/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace com::sun::star; namespace drawinglayer::processor3d { // as tooling, the process() implementation takes over API handling and calls this // virtual render method when the primitive implementation is BasePrimitive3D-based. void Shadow3DExtractingProcessor::processBasePrimitive3D(const primitive3d::BasePrimitive3D& rCandidate) { // it is a BasePrimitive3D implementation, use getPrimitive3DID() call for switch switch(rCandidate.getPrimitive3DID()) { case PRIMITIVE3D_ID_SHADOWPRIMITIVE3D : { // shadow3d object. Call recursive with content and start conversion const primitive3d::ShadowPrimitive3D& rPrimitive = static_cast< const primitive3d::ShadowPrimitive3D& >(rCandidate); // set new target primitive2d::Primitive2DContainer aNewSubList; primitive2d::Primitive2DContainer* pLastTargetSequence = mpPrimitive2DSequence; mpPrimitive2DSequence = &aNewSubList; // activate convert const bool bLastConvert(mbConvert); mbConvert = true; // set projection flag const bool bLastUseProjection(mbUseProjection); mbUseProjection = rPrimitive.getShadow3D(); // process content process(rPrimitive.getChildren()); // restore values mbUseProjection = bLastUseProjection; mbConvert = bLastConvert; mpPrimitive2DSequence = pLastTargetSequence; // create 2d shadow primitive with result. This also fetches all entries // from aNewSubList, so there is no need to delete them rtl::Reference pNew = new primitive2d::ShadowPrimitive2D( rPrimitive.getShadowTransform(), rPrimitive.getShadowColor(), 0, // shadow3d doesn't have rPrimitive.getShadowBlur() yet. std::move(aNewSubList)); if(rPrimitive.getShadowTransparence() > 0.0) { // create simpleTransparencePrimitive, add created primitives primitive2d::Primitive2DContainer aNewTransPrimitiveVector { pNew }; pNew = new primitive2d::UnifiedTransparencePrimitive2D( std::move(aNewTransPrimitiveVector), rPrimitive.getShadowTransparence()); } mpPrimitive2DSequence->push_back(pNew); break; } case PRIMITIVE3D_ID_TRANSFORMPRIMITIVE3D : { // transform group. Remember current transformations const primitive3d::TransformPrimitive3D& rPrimitive = static_cast< const primitive3d::TransformPrimitive3D& >(rCandidate); const geometry::ViewInformation3D aLastViewInformation3D(getViewInformation3D()); // create new transformation; add new object transform from right side const geometry::ViewInformation3D aNewViewInformation3D( aLastViewInformation3D.getObjectTransformation() * rPrimitive.getTransformation(), aLastViewInformation3D.getOrientation(), aLastViewInformation3D.getProjection(), aLastViewInformation3D.getDeviceToView(), aLastViewInformation3D.getViewTime(), aLastViewInformation3D.getExtendedInformationSequence()); updateViewInformation(aNewViewInformation3D); if(mbShadowProjectionIsValid) { // update buffered WorldToEye and EyeToView maWorldToEye = getViewInformation3D().getOrientation() * getViewInformation3D().getObjectTransformation(); maEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection(); } // let break down process(rPrimitive.getChildren()); // restore transformations updateViewInformation(aLastViewInformation3D); if(mbShadowProjectionIsValid) { // update buffered WorldToEye and EyeToView maWorldToEye = getViewInformation3D().getOrientation() * getViewInformation3D().getObjectTransformation(); maEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection(); } break; } case PRIMITIVE3D_ID_POLYGONHAIRLINEPRIMITIVE3D : { // PolygonHairlinePrimitive3D if(mbConvert) { const primitive3d::PolygonHairlinePrimitive3D& rPrimitive = static_cast< const primitive3d::PolygonHairlinePrimitive3D& >(rCandidate); basegfx::B2DPolygon a2DHairline; if(mbUseProjection) { if(mbShadowProjectionIsValid) { a2DHairline = impDoShadowProjection(rPrimitive.getB3DPolygon()); } } else { a2DHairline = basegfx::utils::createB2DPolygonFromB3DPolygon(rPrimitive.getB3DPolygon(), getViewInformation3D().getObjectToView()); } if(a2DHairline.count()) { a2DHairline.transform(getObjectTransformation()); mpPrimitive2DSequence->push_back( new primitive2d::PolygonHairlinePrimitive2D( std::move(a2DHairline), basegfx::BColor())); } } break; } case PRIMITIVE3D_ID_POLYPOLYGONMATERIALPRIMITIVE3D : { // PolyPolygonMaterialPrimitive3D if(mbConvert) { const primitive3d::PolyPolygonMaterialPrimitive3D& rPrimitive = static_cast< const primitive3d::PolyPolygonMaterialPrimitive3D& >(rCandidate); basegfx::B2DPolyPolygon a2DFill; if(mbUseProjection) { if(mbShadowProjectionIsValid) { a2DFill = impDoShadowProjection(rPrimitive.getB3DPolyPolygon()); } } else { a2DFill = basegfx::utils::createB2DPolyPolygonFromB3DPolyPolygon(rPrimitive.getB3DPolyPolygon(), getViewInformation3D().getObjectToView()); } if(a2DFill.count()) { a2DFill.transform(getObjectTransformation()); mpPrimitive2DSequence->push_back( new primitive2d::PolyPolygonColorPrimitive2D( std::move(a2DFill), basegfx::BColor())); } } break; } default : { // process recursively process(rCandidate.get3DDecomposition(getViewInformation3D())); break; } } } Shadow3DExtractingProcessor::Shadow3DExtractingProcessor( const geometry::ViewInformation3D& rViewInformation, basegfx::B2DHomMatrix aObjectTransformation, const basegfx::B3DVector& rLightNormal, double fShadowSlant, const basegfx::B3DRange& rContained3DRange) : BaseProcessor3D(rViewInformation), mpPrimitive2DSequence(&maPrimitive2DSequence), maObjectTransformation(std::move(aObjectTransformation)), maLightNormal(rLightNormal), mfLightPlaneScalar(0.0), mbShadowProjectionIsValid(false), mbConvert(false), mbUseProjection(false) { // normalize light normal, get and normalize shadow plane normal and calculate scalar from it maLightNormal.normalize(); maShadowPlaneNormal = basegfx::B3DVector(0.0, sin(fShadowSlant), cos(fShadowSlant)); maShadowPlaneNormal.normalize(); mfLightPlaneScalar = maLightNormal.scalar(maShadowPlaneNormal); // use only when scalar is > 0.0, so the light is in front of the object if(mfLightPlaneScalar <= 0.0 || basegfx::fTools::equalZero(mfLightPlaneScalar)) return; // prepare buffered WorldToEye and EyeToView maWorldToEye = getViewInformation3D().getOrientation() * getViewInformation3D().getObjectTransformation(); maEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection(); // calculate range to get front edge around which to rotate the shadow's projection basegfx::B3DRange aContained3DRange(rContained3DRange); aContained3DRange.transform(getWorldToEye()); maPlanePoint.setX(maShadowPlaneNormal.getX() < 0.0 ? aContained3DRange.getMinX() : aContained3DRange.getMaxX()); maPlanePoint.setY(maShadowPlaneNormal.getY() > 0.0 ? aContained3DRange.getMinY() : aContained3DRange.getMaxY()); maPlanePoint.setZ(aContained3DRange.getMinZ() - (aContained3DRange.getDepth() / 8.0)); // set flag that shadow projection is prepared and allowed mbShadowProjectionIsValid = true; } Shadow3DExtractingProcessor::~Shadow3DExtractingProcessor() { OSL_ENSURE(maPrimitive2DSequence.empty(), "OOps, someone used Shadow3DExtractingProcessor, but did not fetch the results (!)"); } basegfx::B2DPolygon Shadow3DExtractingProcessor::impDoShadowProjection(const basegfx::B3DPolygon& rSource) { basegfx::B2DPolygon aRetval; for(sal_uInt32 a(0); a < rSource.count(); a++) { // get point, transform to eye coordinate system basegfx::B3DPoint aCandidate(rSource.getB3DPoint(a)); aCandidate *= getWorldToEye(); // we are in eye coordinates // ray is (aCandidate + fCut * maLightNormal) // plane is (maPlanePoint, maShadowPlaneNormal) // maLightNormal.scalar(maShadowPlaneNormal) is already in mfLightPlaneScalar and > 0.0 // get cut point of ray with shadow plane const double fCut(basegfx::B3DVector(maPlanePoint - aCandidate).scalar(maShadowPlaneNormal) / mfLightPlaneScalar); aCandidate += maLightNormal * fCut; // transform to view, use 2d coordinates aCandidate *= maEyeToView; aRetval.append(basegfx::B2DPoint(aCandidate.getX(), aCandidate.getY())); } // copy closed flag aRetval.setClosed(rSource.isClosed()); return aRetval; } basegfx::B2DPolyPolygon Shadow3DExtractingProcessor::impDoShadowProjection(const basegfx::B3DPolyPolygon& rSource) { basegfx::B2DPolyPolygon aRetval; for(sal_uInt32 a(0); a < rSource.count(); a++) { aRetval.append(impDoShadowProjection(rSource.getB3DPolygon(a))); } return aRetval; } const primitive2d::Primitive2DContainer& Shadow3DExtractingProcessor::getPrimitive2DSequence() const { return maPrimitive2DSequence; } } // end of namespace /* vim:set shiftwidth=4 softtabstop=4 expandtab: */