office-gobmx/include/svx/svdtrans.hxx
Mike Kaganski ea9904c896 Drop FRound, and use generalized basegfx::fround
Change-Id: I7447e649dc3ef4e51242f69c7486a3e84e103d2e
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/166159
Tested-by: Jenkins
Reviewed-by: Mike Kaganski <mike.kaganski@collabora.com>
2024-04-17 03:56:59 +02:00

290 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#pragma once
#include <rtl/ustring.hxx>
#include <svx/svxdllapi.h>
#include <tools/degree.hxx>
#include <tools/fldunit.hxx>
#include <tools/fract.hxx>
#include <tools/gen.hxx>
#include <tools/helpers.hxx>
#include <tools/mapunit.hxx>
#include <tools/poly.hxx>
// That maximum shear angle
constexpr Degree100 SDRMAXSHEAR(8900);
class XPolygon;
class XPolyPolygon;
inline void MovePoly(tools::Polygon& rPoly, const Size& S) { rPoly.Move(S.Width(),S.Height()); }
void MoveXPoly(XPolygon& rPoly, const Size& S);
SVXCORE_DLLPUBLIC void ResizeRect(tools::Rectangle& rRect, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
inline void ResizePoint(Point& rPnt, const Point& rRef, const Fraction& xFract, const Fraction& yFract);
void ResizePoly(tools::Polygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
void ResizeXPoly(XPolygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs);
SVXCORE_DLLPUBLIC void RotatePoly(tools::Polygon& rPoly, const Point& rRef, double sn, double cs);
void RotateXPoly(XPolygon& rPoly, const Point& rRef, double sn, double cs);
void RotateXPoly(XPolyPolygon& rPoly, const Point& rRef, double sn, double cs);
void MirrorPoint(Point& rPnt, const Point& rRef1, const Point& rRef2);
void MirrorXPoly(XPolygon& rPoly, const Point& rRef1, const Point& rRef2);
inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear = false);
SVXCORE_DLLPUBLIC void ShearPoly(tools::Polygon& rPoly, const Point& rRef, double tn);
void ShearXPoly(XPolygon& rPoly, const Point& rRef, double tn, bool bVShear = false);
/**
* rPnt.X/rPnt.Y is set to rCenter.X or rCenter.Y!
* We then only need to rotate rPnt by rCenter.
*
* @return the returned angle is in rad
*/
inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical);
/**
* The following methods accept a point of an XPolygon, whereas the neighbouring
* control points of the actual point are passed in pC1/pC2.
* Via rSin/rCos, sin(nAngle) and cos(nAngle) are returned.
*
* @return the returned angle is in rad
*/
double CrookRotateXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
const Point& rRad, double& rSin, double& rCos, bool bVert);
double CrookSlantXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
const Point& rRad, double& rSin, double& rCos, bool bVert);
double CrookStretchXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
const Point& rRad, double& rSin, double& rCos, bool bVert,
const tools::Rectangle& rRefRect);
void CrookRotatePoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookSlantPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookStretchPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const tools::Rectangle& rRefRect);
void CrookRotatePoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookSlantPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookStretchPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const tools::Rectangle& rRefRect);
/**************************************************************************************************/
/* Inline */
/**************************************************************************************************/
inline void ResizePoint(Point& rPnt, const Point& rRef, const Fraction& xFract, const Fraction& yFract)
{
double nxFract = xFract.IsValid() ? static_cast<double>(xFract) : 1.0;
double nyFract = yFract.IsValid() ? static_cast<double>(yFract) : 1.0;
rPnt.setX(rRef.X() + basegfx::fround<tools::Long>((rPnt.X() - rRef.X()) * nxFract));
rPnt.setY(rRef.Y() + basegfx::fround<tools::Long>((rPnt.Y() - rRef.Y()) * nyFract));
}
inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs)
{
tools::Long dx=rPnt.X()-rRef.X();
tools::Long dy=rPnt.Y()-rRef.Y();
rPnt.setX(basegfx::fround<tools::Long>(rRef.X() + dx * cs + dy * sn));
rPnt.setY(basegfx::fround<tools::Long>(rRef.Y() + dy * cs - dx * sn));
}
inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear)
{
if (!bVShear) { // Horizontal
if (rPnt.Y()!=rRef.Y()) { // else not needed
rPnt.AdjustX(basegfx::fround<tools::Long>((rRef.Y() - rPnt.Y()) * tn));
}
} else { // or else vertical
if (rPnt.X()!=rRef.X()) { // else not needed
rPnt.AdjustY(basegfx::fround<tools::Long>((rRef.X() - rPnt.X()) * tn));
}
}
}
inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical)
{
double nAngle;
if (bVertical) {
tools::Long dy=rPnt.Y()-rCenter.Y();
nAngle=static_cast<double>(dy)/static_cast<double>(rRad.Y());
rPnt.setY(rCenter.Y());
} else {
tools::Long dx=rCenter.X()-rPnt.X();
nAngle=static_cast<double>(dx)/static_cast<double>(rRad.X());
rPnt.setX(rCenter.X());
}
return nAngle;
}
/**************************************************************************************************/
/**************************************************************************************************/
/**
* The Y axis points down!
* The function negates the Y axis, when calculating the angle, such
* that GetAngle(Point(0,-1))=90 deg.
* GetAngle(Point(0,0)) returns 0.
*
* @return the returned value is in the range of -180.00..179.99 deg
* and is in 1/100 deg units
*/
SVXCORE_DLLPUBLIC Degree100 GetAngle(const Point& rPnt);
SVXCORE_DLLPUBLIC Degree100 NormAngle18000(Degree100 a); /// Normalize angle to -180.00..179.99
SVXCORE_DLLPUBLIC Degree100 NormAngle36000(Degree100 a); /// Normalize angle to 0.00..359.99
sal_uInt16 GetAngleSector(Degree100 nAngle); /// Determine sector within the cartesian coordinate system
/**
* Calculates the length of (0,0) via a^2 + b^2 = c^2
* In order to avoid overflows, we ignore some decimal places.
*/
tools::Long GetLen(const Point& rPnt);
/**
* The transformation of a rectangle into a polygon, by
* using angle parameters from GeoStat. ------------
* The point of reference is always the Point 0, meaning /1 2/
* the upper left corner of the initial rectangle. / /
* When calculating the polygon, the order is first / /
* shear and then the rotation. / /
* / / \
* / / |
* A) Initial rectangle aRect B) After applying Shear /0 3/ Rot|
* +------------------+ -------------------- ------------------
* |0 1| \0 1\ C) After applying Rotate
* | | \ \
* | | | \ \
* |3 2| | \3 2\
* +------------------+ | --------------------
* |Shr
*
* When converting the polygon back into a rect, the order is necessarily the
* other way around:
* - Calculating the rotation angle: angle of the line 0-1 in figure C) to the horizontal
* - Turning the sheared rect back (we get figure B)
* - Determining the width of the rect = length of the line 0-1 in figure B)
* - Determining the height of the rect = vertical distance between the points 0 and 3
* of figure B)
* - Determining the shear angle from the line 0-3 to the perpendicular line.
*
* We need to keep in mind that the polygon can be mirrored when it was
* transformed in the meantime (e.g. mirror or resize with negative factor).
* In that case, we first need to normalize, by swapping points (0 with 3 and 1
* with 2), so that it has the right orientation.
*
* Note: a positive shear angle means a shear with a positive visible curvature
* on the screen. Mathematically, that would be a negative curvature, as the
* Y axis runs from top to bottom on the screen.
* Rotation angle: positive means a visible left rotation.
