!fTools::equalZero(fScalarEdge)) { const B3DVector aCompareEdge(rPlanePoint - rEdgeStart); const double fScalarCompare(rPlaneNormal.scalar(aCompareEdge)); fCut = fScalarCompare / fScalarEdge; return true; } } return false; } // snap points of horizontal or vertical edges to discrete values B3DPolygon snapPointsOfHorizontalOrVerticalEdges(const B3DPolygon& rCandidate) { const sal_uInt32 nPointCount(rCandidate.count()); if(nPointCount > 1) { // Start by copying the source polygon to get a writeable copy. The closed state is // copied by aRetval's initialisation, too, so no need to copy it in this method B3DPolygon aRetval(rCandidate); // prepare geometry data. Get rounded from original B3ITuple aPrevTuple(basegfx::fround(rCandidate.getB3DPoint(nPointCount - 1))); B3DPoint aCurrPoint(rCandidate.getB3DPoint(0)); B3ITuple aCurrTuple(basegfx::fround(aCurrPoint)); // loop over all points. This will also snap the implicit closing edge // even when not closed, but that's no problem here for(sal_uInt32 a(0); a < nPointCount; a++) { // get next point. Get rounded from original const bool bLastRun(a + 1 == nPointCount); const sal_uInt32 nNextIndex(bLastRun ? 0 : a + 1); const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex)); const B3ITuple aNextTuple(basegfx::fround(aNextPoint)); // get the states const bool bPrevVertical(aPrevTuple.getX() == aCurrTuple.getX()); const bool bNextVertical(aNextTuple.getX() == aCurrTuple.getX()); const bool bPrevHorizontal(aPrevTuple.getY() == aCurrTuple.getY()); const bool bNextHorizontal(aNextTuple.getY() == aCurrTuple.getY()); const bool bSnapX(bPrevVertical || bNextVertical); const bool bSnapY(bPrevHorizontal || bNextHorizontal); if(bSnapX || bSnapY) { const B3DPoint aSnappedPoint( bSnapX ? aCurrTuple.getX() : aCurrPoint.getX(), bSnapY ? aCurrTuple.getY() : aCurrPoint.getY(), aCurrPoint.getZ()); aRetval.setB3DPoint(a, aSnappedPoint); } // prepare next point if(!bLastRun) { aPrevTuple = aCurrTuple; aCurrPoint = aNextPoint; aCurrTuple = aNextTuple; } } return aRetval; } else { return rCandidate; } } } // end of namespace /* vim:set shiftwidth=4 softtabstop=4 expandtab: */