/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /************************************************************************* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ #include "precompiled_svtools.hxx" #include "tabbargeometry.hxx" #include #include #include #include #include // the width (or height, depending on alignment) of the scroll buttons #define BUTTON_FLOW_WIDTH 20 // the space between the scroll buttons and the items #define BUTTON_FLOW_SPACE 2 // outer space to apply between the tab bar borders and any content. Note that those refer to a "normalized" geometry, // i.e. if the tab bar were aligned at the top #define OUTER_SPACE_LEFT 2 #define OUTER_SPACE_TOP 4 #define OUTER_SPACE_RIGHT 4 #define OUTER_SPACE_BOTTOM 2 // outer space to apply between the area for the items, and the actual items. They refer to a normalized geometry. #define ITEMS_INSET_LEFT 4 #define ITEMS_INSET_TOP 3 #define ITEMS_INSET_RIGHT 4 #define ITEMS_INSET_BOTTOM 0 //...................................................................................................................... namespace svt { //...................................................................................................................... //================================================================================================================== //= helper //================================================================================================================== namespace { //-------------------------------------------------------------------------------------------------------------- static void lcl_transform( Rectangle& io_rRect, const ::basegfx::B2DHomMatrix& i_rTransformation ) { ::basegfx::B2DRange aRect( io_rRect.Left(), io_rRect.Top(), io_rRect.Right(), io_rRect.Bottom() ); aRect.transform( i_rTransformation ); io_rRect.Left() = long( aRect.getMinX() ); io_rRect.Top() = long( aRect.getMinY() ); io_rRect.Right() = long( aRect.getMaxX() ); io_rRect.Bottom() = long( aRect.getMaxY() ); } //-------------------------------------------------------------------------------------------------------------- /** transforms the given, possible rotated playground, */ void lcl_rotate( const Rectangle& i_rReference, Rectangle& io_rArea, const bool i_bRight ) { // step 1: move the to-be-upper-left corner (left/bottom) of the rectangle to (0,0) ::basegfx::B2DHomMatrix aTransformation; aTransformation.translate( i_bRight ? -i_rReference.Left() : -i_rReference.Right(), i_bRight ? -i_rReference.Bottom() : -i_rReference.Top() ); // step 2: rotate by -90 degrees aTransformation.rotate( i_bRight ? +F_PI2 : -F_PI2 ); // note: // on the screen, the ordinate goes top-down, while basegfx calculates in a system where the // ordinate goes bottom-up; thus the "wrong" sign before F_PI2 here // step 3: move back to original coordinates aTransformation.translate( i_rReference.Left(), i_rReference.Top() ); // apply transformation lcl_transform( io_rArea, aTransformation ); } } //------------------------------------------------------------------------------------------------------------------ void lcl_mirrorHorizontally( const Rectangle& i_rReferenceArea, Rectangle& io_rArea ) { io_rArea.Left() = i_rReferenceArea.Left() + i_rReferenceArea.Right() - io_rArea.Left(); io_rArea.Right() = i_rReferenceArea.Left() + i_rReferenceArea.Right() - io_rArea.Right(); ::std::swap( io_rArea.Left(), io_rArea.Right() ); } //------------------------------------------------------------------------------------------------------------------ void lcl_mirrorVertically( const Rectangle& i_rReferenceArea, Rectangle& io_rArea ) { io_rArea.Top() = i_rReferenceArea.Top() + i_rReferenceArea.Bottom() - io_rArea.Top(); io_rArea.Bottom() = i_rReferenceArea.Top() + i_rReferenceArea.Bottom() - io_rArea.Bottom(); ::std::swap( io_rArea.Top(), io_rArea.Bottom() ); } //================================================================================================================== //= NormalizedArea //================================================================================================================== //------------------------------------------------------------------------------------------------------------------ NormalizedArea::NormalizedArea() :m_aReference() { } //------------------------------------------------------------------------------------------------------------------ NormalizedArea::NormalizedArea( const Rectangle& i_rReference, const bool i_bIsVertical ) :m_aReference( i_bIsVertical ? Rectangle( i_rReference.TopLeft(), Size( i_rReference.GetHeight(), i_rReference.GetWidth() ) ) : i_rReference ) { } //------------------------------------------------------------------------------------------------------------------ Rectangle NormalizedArea::getTransformed( const Rectangle& i_rArea, const TabAlignment i_eTargetAlignment ) const { Rectangle aResult( i_rArea ); if ( ( i_eTargetAlignment == TABS_RIGHT ) || ( i_eTargetAlignment == TABS_LEFT ) ) { lcl_rotate( m_aReference, aResult, true ); if ( i_eTargetAlignment == TABS_LEFT ) { Rectangle aReference( m_aReference ); aReference.Transpose(); lcl_mirrorHorizontally( aReference, aResult ); } } else if ( i_eTargetAlignment == TABS_BOTTOM ) { lcl_mirrorVertically( m_aReference, aResult ); } return aResult; } //------------------------------------------------------------------------------------------------------------------ Rectangle NormalizedArea::getNormalized( const Rectangle& i_rArea, const TabAlignment i_eTargetAlignment ) const { Rectangle aResult( i_rArea ); if ( ( i_eTargetAlignment == TABS_RIGHT ) || ( i_eTargetAlignment == TABS_LEFT ) ) { Rectangle aReference( m_aReference ); lcl_rotate( m_aReference, aReference, true ); if ( i_eTargetAlignment == TABS_LEFT ) { lcl_mirrorHorizontally( aReference, aResult ); } lcl_rotate( aReference, aResult, false ); } else if ( i_eTargetAlignment == TABS_BOTTOM ) { lcl_mirrorVertically( m_aReference, aResult ); } return aResult; } //================================================================================================================== //= TabBarGeometry //================================================================================================================== //------------------------------------------------------------------------------------------------------------------ TabBarGeometry::TabBarGeometry( const TabItemContent i_eItemContent ) :m_eTabItemContent( i_eItemContent ) ,m_aItemsInset() ,m_aButtonBackRect() ,m_aItemsRect() ,m_aButtonForwardRect() { m_aItemsInset.Left() = ITEMS_INSET_LEFT; m_aItemsInset.Top() = ITEMS_INSET_TOP; m_aItemsInset.Right() = ITEMS_INSET_RIGHT; m_aItemsInset.Bottom() = ITEMS_INSET_BOTTOM; } //------------------------------------------------------------------------------------------------------------------ TabBarGeometry::~TabBarGeometry() { } //------------------------------------------------------------------------------------------------------------------ bool TabBarGeometry::impl_fitItems( ItemDescriptors& io_rItems ) const { if ( io_rItems.empty() ) // nothing to do, "no items" perfectly fit into any space we have ... return true; // the available size Size aOutputSize( getItemsRect().GetSize() ); // shrunk by the outer space aOutputSize.Width() -= m_aItemsInset.Right(); aOutputSize.Height() -= m_aItemsInset.Bottom(); const Rectangle aFitInto( Point( 0, 0 ), aOutputSize ); TabItemContent eItemContent( getItemContent() ); if ( eItemContent == TABITEM_AUTO ) { // the "content modes" to