*/
class GeoStat { // Geometric state for a rect
public:
Degree100 m_nRotationAngle;
Degree100 m_nShearAngle;
double mfTanShearAngle; // tan(nShearAngle)
double mfSinRotationAngle; // sin(nRotationAngle)
double mfCosRotationAngle; // cos(nRotationAngle)
GeoStat(): m_nRotationAngle(0),m_nShearAngle(0),mfTanShearAngle(0.0),mfSinRotationAngle(0.0),mfCosRotationAngle(1.0) {}
void RecalcSinCos();
void RecalcTan();
};
tools::Polygon Rect2Poly(const tools::Rectangle& rRect, const GeoStat& rGeo);
namespace svx
{
tools::Rectangle polygonToRectangle(const tools::Polygon& rPolygon, GeoStat& rGeo);
}
void OrthoDistance8(const Point& rPt0, Point& rPt, bool bBigOrtho);
void OrthoDistance4(const Point& rPt0, Point& rPt, bool bBigOrtho);
// Multiplication and subsequent division
// Calculation and intermediate values are in BigInt
SVXCORE_DLLPUBLIC tools::Long BigMulDiv(tools::Long nVal, tools::Long nMul, tools::Long nDiv);
class FrPair {
Fraction m_aX;
Fraction m_aY;
public:
FrPair(const Fraction& rBoth) : m_aX(rBoth),m_aY(rBoth) {}
FrPair(const Fraction& rX, const Fraction& rY) : m_aX(rX),m_aY(rY) {}
FrPair(tools::Long nMul, tools::Long nDiv) : m_aX(nMul,nDiv),m_aY(nMul,nDiv) {}
FrPair(tools::Long xMul, tools::Long xDiv, tools::Long yMul, tools::Long yDiv): m_aX(xMul,xDiv),m_aY(yMul,yDiv) {}
const Fraction& X() const { return m_aX; }
const Fraction& Y() const { return m_aY; }
Fraction& X() { return m_aX; }
Fraction& Y() { return m_aY; }
};
// To convert units of measurement
SVXCORE_DLLPUBLIC FrPair GetMapFactor(MapUnit eS, MapUnit eD);
FrPair GetMapFactor(FieldUnit eS, FieldUnit eD);
inline bool IsMetric(MapUnit eU) {
return (eU==MapUnit::Map100thMM || eU==MapUnit::Map10thMM || eU==MapUnit::MapMM || eU==MapUnit::MapCM);
}
inline bool IsInch(MapUnit eU) {
return (eU==MapUnit::Map1000thInch || eU==MapUnit::Map100thInch || eU==MapUnit::Map10thInch || eU==MapUnit::MapInch ||
eU==MapUnit::MapPoint || eU==MapUnit::MapTwip);
}
inline bool IsMetric(FieldUnit eU) {
return (eU == FieldUnit::MM || eU == FieldUnit::CM || eU == FieldUnit::M
|| eU == FieldUnit::KM || eU == FieldUnit::MM_100TH);
}
inline bool IsInch(FieldUnit eU) {
return (eU == FieldUnit::TWIP || eU == FieldUnit::POINT
|| eU == FieldUnit::PICA || eU == FieldUnit::INCH
|| eU == FieldUnit::FOOT || eU == FieldUnit::MILE);
}
class SVXCORE_DLLPUBLIC SdrFormatter {
tools::Long m_nMul;
tools::Long m_nDiv;
short m_nComma;
bool m_bDirty;
MapUnit m_eSrcMU;
MapUnit m_eDstMU;
private:
SVX_DLLPRIVATE void Undirty();
public:
SdrFormatter(MapUnit eSrc, MapUnit eDst)
: m_nMul(0)
, m_nDiv(0)
, m_nComma(0)
, m_bDirty(true)
, m_eSrcMU(eSrc)
, m_eDstMU(eDst)
{
}
OUString GetStr(tools::Long nVal) const;
static OUString GetUnitStr(MapUnit eUnit);
static OUString GetUnitStr(FieldUnit eUnit);
};
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */