/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include namespace basegfx { namespace { struct StripHelper { B2DRange maRange; sal_Int32 mnDepth; B2VectorOrientation meOrinetation; }; struct PN { public: B2DPoint maPoint; sal_uInt32 mnI; sal_uInt32 mnIP; sal_uInt32 mnIN; }; struct VN { public: B2DVector maPrev; B2DVector maNext; // to have the correct curve segments in the crossover checks, // it is necessary to keep the original next vectors, too. Else, // it may happen to use an already switched next vector which // would interpolate the wrong comparison point B2DVector maOriginalNext; }; struct SN { public: PN* mpPN; bool operator<(const SN& rComp) const { if(fTools::equal(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX())) { if(fTools::equal(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY())) { return (mpPN->mnI < rComp.mpPN->mnI); } else { return fTools::less(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY()); } } else { return fTools::less(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX()); } } }; typedef std::vector< PN > PNV; typedef std::vector< VN > VNV; typedef std::vector< SN > SNV; typedef std::pair< basegfx::B2DPoint /*orig*/, basegfx::B2DPoint /*repl*/ > CorrectionPair; class solver { private: const B2DPolyPolygon maOriginal; PNV maPNV; VNV maVNV; SNV maSNV; std::vector< CorrectionPair > maCorrectionTable; bool mbIsCurve : 1; bool mbChanged : 1; void impAddPolygon(const sal_uInt32 aPos, const B2DPolygon& rGeometry) { const sal_uInt32 nCount(rGeometry.count()); PN aNewPN; VN aNewVN; SN aNewSN; for(sal_uInt32 a(0); a < nCount; a++) { const B2DPoint aPoint(rGeometry.getB2DPoint(a)); aNewPN.maPoint = aPoint; aNewPN.mnI = aPos + a; aNewPN.mnIP = aPos + ((a != 0) ? a - 1 : nCount - 1); aNewPN.mnIN = aPos + ((a + 1 == nCount) ? 0 : a + 1); maPNV.push_back(aNewPN); if(mbIsCurve) { aNewVN.maPrev = rGeometry.getPrevControlPoint(a) - aPoint; aNewVN.maNext = rGeometry.getNextControlPoint(a) - aPoint; aNewVN.maOriginalNext = aNewVN.maNext; maVNV.push_back(aNewVN); } aNewSN.mpPN = &maPNV[maPNV.size() - 1]; maSNV.push_back(aNewSN); } } static bool impLeftOfEdges(const B2DVector& rVecA, const B2DVector& rVecB, const B2DVector& rTest) { // tests if rTest is left of both directed line segments along the line -rVecA, rVecB. Test is // with border. if(rVecA.cross(rVecB) > 0.0) { // b is left turn seen from a, test if Test is left of both and so inside (left is seen as inside) const bool bBoolA(fTools::moreOrEqual(rVecA.cross(rTest), 0.0)); const bool bBoolB(fTools::lessOrEqual(rVecB.cross(rTest), 0.0)); return (bBoolA && bBoolB); } else { // b is right turn seen from a, test if Test is right of both and so outside (left is seen as inside) const bool bBoolA(fTools::lessOrEqual(rVecA.cross(rTest), 0.0)); const bool bBoolB(fTools::moreOrEqual(rVecB.cross(rTest), 0.0)); return (!(bBoolA && bBoolB)); } } void impSwitchNext(PN& rPNa, PN& rPNb) { std::swap(rPNa.mnIN, rPNb.mnIN); if(mbIsCurve) { VN& rVNa = maVNV[rPNa.mnI]; VN& rVNb = maVNV[rPNb.mnI]; std::swap(rVNa.maNext, rVNb.maNext); } if(!mbChanged) { mbChanged = true; } } B2DCubicBezier createSegment(const PN& rPN, bool bPrev) const { const B2DPoint& rStart(rPN.maPoint); const B2DPoint& rEnd(maPNV[bPrev ? rPN.mnIP : rPN.mnIN].maPoint); const B2DVector& rCPA(bPrev ? maVNV[rPN.mnI].maPrev : maVNV[rPN.mnI].maNext); // Use maOriginalNext, not maNext to create the original (yet unchanged) // curve segment. Otherwise, this segment would NOT ne correct. const B2DVector& rCPB(bPrev ? maVNV[maPNV[rPN.mnIP].mnI].maOriginalNext : maVNV[maPNV[rPN.mnIN].mnI].maPrev); return B2DCubicBezier(rStart, rStart + rCPA, rEnd + rCPB, rEnd); } void impHandleCommon(PN& rPNa, PN& rPNb) { if(mbIsCurve) { const B2DCubicBezier aNextA(createSegment(rPNa, false)); const B2DCubicBezier aPrevA(createSegment(rPNa, true)); if(aNextA.equal(aPrevA)) { // deadend on A (identical edge) return; } const B2DCubicBezier aNextB(createSegment(rPNb, false)); const B2DCubicBezier aPrevB(createSegment(rPNb, true)); if(aNextB.equal(aPrevB)) { // deadend on B (identical edge) return; } if(aPrevA.equal(aPrevB)) { // common edge in same direction return; } else if(aPrevA.equal(aNextB)) { // common edge in opposite direction if(aNextA.equal(aPrevB)) { // common edge in opposite direction continues return; } else { // common edge in opposite direction leave impSwitchNext(rPNa, rPNb); } } else if(aNextA.equal(aNextB)) { // common edge in same direction enter // search leave edge PN* pPNa2 = &maPNV[rPNa.mnIN]; PN* pPNb2 = &maPNV[rPNb.mnIN]; bool bOnEdge(true); do { const B2DCubicBezier aNextA2(createSegment(*pPNa2, false)); const B2DCubicBezier aNextB2(createSegment(*pPNb2, false)); if(aNextA2.equal(aNextB2)) { pPNa2 = &maPNV[pPNa2->mnIN]; pPNb2 = &maPNV[pPNb2->mnIN]; } else { bOnEdge = false; } } while(bOnEdge && pPNa2 != &rPNa && pPNb2 != &rPNb); if(bOnEdge) { // loop over two identical polygon paths return; } else { // enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges // at enter/leave. Check for crossover. const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint()); const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint()); const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint()); const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB)); const B2DCubicBezier aNextA2(createSegment(*pPNa2, false)); const B2DCubicBezier aPrevA2(createSegment(*pPNa2, true)); const B2DCubicBezier aNextB2(createSegment(*pPNb2, false)); const B2DVector aPrevCA2(aPrevA2.interpolatePoint(0.5) - aPrevA2.getStartPoint()); const B2DVector aNextCA2(aNextA2.interpolatePoint(0.5) - aNextA2.getStartPoint()); const B2DVector aNextCB2(aNextB2.interpolatePoint(0.5) - aNextB2.getStartPoint()); const bool bLeave(impLeftOfEdges(aPrevCA2, aNextCA2, aNextCB2)); if(bEnter != bLeave) { // crossover impSwitchNext(rPNa, rPNb); } } } else if(aNextA.equal(aPrevB)) { // common edge in opposite direction enter impSwitchNext(rPNa, rPNb); } else { // no common edges, check for crossover const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint()); const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint()); const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint()); const B2DVector aNextCB(aNextB.interpolatePoint(0.5) - aNextB.getStartPoint()); const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB)); const bool bLeave(impLeftOfEdges(aPrevCA, aNextCA, aNextCB)); if(bEnter != bLeave) { // crossover impSwitchNext(rPNa, rPNb); } } } else { const B2DPoint& rNextA(maPNV[rPNa.mnIN].maPoint); const B2DPoint& rPrevA(maPNV[rPNa.mnIP].maPoint); if(rNextA.equal(rPrevA)) { // deadend on A return; } const B2DPoint& rNextB(maPNV[rPNb.mnIN].maPoint); const B2DPoint& rPrevB(maPNV[rPNb.mnIP].maPoint); if(rNextB.equal(rPrevB)) { // deadend on B return; } if(rPrevA.equal(rPrevB)) { // common edge in same direction return; } else if(rPrevA.equal(rNextB)) { // common edge in opposite direction if(rNextA.equal(rPrevB)) { // common edge in opposite direction continues return; } else { // common edge in opposite direction leave impSwitchNext(rPNa, rPNb); } } else if(rNextA.equal(rNextB)) { // common edge in same direction enter // search leave edge PN* pPNa2 = &maPNV[rPNa.mnIN]; PN* pPNb2 = &maPNV[rPNb.mnIN]; bool bOnEdge(true); do { const B2DPoint& rNextA2(maPNV[pPNa2->mnIN].maPoint); const B2DPoint& rNextB2(maPNV[pPNb2->mnIN].maPoint); if(rNextA2.equal(rNextB2)) { pPNa2 = &maPNV[pPNa2->mnIN]; pPNb2 = &maPNV[pPNb2->mnIN]; } else { bOnEdge = false; } } while(bOnEdge && pPNa2 != &rPNa && pPNb2 != &rPNb); if(bOnEdge) { // loop over two identical polygon paths return; } else { // enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges // at enter/leave. Check for crossover. const B2DPoint& aPointE(rPNa.maPoint); const B2DVector aPrevAE(rPrevA - aPointE); const B2DVector aNextAE(rNextA - aPointE); const B2DVector aPrevBE(rPrevB - aPointE); const B2DPoint& aPointL(pPNa2->maPoint); const B2DVector aPrevAL(maPNV[pPNa2->mnIP].maPoint - aPointL); const B2DVector aNextAL(maPNV[pPNa2->mnIN].maPoint - aPointL); const B2DVector aNextBL(maPNV[pPNb2->mnIN].maPoint - aPointL); const bool bEnter(impLeftOfEdges(aPrevAE, aNextAE, aPrevBE)); const bool bLeave(impLeftOfEdges(aPrevAL, aNextAL, aNextBL)); if(bEnter != bLeave) { // crossover; switch start or end impSwitchNext(rPNa, rPNb); } } } else if(rNextA.equal(rPrevB)) { // common edge in opposite direction enter impSwitchNext(rPNa, rPNb); } else { // no common edges, check for crossover const B2DPoint& aPoint(rPNa.maPoint); const B2DVector aPrevA(rPrevA - aPoint); const B2DVector aNextA(rNextA - aPoint); const B2DVector aPrevB(rPrevB - aPoint); const B2DVector aNextB(rNextB - aPoint); const bool bEnter(impLeftOfEdges(aPrevA, aNextA, aPrevB)); const bool bLeave(impLeftOfEdges(aPrevA, aNextA, aNextB)); if(bEnter != bLeave) { // crossover impSwitchNext(rPNa, rPNb); } } } } void impSolve() { // sort by point to identify common nodes easier std::sort(maSNV.begin(), maSNV.end()); // handle common nodes const sal_uInt32 nNodeCount(maSNV.size()); sal_uInt32 a(0); // snap unsharp-equal points if(nNodeCount) { basegfx::B2DPoint* pLast(&maSNV[0].mpPN->maPoint); for(a = 1; a < nNodeCount; a++) { basegfx::B2DPoint* pCurrent(&maSNV[a].mpPN->maPoint); if(pLast->equal(*pCurrent) && (pLast->getX() != pCurrent->getX() || pLast->getY() != pCurrent->getY())) { const basegfx::B2DPoint aMiddle((*pLast + *pCurrent) * 0.5); if(pLast->getX() != aMiddle.getX() || pLast->getY() != aMiddle.getY()) { maCorrectionTable.emplace_back(*pLast, aMiddle); *pLast = aMiddle; } if(pCurrent->getX() != aMiddle.getX() || pCurrent->getY() != aMiddle.getY()) { maCorrectionTable.emplace_back(*pCurrent, aMiddle); *pCurrent = aMiddle; } } pLast = pCurrent; } } for(a = 0; a < nNodeCount - 1; a++) { // test a before using it, not after. Also use nPointCount instead of aSortNodes.size() PN& rPNb = *(maSNV[a].mpPN); for(sal_uInt32 b(a + 1); b < nNodeCount && rPNb.maPoint.equal(maSNV[b].mpPN->maPoint); b++) { impHandleCommon(rPNb, *maSNV[b].mpPN); } } } public: explicit solver(const B2DPolygon& rOriginal) : maOriginal(B2DPolyPolygon(rOriginal)), mbIsCurve(false), mbChanged(false) { const sal_uInt32 nOriginalCount(rOriginal.count()); if(!nOriginalCount) return; B2DPolygon aGeometry(utils::addPointsAtCutsAndTouches(rOriginal)); aGeometry.removeDoublePoints(); aGeometry = utils::simplifyCurveSegments(aGeometry); mbIsCurve = aGeometry.areControlPointsUsed(); const sal_uInt32 nPointCount(aGeometry.count()); // If it's not a bezier polygon, at least four points are needed to create // a self-intersection. If it's a bezier polygon, the minimum point number // is two, since with a single point You get a curve, but no self-intersection if(!(nPointCount > 3 || (nPointCount > 1 && mbIsCurve))) return; // reserve space in point, control and sort vector. maSNV.reserve(nPointCount); maPNV.reserve(nPointCount); maVNV.reserve(mbIsCurve ? nPointCount : 0); // fill data impAddPolygon(0, aGeometry); // solve common nodes impSolve(); } explicit solver(const B2DPolyPolygon& rOriginal, size_t* pPointLimit = nullptr) : maOriginal(rOriginal), mbIsCurve(false), mbChanged(false) { sal_uInt32 nOriginalCount(maOriginal.count()); if(!nOriginalCount) return; B2DPolyPolygon aGeometry(utils::addPointsAtCutsAndTouches(maOriginal, pPointLimit)); aGeometry.removeDoublePoints(); aGeometry = utils::simplifyCurveSegments(aGeometry); mbIsCurve = aGeometry.areControlPointsUsed(); nOriginalCount = aGeometry.count(); if(!nOriginalCount) return; sal_uInt32 nPointCount(0); sal_uInt32 a(0); // count points for(a = 0; a < nOriginalCount; a++) { const B2DPolygon& aCandidate(aGeometry.getB2DPolygon(a)); const sal_uInt32 nCandCount(aCandidate.count()); // If it's not a bezier curve, at least three points would be needed to have a // topological relevant (not empty) polygon. Since it's not known here if trivial // edges (dead ends) will be kept or sorted out, add non-bezier polygons with // more than one point. // For bezier curves, the minimum for defining an area is also one. if(nCandCount) { nPointCount += nCandCount; } } if(!nPointCount) return; // reserve space in point, control and sort vector. maSNV.reserve(nPointCount); maPNV.reserve(nPointCount); maVNV.reserve(mbIsCurve ? nPointCount : 0); // fill data sal_uInt32 nInsertIndex(0); for(a = 0; a < nOriginalCount; a++) { const B2DPolygon& aCandidate(aGeometry.getB2DPolygon(a)); const sal_uInt32 nCandCount(aCandidate.count()); // use same condition as above, the data vector is // pre-allocated if(nCandCount) { impAddPolygon(nInsertIndex, aCandidate); nInsertIndex += nCandCount; } } // solve common nodes impSolve(); } B2DPolyPolygon getB2DPolyPolygon() { if(mbChanged) { B2DPolyPolygon aRetval; const sal_uInt32 nCount(maPNV.size()); sal_uInt32 nCountdown(nCount); for(sal_uInt32 a(0); nCountdown && a < nCount; a++) { PN& rPN = maPNV[a]; if(rPN.mnI != SAL_MAX_UINT32) { // unused node, start new part polygon B2DPolygon aNewPart; PN* pPNCurr = &rPN; do { const B2DPoint& rPoint = pPNCurr->maPoint; aNewPart.append(rPoint); if(mbIsCurve) { const VN& rVNCurr = maVNV[pPNCurr->mnI]; if(!rVNCurr.maPrev.equalZero()) { aNewPart.setPrevControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maPrev); } if(!rVNCurr.maNext.equalZero()) { aNewPart.setNextControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maNext); } } pPNCurr->mnI = SAL_MAX_UINT32; nCountdown--; pPNCurr = &(maPNV[pPNCurr->mnIN]); } while(pPNCurr != &rPN && pPNCurr->mnI != SAL_MAX_UINT32); // close and add aNewPart.setClosed(true); aRetval.append(aNewPart); } } return aRetval; } else { const sal_uInt32 nCorrectionSize(maCorrectionTable.size()); // no change, return original if(!nCorrectionSize) { return maOriginal; } // apply coordinate corrections to ensure inside/outside correctness after solving const sal_uInt32 nPolygonCount(maOriginal.count()); basegfx::B2DPolyPolygon aRetval(maOriginal); for(sal_uInt32 a(0); a < nPolygonCount; a++) { basegfx::B2DPolygon aTemp(aRetval.getB2DPolygon(a)); const sal_uInt32 nPointCount(aTemp.count()); bool bChanged(false); for(sal_uInt32 b(0); b < nPointCount; b++) { const basegfx::B2DPoint aCandidate(aTemp.getB2DPoint(b)); for(sal_uInt32 c(0); c < nCorrectionSize; c++) { if(maCorrectionTable[c].first.getX() == aCandidate.getX() && maCorrectionTable[c].first.getY() == aCandidate.getY()) { aTemp.setB2DPoint(b, maCorrectionTable[c].second); bChanged = true; } } } if(bChanged) { aRetval.setB2DPolygon(a, aTemp); } } return aRetval; } } }; } // end of anonymous namespace } // end of namespace basegfx namespace basegfx::utils { B2DPolyPolygon solveCrossovers(const B2DPolyPolygon& rCandidate, size_t* pPointLimit) { if(rCandidate.count() > 0) { solver aSolver(rCandidate, pPointLimit); return aSolver.getB2DPolyPolygon(); } else { return rCandidate; } } B2DPolyPolygon solveCrossovers(const B2DPolygon& rCandidate) { solver aSolver(rCandidate); return aSolver.getB2DPolyPolygon(); } B2DPolyPolygon stripNeutralPolygons(const B2DPolyPolygon& rCandidate) { B2DPolyPolygon aRetval; for(sal_uInt32 a(0); a < rCandidate.count(); a++) { const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); if(utils::getOrientation(aCandidate) != B2VectorOrientation::Neutral) { aRetval.append(aCandidate); } } return aRetval; } B2DPolyPolygon createNonzeroConform(const B2DPolyPolygon& rCandidate) { if (rCandidate.count() > 1000) { SAL_WARN("basegfx", "this poly is too large, " << rCandidate.count() << " elements, to be able to process timeously, falling back to ignoring the winding rule, which is likely to cause rendering artifacts"); return rCandidate; } B2DPolyPolygon aCandidate; // remove all self-intersections and intersections if(rCandidate.count() == 1) { aCandidate = basegfx::utils::solveCrossovers(rCandidate.getB2DPolygon(0)); } else { aCandidate = basegfx::utils::solveCrossovers(rCandidate); } // cleanup evtl. neutral polygons aCandidate = basegfx::utils::stripNeutralPolygons(aCandidate); // remove all polygons which have the same orientation as the polygon they are directly contained in const sal_uInt32 nCount(aCandidate.count()); if(nCount > 1) { sal_uInt32 a, b; std::vector< StripHelper > aHelpers; aHelpers.resize(nCount); for(a = 0; a < nCount; a++) { const B2DPolygon& aCand(aCandidate.getB2DPolygon(a)); StripHelper* pNewHelper = &(aHelpers[a]); pNewHelper->maRange = utils::getRange(aCand); pNewHelper->meOrinetation = utils::getOrientation(aCand); // initialize with own orientation pNewHelper->mnDepth = (pNewHelper->meOrinetation == B2VectorOrientation::Negative ? -1 : 1); } for(a = 0; a < nCount - 1; a++) { const B2DPolygon& aCandA(aCandidate.getB2DPolygon(a)); StripHelper& rHelperA = aHelpers[a]; for(b = a + 1; b < nCount; b++) { const B2DPolygon& aCandB(aCandidate.getB2DPolygon(b)); StripHelper& rHelperB = aHelpers[b]; const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && utils::isInside(aCandB, aCandA, true)); if(bAInB) { // A is inside B, add orientation of B to A rHelperA.mnDepth += (rHelperB.meOrinetation == B2VectorOrientation::Negative ? -1 : 1); } const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && utils::isInside(aCandA, aCandB, true)); if(bBInA) { // B is inside A, add orientation of A to B rHelperB.mnDepth += (rHelperA.meOrinetation == B2VectorOrientation::Negative ? -1 : 1); } } } const B2DPolyPolygon aSource(aCandidate); aCandidate.clear(); for(a = 0; a < nCount; a++) { const StripHelper& rHelper = aHelpers[a]; // for contained unequal oriented polygons sum will be 0 // for contained equal it will be >=2 or <=-2 // for free polygons (not contained) it will be 1 or -1 // -> accept all which are >=-1 && <= 1 bool bAcceptEntry(rHelper.mnDepth >= -1 && rHelper.mnDepth <= 1); if(bAcceptEntry) { aCandidate.append(aSource.getB2DPolygon(a)); } } } return aCandidate; } B2DPolyPolygon stripDispensablePolygons(const B2DPolyPolygon& rCandidate, bool bKeepAboveZero) { const sal_uInt32 nCount(rCandidate.count()); B2DPolyPolygon aRetval; if(nCount) { if(nCount == 1) { if(!bKeepAboveZero && utils::getOrientation(rCandidate.getB2DPolygon(0)) == B2VectorOrientation::Positive) { aRetval = rCandidate; } } else { sal_uInt32 a, b; std::vector< StripHelper > aHelpers; aHelpers.resize(nCount); for(a = 0; a < nCount; a++) { const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); StripHelper* pNewHelper = &(aHelpers[a]); pNewHelper->maRange = utils::getRange(aCandidate); pNewHelper->meOrinetation = utils::getOrientation(aCandidate); pNewHelper->mnDepth = (pNewHelper->meOrinetation == B2VectorOrientation::Negative ? -1 : 0); } for(a = 0; a < nCount - 1; a++) { const B2DPolygon& aCandA(rCandidate.getB2DPolygon(a)); StripHelper& rHelperA = aHelpers[a]; for(b = a + 1; b < nCount; b++) { const B2DPolygon& aCandB(rCandidate.getB2DPolygon(b)); StripHelper& rHelperB = aHelpers[b]; const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && utils::isInside(aCandB, aCandA, true)); const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && utils::isInside(aCandA, aCandB, true)); if(bAInB && bBInA) { // congruent if(rHelperA.meOrinetation == rHelperB.meOrinetation) { // two polys or two holes. Lower one of them to get one of them out of the way. // Since each will be contained in the other one, both will be increased, too. // So, for lowering, increase only one of them rHelperA.mnDepth++; } else { // poly and hole. They neutralize, so get rid of both. Move securely below zero. rHelperA.mnDepth = - static_cast(nCount); rHelperB.mnDepth = - static_cast(nCount); } } else { if(bAInB) { if(rHelperB.meOrinetation == B2VectorOrientation::Negative) { rHelperA.mnDepth--; } else { rHelperA.mnDepth++; } } else if(bBInA) { if(rHelperA.meOrinetation == B2VectorOrientation::Negative) { rHelperB.mnDepth--; } else { rHelperB.mnDepth++; } } } } } for(a = 0; a < nCount; a++) { const StripHelper& rHelper = aHelpers[a]; bool bAcceptEntry(bKeepAboveZero ? 1 <= rHelper.mnDepth : rHelper.mnDepth == 0); if(bAcceptEntry) { aRetval.append(rCandidate.getB2DPolygon(a)); } } } } return aRetval; } B2DPolyPolygon prepareForPolygonOperation(const B2DPolygon& rCandidate) { solver aSolver(rCandidate); B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon())); return correctOrientations(aRetval); } B2DPolyPolygon prepareForPolygonOperation(const B2DPolyPolygon& rCandidate) { solver aSolver(rCandidate); B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon())); return correctOrientations(aRetval); } B2DPolyPolygon solvePolygonOperationOr(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) { if(!rCandidateA.count()) { return rCandidateB; } else if(!rCandidateB.count()) { return rCandidateA; } else { // concatenate polygons, solve crossovers and throw away all sub-polygons // which have a depth other than 0. B2DPolyPolygon aRetval(rCandidateA); aRetval.append(rCandidateB); aRetval = solveCrossovers(aRetval); aRetval = stripNeutralPolygons(aRetval); return stripDispensablePolygons(aRetval); } } B2DPolyPolygon solvePolygonOperationXor(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) { if(!rCandidateA.count()) { return rCandidateB; } else if(!rCandidateB.count()) { return rCandidateA; } else { // XOR is pretty simple: By definition it is the simple concatenation of // the single polygons since we imply XOR fill rule. Make it intersection-free // and correct orientations B2DPolyPolygon aRetval(rCandidateA); aRetval.append(rCandidateB); aRetval = solveCrossovers(aRetval); aRetval = stripNeutralPolygons(aRetval); return correctOrientations(aRetval); } } B2DPolyPolygon solvePolygonOperationAnd(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) { if(!rCandidateA.count()) { return B2DPolyPolygon(); } else if(!rCandidateB.count()) { return B2DPolyPolygon(); } else { // tdf#130150 shortcut & precision: If both are simple ranges, // solve based on ranges if(basegfx::utils::isRectangle(rCandidateA) && basegfx::utils::isRectangle(rCandidateB)) { // *if* both are ranges, AND always can be solved const basegfx::B2DRange aRangeA(rCandidateA.getB2DRange()); const basegfx::B2DRange aRangeB(rCandidateB.getB2DRange()); if(aRangeA.isInside(aRangeB)) { // 2nd completely inside 1st -> 2nd is result of AND return rCandidateB; } if(aRangeB.isInside(aRangeA)) { // 2nd completely inside 1st -> 2nd is result of AND return rCandidateA; } // solve by intersection basegfx::B2DRange aIntersect(aRangeA); aIntersect.intersect(aRangeB); if(aIntersect.isEmpty()) { // no overlap -> empty polygon as result of AND return B2DPolyPolygon(); } // create polygon result return B2DPolyPolygon( basegfx::utils::createPolygonFromRect( aIntersect)); } // concatenate polygons, solve crossovers and throw away all sub-polygons // with a depth of < 1. This means to keep all polygons where at least two // polygons do overlap. B2DPolyPolygon aRetval(rCandidateA); aRetval.append(rCandidateB); aRetval = solveCrossovers(aRetval); aRetval = stripNeutralPolygons(aRetval); return stripDispensablePolygons(aRetval, true); } } B2DPolyPolygon solvePolygonOperationDiff(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) { if(!rCandidateA.count()) { return B2DPolyPolygon(); } else if(!rCandidateB.count()) { return rCandidateA; } else { // Make B topologically to holes and append to A B2DPolyPolygon aRetval(rCandidateB); aRetval.flip(); aRetval.append(rCandidateA); // solve crossovers and throw away all sub-polygons which have a // depth other than 0. aRetval = basegfx::utils::solveCrossovers(aRetval); aRetval = basegfx::utils::stripNeutralPolygons(aRetval); return basegfx::utils::stripDispensablePolygons(aRetval); } } B2DPolyPolygon mergeToSinglePolyPolygon(const B2DPolyPolygonVector& rInput) { if(rInput.empty()) return B2DPolyPolygon(); // first step: prepareForPolygonOperation and simple merge of non-overlapping // PolyPolygons for speedup; this is possible for the wanted OR-operation B2DPolyPolygonVector aResult; aResult.reserve(rInput.size()); for(const basegfx::B2DPolyPolygon & a : rInput) { const basegfx::B2DPolyPolygon aCandidate(prepareForPolygonOperation(a)); if(!aResult.empty()) { const B2DRange aCandidateRange(aCandidate.getB2DRange()); bool bCouldMergeSimple(false); for(auto & b: aResult) { basegfx::B2DPolyPolygon aTarget(b); const B2DRange aTargetRange(aTarget.getB2DRange()); if(!aCandidateRange.overlaps(aTargetRange)) { aTarget.append(aCandidate); b = aTarget; bCouldMergeSimple = true; break; } } if(!bCouldMergeSimple) { aResult.push_back(aCandidate); } } else { aResult.push_back(aCandidate); } } // second step: melt pairwise to a single PolyPolygon while(aResult.size() > 1) { B2DPolyPolygonVector aResult2; aResult2.reserve((aResult.size() / 2) + 1); for(size_t a(0); a < aResult.size(); a += 2) { if(a + 1 < aResult.size()) { // a pair for processing aResult2.push_back(solvePolygonOperationOr(aResult[a], aResult[a + 1])); } else { // last single PolyPolygon; copy to target to not lose it aResult2.push_back(aResult[a]); } } aResult = aResult2; } // third step: get result if(aResult.size() == 1) { return aResult[0]; } return B2DPolyPolygon(); } } // end of namespace /* vim:set shiftwidth=4 softtabstop=4 expandtab: */