try TabItemContent eTryThis[] = { TABITEM_IMAGE_ONLY, // assumed to have the smallest rects TABITEM_TEXT_ONLY, TABITEM_IMAGE_AND_TEXT // assumed to have the largest rects }; // determine which of the different version fits eItemContent = eTryThis[0]; size_t nTryIndex = 2; while ( nTryIndex > 0 ) { const Point aBottomRight( io_rItems.rbegin()->GetRect( eTryThis[ nTryIndex ] ).BottomRight() ); if ( aFitInto.IsInside( aBottomRight ) ) { eItemContent = eTryThis[ nTryIndex ]; break; } --nTryIndex; } } // propagate to the items for ( ItemDescriptors::iterator item = io_rItems.begin(); item != io_rItems.end(); ++item ) { item->eContent = eItemContent; } const ItemDescriptor& rLastItem( *io_rItems.rbegin() ); const Point aLastItemBottomRight( rLastItem.GetCurrentRect().BottomRight() ); return aFitInto.Left() <= aLastItemBottomRight.X() && aFitInto.Right() >= aLastItemBottomRight.X(); } //------------------------------------------------------------------------------------------------------------------ Size TabBarGeometry::getOptimalSize( ItemDescriptors& io_rItems, const bool i_bMinimalSize ) const { if ( io_rItems.empty() ) return Size( m_aItemsInset.Left() + m_aItemsInset.Right(), m_aItemsInset.Top() + m_aItemsInset.Bottom() ); // the rect of the last item const Rectangle& rLastItemRect( i_bMinimalSize ? io_rItems.rbegin()->aIconOnlyArea : io_rItems.rbegin()->aCompleteArea ); return Size( rLastItemRect.Left() + 1 + m_aItemsInset.Right(), rLastItemRect.Top() + 1 + rLastItemRect.Bottom() + m_aItemsInset.Bottom() ); } //------------------------------------------------------------------------------------------------------------------ void TabBarGeometry::relayout( const Size& i_rActualOutputSize, ItemDescriptors& io_rItems ) { // assume all items fit Point aButtonBackPos( OUTER_SPACE_LEFT, OUTER_SPACE_TOP ); m_aButtonBackRect = Rectangle( aButtonBackPos, Size( 1, 1 ) ); m_aButtonBackRect.SetEmpty(); Point aButtonForwardPos( i_rActualOutputSize.Width(), OUTER_SPACE_TOP ); m_aButtonForwardRect = Rectangle( aButtonForwardPos, Size( 1, 1 ) ); m_aButtonForwardRect.SetEmpty(); Point aItemsPos( OUTER_SPACE_LEFT, 0 ); Size aItemsSize( i_rActualOutputSize.Width() - OUTER_SPACE_LEFT - OUTER_SPACE_RIGHT, i_rActualOutputSize.Height() ); m_aItemsRect = Rectangle( aItemsPos, aItemsSize ); if ( !impl_fitItems( io_rItems ) ) { // assumption was wrong, the items do not fit => calculate rects for the scroll buttons const Size aButtonSize( BUTTON_FLOW_WIDTH, i_rActualOutputSize.Height() - OUTER_SPACE_TOP - OUTER_SPACE_BOTTOM ); aButtonBackPos = Point( OUTER_SPACE_LEFT, OUTER_SPACE_TOP ); m_aButtonBackRect = Rectangle( aButtonBackPos, aButtonSize ); aButtonForwardPos = Point( i_rActualOutputSize.Width() - BUTTON_FLOW_WIDTH - OUTER_SPACE_RIGHT, OUTER_SPACE_TOP ); m_aButtonForwardRect = Rectangle( aButtonForwardPos, aButtonSize ); aItemsPos.X() = aButtonBackPos.X() + aButtonSize.Width() + BUTTON_FLOW_SPACE; aItemsSize.Width() = aButtonForwardPos.X() - BUTTON_FLOW_SPACE - aItemsPos.X(); m_aItemsRect = Rectangle( aItemsPos, aItemsSize ); // fit items, again. In the TABITEM_AUTO case, the smaller playground for the items might lead to another // item content. impl_fitItems( io_rItems ); } } //------------------------------------------------------------------------------------------------------------------ Point TabBarGeometry::getFirstItemPosition() const { return Point( m_aItemsInset.Left(), m_aItemsInset.Top() ); } //...................................................................................................................... } // namespace svt //...................................................................................................................... /* vim:set shiftwidth=4 softtabstop=4 expandtab: */