office-gobmx/bridges/source/cpp_uno/gcc3_linux_hppa/cpp2uno.cxx
Stephan Bergmann ef53355355 Rudimentary support for dynamic_cast on UNO proxy objects
<https://gerrit.libreoffice.org/c/core/+/144139> "New loplugin:unocast" had
argued that uses of dynamic_cast from a UNO interface type are broken in general
(because if the source object is a proxy from the C*+ UNO bridge, its vtable's
RTTI slot will normally not be set up, which can cause a crash), and should be
replaced with uses of XUnoTunnel.  Which the various recent "loplugin:unocast
(...)" commits started to do.  However, it became clear that that is not the
most ideal way forward:  For one, getting more and more implementations of
XUnoTunnel::getSomething into existing class hierarchies is error prone, as each
such implementation must manually delegate to all its base class
implementations.  For another, uses of comphelper::getFromUnoTunnel (which often
needs to do a queryInterface to XUnoTunnel first) are easily more expensive than
uses of dynamic_cast.

Thanks to Noel, the insight here is that for the use case of a dynamic_cast from
a UNO interface type to a local C++ class type, and if the source object is a
proxy, it is sufficient that the dynamic_cast will not crash.  It will
necessarily always return null (as the proxy will never be the implementation of
a local C++ class type), so it is sufficient to fill the RTTI slots of the
proxies' vtables with dummy values.  That avoids having to set up proper RTTI
for those potentially multiple-inheritance proxy types.  (And with this in
place, all those recent "loplugin:unocast (...)" commits can be reverted again
in a next step.)

I verified the changes for the gcc3_linux_aarch64 (on macOS), gcc3_linux_intel,
gcc3_linux_x86-64, gcc3_macosx_x86-64, msvc_win32_intel, and msvc_win32_x86-64
bridges.  The changes for all the other bridges were done blindly.

(For gcc3_linux_x86-64, which already conditionally supported proper RTTI for
UBSan, setting the offset-to-top slot to non-zero had to be made conditional
too, as the dummy ProxyRtti will always pretend to be a full class rather than a
potential base class that could have a non-zero offset-to-top value.  For
msvc_win32_*, it turned out that the existing code to set up dummy XInterface
RTTI (which was there for reasons lost to history) was broken.)

Change-Id: Iec4b8067d26b14b6fb02c2fdd15e1eee20919590
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/145038
Tested-by: Jenkins
Reviewed-by: Stephan Bergmann <sbergman@redhat.com>
2023-01-04 13:49:58 +00:00

720 lines
26 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <malloc.h>
#include <typeinfo>
#include <rtl/alloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include "com/sun/star/uno/RuntimeException.hpp"
#include <sal/log.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include "bridge.hxx"
#include "cppinterfaceproxy.hxx"
#include "types.hxx"
#include "vtablefactory.hxx"
#include "share.hxx"
#include <dlfcn.h>
using namespace ::osl;
using namespace ::com::sun::star::uno;
namespace
{
static typelib_TypeClass cpp2uno_call(
bridges::cpp_uno::shared::CppInterfaceProxy* pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
long r8, void ** gpreg, double *fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
void ** startovrflw = ovrflw;
int nregs = 0; //number of words passed in registers
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "cpp2uno_call\n");
#endif
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
// complex return ptr: if != 0 && != pUnoReturn, reconversion need
void * pCppReturn = 0;
if (pReturnTypeDescr)
{
if (hppa::isRegisterReturn(pReturnTypeRef))
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "simple return\n");
#endif
pUnoReturn = pRegisterReturn; // direct way for simple types
}
else
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "complex return via r8\n");
#endif
pCppReturn = (void *)r8;
pUnoReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn); // direct way
}
}
// pop this
gpreg++;
fpreg++;
nregs++;
// stack space
static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!");
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indices of values this have to be converted (interface conversion
// cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr =
(typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndices = 0;
bool bOverflowUsed = false;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_DOUBLE:
if (nregs < hppa::MAX_WORDS_IN_REGS && (nregs & 1))
{
gpreg++;
fpreg++;
nregs++;
}
if (nregs < hppa::MAX_WORDS_IN_REGS-1)
{
fpreg++;
pCppArgs[nPos] = pUnoArgs[nPos] = fpreg;
gpreg+=2;
fpreg+=2;
nregs+=2;
}
else
{
if ((startovrflw-ovrflw) & 1)
ovrflw--;
pCppArgs[nPos] = pUnoArgs[nPos] = ((char*)ovrflw - 4);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw-=2;
break;
case typelib_TypeClass_FLOAT:
if (nregs < hppa::MAX_WORDS_IN_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = fpreg;
gpreg++;
fpreg++;
nregs++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = ovrflw;
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw--;
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
if (nregs < hppa::MAX_WORDS_IN_REGS && (nregs & 1))
{
gpreg++;
fpreg++;
nregs++;
}
if (nregs < hppa::MAX_WORDS_IN_REGS-1)
{
pCppArgs[nPos] = pUnoArgs[nPos] = gpreg;
gpreg+=2;
fpreg+=2;
nregs+=2;
}
else
{
if ((startovrflw-ovrflw) & 1)
ovrflw--;
pCppArgs[nPos] = pUnoArgs[nPos] = ((char*)ovrflw - 4);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw-=2;
break;
case typelib_TypeClass_BYTE:
case typelib_TypeClass_BOOLEAN:
if (nregs < hppa::MAX_WORDS_IN_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = ((char*)gpreg + 3);
gpreg++;
fpreg++;
nregs++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = ((char*)ovrflw+3);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw--;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
if (nregs < hppa::MAX_WORDS_IN_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = ((char*)gpreg+2);
gpreg++;
fpreg++;
nregs++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = ((char*)ovrflw+2);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw--;
break;
case typelib_TypeClass_ENUM:
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
default:
if (nregs < hppa::MAX_WORDS_IN_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = gpreg;
gpreg++;
fpreg++;
nregs++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = ovrflw;
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw--;
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
void *pCppStack;
if (nregs < hppa::MAX_WORDS_IN_REGS)
{
pCppArgs[nPos] = pCppStack = *gpreg;
gpreg++;
fpreg++;
nregs++;
}
else
{
pCppArgs[nPos] = pCppStack = *ovrflw;
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw--;
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndices[nTempIndices] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType(
pParamTypeDescr ))
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pCppStack, pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pUnoArgs[nPos] = pCppStack;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
}
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "before dispatch\n");
#endif
// invoke uno dispatch call
(*pThis->getUnoI()->pDispatcher)(
pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "after dispatch\n");
#endif
// in case an exception occurred...
if (pUnoExc)
{
// destruct temporary in/inout params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex],
ppTempParamTypeDescr[nTempIndices], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
CPPU_CURRENT_NAMESPACE::raiseException( &aUnoExc,
pThis->getBridge()->getUno2Cpp() ); // has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occurred...
{
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr =
ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bOut) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr,
cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex],
pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if (pCppReturn) // has complex return
{
if (pUnoReturn != pCppReturn) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn,
pReturnTypeDescr, pThis->getBridge()->getUno2Cpp() );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to eax
*(void **)pRegisterReturn = pCppReturn;
}
if (pReturnTypeDescr)
{
typelib_TypeClass eRet =
(typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
static typelib_TypeClass cpp_mediate(
sal_Int32 nFunctionIndex, sal_Int32 nVtableOffset,
void ** gpreg, double* fpreg,
long sp, long r8,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
void ** ovrflw = (void**)(sp);
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "cpp_mediate with\n");
fprintf(stderr, "%x %x\n", nFunctionIndex, nVtableOffset);
fprintf(stderr, "and %x %x\n", (long)(ovrflw[0]), (long)(ovrflw[-1]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-2]), (long)(ovrflw[-3]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-4]), (long)(ovrflw[-5]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-6]), (long)(ovrflw[-7]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-8]), (long)(ovrflw[-9]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-10]), (long)(ovrflw[-11]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-12]), (long)(ovrflw[-13]));
fprintf(stderr, "and %x %x\n", (long)(ovrflw[-14]), (long)(ovrflw[-15]));
#endif
static_assert(sizeof(sal_Int32)==sizeof(void *), "### unexpected!");
// gpreg: [ret *], this, [other gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
void * pThis;
if (nFunctionIndex & 0x80000000 )
{
nFunctionIndex &= 0x7fffffff;
pThis = gpreg[1];
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pThis is gpreg[1]\n");
#endif
}
else
{
pThis = gpreg[0];
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pThis is gpreg[0]\n");
#endif
}
pThis = static_cast< char * >(pThis) - nVtableOffset;
bridges::cpp_uno::shared::CppInterfaceProxy * pCppI =
bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy(
pThis);
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr();
if (nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex)
{
SAL_WARN(
"bridges",
"illegal " << OUString::unacquired(&pTypeDescr->aBase.pTypeName)
<< " vtable index " << nFunctionIndex << "/"
<< pTypeDescr->nMapFunctionIndexToMemberIndex);
throw RuntimeException(
("illegal " + OUString::unacquired(&pTypeDescr->aBase.pTypeName)
+ " vtable index " + OUString::number(nFunctionIndex) + "/"
+ OUString::number(pTypeDescr->nMapFunctionIndexToMemberIndex)),
(XInterface *)pCppI);
}
// determine called method
assert(nFunctionIndex < pTypeDescr->nMapFunctionIndexToMemberIndex);
sal_Int32 nMemberPos =
pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex];
assert(nMemberPos < pTypeDescr->nAllMembers);
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
typelib_TypeClass eRet;
switch (aMemberDescr.get()->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] ==
nFunctionIndex)
{
// is GET method
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef,
0, 0, // no params
r8, gpreg, fpreg, ovrflw, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
r8, gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// is METHOD
switch (nFunctionIndex)
{
case 1: // acquire()
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET(&pTD,
reinterpret_cast<Type *>(gpreg[1])->getTypeLibType());
if (pTD)
{
XInterface * pInterface = 0;
(*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)(
pCppI->getBridge()->getCppEnv(),
(void **)&pInterface, pCppI->getOid().pData,
(typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( r8 ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
*(void **)pRegisterReturn = (void*)r8;
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams,
r8, gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
default:
{
throw RuntimeException( "no member description found!", (XInterface *)pCppI );
}
}
return eRet;
}
}
/**
* is called on incoming vtable calls
* (called by asm snippets)
*/
sal_Int64 cpp_vtable_call( sal_uInt32 in0, sal_uInt32 in1, sal_uInt32 in2, sal_uInt32 in3, sal_uInt32 firstonstack )
{
register sal_Int32 r21 asm("r21");
register sal_Int32 r22 asm("r22");
register sal_Int32 r28 asm("r28");
sal_Int32 functionIndex = r21;
sal_Int32 vtableOffset = r22;
sal_Int32 r8 = r28;
long sp = (long)&firstonstack;
sal_uInt32 gpreg[hppa::MAX_GPR_REGS];
gpreg[0] = in0;
gpreg[1] = in1;
gpreg[2] = in2;
gpreg[3] = in3;
float fpreg[hppa::MAX_SSE_REGS]; //todo
register float f0 asm("fr4"); fpreg[0] = f0;
register float f1 asm("fr5"); fpreg[1] = f1;
register float f2 asm("fr6"); fpreg[2] = f2;
register float f3 asm("fr7"); fpreg[3] = f3;
double dpreg[hppa::MAX_SSE_REGS]; //todo
register double d0 asm("fr4"); dpreg[0] = d0;
register double d1 asm("fr5"); dpreg[1] = d1;
register double d2 asm("fr6"); dpreg[2] = d2;
register double d3 asm("fr7"); dpreg[3] = d3;
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "got to cpp_vtable_call with %x %x\n", functionIndex, vtableOffset);
for (int i = 0; i < hppa::MAX_GPR_REGS; ++i)
fprintf(stderr, "reg %d is %d %x\n", i, gpreg[i], gpreg[i]);
for (int i = 0; i < hppa::MAX_SSE_REGS; ++i)
fprintf(stderr, "float reg %d is %f %x\n", i, fpreg[i], ((long*)fpreg)[i]);
for (int i = 0; i < 4; ++i)
fprintf(stderr, "double reg %d is %f %llx\n", i, dpreg[i], ((long long*)dpreg)[i]);
#endif
sal_Int64 nRegReturn;
typelib_TypeClass aType =
cpp_mediate( functionIndex, vtableOffset, (void**)gpreg, dpreg, sp, r8, &nRegReturn);
switch( aType )
{
case typelib_TypeClass_FLOAT:
f0 = (*((float*)&nRegReturn));
break;
case typelib_TypeClass_DOUBLE:
d0 = (*((double*)&nRegReturn));
break;
default:
break;
}
return nRegReturn;
}
namespace
{
const int codeSnippetSize = 44;
# define unldil(v) (((v & 0x7c) << 14) | ((v & 0x180) << 7) | ((v & 0x3) << 12) | ((v & 0xffe00) >> 8) | ((v & 0x100000) >> 20))
# define L21(v) unldil(((unsigned long)(v) >> 11) & 0x1fffff) //Left 21 bits
# define R11(v) (((unsigned long)(v) & 0x7FF) << 1) //Right 11 bits
unsigned char *codeSnippet(unsigned char* code, sal_Int32 functionIndex,
sal_Int32 vtableOffset, bool bHasHiddenParam)
{
if (bHasHiddenParam)
functionIndex |= 0x80000000;
unsigned char * p = code;
*(unsigned long*)&p[0] = 0xeaa00000; // b,l 0x8,r21
*(unsigned long*)&p[4] = 0xd6a01c1e; // depwi 0,31,2,r21
*(unsigned long*)&p[8] = 0x4aa10040; // ldw 32(r21),r1
*(unsigned long*)&p[12] = 0x22A00000 | L21(functionIndex); // ldil L<functionIndex>,r21
*(unsigned long*)&p[16] = 0x36B50000 | R11(functionIndex); // ldo R<functionIndex>,r21
*(unsigned long*)&p[20] = 0x22C00000 | L21(vtableOffset); // ldil L<vtableOffset>,r22
*(unsigned long*)&p[24] = 0x36D60000 | R11(vtableOffset); // ldo R<vtableOffset>,r22
*(unsigned long*)&p[28] = 0x0c201094; // ldw 0(r1),r20
*(unsigned long*)&p[32] = 0xea80c000; // bv r0(r20)
*(unsigned long*)&p[36] = 0x0c281093; // ldw 4(r1),r19
*(unsigned long*)&p[40] = ((unsigned long)(cpp_vtable_call) & ~2);
return code + codeSnippetSize;
}
}
struct bridges::cpp_uno::shared::VtableFactory::Slot { void const * fn; };
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block)
{
return static_cast< Slot * >(block) + 2;
}
std::size_t bridges::cpp_uno::shared::VtableFactory::getBlockSize(
sal_Int32 slotCount)
{
return (slotCount + 2) * sizeof (Slot) + slotCount * codeSnippetSize;
}
namespace {
// Some dummy type whose RTTI is used in the synthesized proxy vtables to make uses of dynamic_cast
// on such proxy objects not crash:
struct ProxyRtti {};
}
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::initializeBlock(
void * block, sal_Int32 slotCount, sal_Int32,
typelib_InterfaceTypeDescription *)
{
Slot * slots = mapBlockToVtable(block);
slots[-2].fn = 0;
slots[-1].fn = &typeid(ProxyRtti);
return slots + slotCount;
}
unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions(
Slot ** slots, unsigned char * code, sal_PtrDiff writetoexecdiff,
typelib_InterfaceTypeDescription const * type, sal_Int32 functionOffset,
sal_Int32 functionCount, sal_Int32 vtableOffset)
{
(*slots) -= functionCount;
Slot * s = *slots;
for (sal_Int32 i = 0; i < type->nMembers; ++i)
{
typelib_TypeDescription * member = 0;
TYPELIB_DANGER_GET(&member, type->ppMembers[i]);
assert(member != 0);
switch (member->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
// Getter:
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(code, functionOffset++, vtableOffset, false);
// Setter:
if (!reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->bReadOnly)
{
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(code, functionOffset++, vtableOffset, false);
}
break;
case typelib_TypeClass_INTERFACE_METHOD:
{
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(code, functionOffset++, vtableOffset, false);
break;
}
default:
assert(false);
break;
}
TYPELIB_DANGER_RELEASE(member);
}
return code;
}
void bridges::cpp_uno::shared::VtableFactory::flushCode(
unsigned char const *beg, unsigned char const *end)
{
void *p = (void*)((size_t)beg & ~31);
size_t stride = 32;
while (p < end)
{
asm volatile("fdc (%0)\n\t"
"sync\n\t"
"fic,m %1(%%sr4, %0)\n\t"
"sync" : "+r"(p) : "r"(stride) : "memory");
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */