office-gobmx/bridges/source/cpp_uno/gcc3_linux_riscv64/uno2cpp.cxx
Andrea Gelmini 637072a9b6 Fix typo
Change-Id: Ia7e36299a15fd4096f2e8e50efad2e8e1b61bec9
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/169166
Reviewed-by: Julien Nabet <serval2412@yahoo.fr>
Tested-by: Julien Nabet <serval2412@yahoo.fr>
2024-06-19 08:37:10 +02:00

542 lines
22 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <exception>
#include <malloc.h>
#include <cstring>
#include <typeinfo>
#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/genfunc.hxx>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>
#include "bridge.hxx"
#include "types.hxx"
#include "unointerfaceproxy.hxx"
#include "vtables.hxx"
#include "share.hxx"
#include "abi.hxx"
using namespace ::com::sun::star::uno;
namespace
{
void insertArgs(sal_uInt64 value, sal_uInt64& nGPR, sal_uInt64* pGPR, sal_uInt64*& sp)
{
if (nGPR < MAX_GP_REGS)
pGPR[nGPR++] = value;
else
*(sp++) = value;
}
static void callVirtualMethod(void* pAdjustedThisPtr, sal_Int32 nVtableIndex, void* pRegisterReturn,
typelib_TypeDescriptionReference* pReturnTypeRef, bool bSimpleReturn,
sal_uInt64* pStack, sal_uInt32 nStack, sal_uInt64* pGPR, double* pFPR,
typelib_TypeDescription* pReturnTypeDescr)
{
BRIDGE_LOG("In callVirtualMethod:\n");
BRIDGE_LOG(
"pAdjustedThisPtr = %p, nVtableIndex = %d, pRegisterReturn = %p, pReturnTypeRef = %p\n",
pAdjustedThisPtr, nVtableIndex, pRegisterReturn, pReturnTypeRef);
BRIDGE_LOG(
"bSimpleReturn = %d, pStack = %p, nStack = %d, pGPR = %p, pFPR = %p, pReturnTypeDescr = "
"%p\n",
bSimpleReturn, pStack, nStack, pGPR, pFPR, pReturnTypeDescr);
// Get pointer to method
sal_uInt64 pMethod = *((sal_uInt64*)pAdjustedThisPtr);
pMethod += 8 * nVtableIndex;
void* mfunc = (void*)*((sal_uInt64*)pMethod);
BRIDGE_LOG("calling function %p\n", mfunc);
// Load parameters to stack, if necessary
sal_uInt64* pCallStack = NULL;
if (nStack)
{
// 16-bytes aligned
sal_uInt32 nStackBytes = ((nStack + 1) >> 1) * 16;
pCallStack = (sal_uInt64*)__builtin_alloca(nStackBytes);
std::memcpy(pCallStack, pStack, nStackBytes);
}
sal_Int64* gret = (sal_Int64*)malloc(2 * sizeof(sal_Int64));
sal_Int64* gret1 = gret;
sal_Int64* gret2 = gret + 1;
double* fret = (double*)malloc(2 * sizeof(double));
double* fret1 = fret;
double* fret2 = fret + 1;
asm volatile(
//".set push \n\t"
//".set riscv64 \n\t"
// Fill the general purpose registers
"ld a0, 0(%[gpr]) \n\t"
"ld a1, 8(%[gpr]) \n\t"
"ld a2, 16(%[gpr]) \n\t"
"ld a3, 24(%[gpr]) \n\t"
"ld a4, 32(%[gpr]) \n\t"
"ld a5, 40(%[gpr]) \n\t"
"ld a6, 48(%[gpr]) \n\t"
"ld a7, 56(%[gpr]) \n\t"
// Fill the floating pointer registers
"fld fa0, 0(%[fpr]) \n\t"
"fld fa1, 8(%[fpr]) \n\t"
"fld fa2, 16(%[fpr]) \n\t"
"fld fa3, 24(%[fpr]) \n\t"
"fld fa4, 32(%[fpr]) \n\t"
"fld fa5, 40(%[fpr]) \n\t"
"fld fa6, 48(%[fpr]) \n\t"
"fld fa7, 56(%[fpr]) \n\t"
// Perform the call
"jalr ra,%[mfunc],0 \n\t"
// Fill the return values
"add %[gret1], a0,zero \n\t"
"add %[gret2], a1,zero \n\t"
"fmv.d %[fret1], fa0 \n\t"
"fmv.d %[fret2], fa1 \n\t"
//".set pop \n\t"
: [gret1] "=&r"(*gret1), [gret2] "=&r"(*gret2), [fret1] "=&f"(*fret1), [fret2] "=&f"(*fret2)
: [gpr] "r"(pGPR), [fpr] "r"(pFPR), [mfunc] "r"(mfunc),
[stack] "m"(
pCallStack) // dummy input to prevent the compiler from optimizing the alloca out
: "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "ra", "fa0", "fa1", "fa2", "fa3", "fa4",
"fa5", "fa6", "fa7", "memory");
BRIDGE_LOG("In callVirtualMethod, fret = %p, gret = %p\n", fret, gret);
switch (pReturnTypeRef->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*reinterpret_cast<sal_Int64*>(pRegisterReturn) = gret[0];
break;
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double*>(pRegisterReturn) = fret[0];
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize;
BRIDGE_LOG("nRetSize = %d\n", nRetSize);
if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0)
{
typelib_TypeDescription* pTypeDescr = 0;
TYPELIB_DANGER_GET(&pTypeDescr, pReturnTypeRef);
abi_riscv64::fillUNOStruct(pTypeDescr, gret, fret, pRegisterReturn);
TYPELIB_DANGER_RELEASE(pTypeDescr);
}
break;
}
default:
BRIDGE_LOG("unhandled return type %u\n", pReturnTypeRef->eTypeClass);
break;
}
}
static void cpp_call(bridges::cpp_uno::shared::UnoInterfaceProxy* pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference* pReturnTypeRef, sal_Int32 nParams,
typelib_MethodParameter* pParams, void* pUnoReturn, void* pUnoArgs[],
uno_Any** ppUnoExc)
{
BRIDGE_LOG("In cpp_call\n");
BRIDGE_LOG("pThis = %p, aVtableSlot = %p, pReturnTypeRef = %p, nParams = %d\n", pThis,
aVtableSlot, pReturnTypeRef, nParams);
BRIDGE_LOG("pParams = %p , pUnoReturn = %p, pUnoArgs = %p\n", pParams, pUnoReturn, pUnoArgs);
// max space for: [complex ret ptr], values|ptr ...
sal_uInt64* pStack = (sal_uInt64*)__builtin_alloca(((nParams + 3) * sizeof(sal_Int64)));
sal_uInt64* pStackStart = pStack;
sal_uInt64 pGPR[MAX_GP_REGS];
sal_uInt64 nGPR = 0;
double pFPR[MAX_FP_REGS];
sal_uInt32 nFPR = 0;
BRIDGE_LOG("pGPR = %p, pFPR = %p\n", pGPR, pFPR);
// return
typelib_TypeDescription* pReturnTypeDescr = 0;
TYPELIB_DANGER_GET(&pReturnTypeDescr, pReturnTypeRef);
assert(pReturnTypeDescr);
void* pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bSimpleReturn = true;
if (pReturnTypeDescr)
{
if (CPPU_CURRENT_NAMESPACE::return_in_hidden_param(pReturnTypeRef))
{
bSimpleReturn = false;
// complex return via ptr
pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType(pReturnTypeDescr)
? __builtin_alloca(pReturnTypeDescr->nSize)
: pUnoReturn;
pGPR[nGPR++] = reinterpret_cast<sal_uInt64>(pCppReturn);
}
else
{
pCppReturn = pUnoReturn; // direct way for simple types
}
}
// push this
void* pAdjustedThisPtr = reinterpret_cast<void**>(pThis->getCppI()) + aVtableSlot.offset;
pGPR[nGPR++] = reinterpret_cast<sal_uInt64>(pAdjustedThisPtr);
// args
void** pCppArgs = (void**)alloca(3 * sizeof(void*) * nParams);
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32* pTempIndices = (sal_Int32*)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription** ppTempParamTypeDescr
= (typelib_TypeDescription**)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
BRIDGE_LOG("In cpp_call, nParams = %d\n", nParams);
BRIDGE_LOG("pCppArgs = %p, pStack = %p\n", pCppArgs, pStack);
for (sal_Int32 nPos = 0; nPos < nParams; ++nPos)
{
BRIDGE_LOG("In cpp_call, nPos = %d\n", nPos);
const typelib_MethodParameter& rParam = pParams[nPos];
typelib_TypeDescription* pParamTypeDescr = 0;
TYPELIB_DANGER_GET(&pParamTypeDescr, rParam.pTypeRef);
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType(pParamTypeDescr))
{
BRIDGE_LOG("Before uno_copyAndConvertData and tons of switch.\n");
uno_copyAndConvertData(pCppArgs[nPos] = alloca(8), pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp());
BRIDGE_LOG("Type = %d, Param = 0x%lx\n", pParamTypeDescr->eTypeClass,
*reinterpret_cast<sal_uInt64*>(pCppArgs[nPos]));
switch (pParamTypeDescr->eTypeClass)
{
// In types.h:
// typedef unsigned char sal_Bool
case typelib_TypeClass_BOOLEAN:
insertArgs(*static_cast<sal_Bool*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
case typelib_TypeClass_BYTE:
insertArgs(*static_cast<sal_Int8*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
// typedef sal_uInt16 sal_Unicode
case typelib_TypeClass_CHAR:
insertArgs(*static_cast<sal_Unicode*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
case typelib_TypeClass_UNSIGNED_SHORT:
insertArgs(*static_cast<sal_uInt16*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
case typelib_TypeClass_SHORT:
insertArgs(*static_cast<sal_Int16*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
case typelib_TypeClass_UNSIGNED_LONG:
insertArgs(*static_cast<sal_uInt32*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
case typelib_TypeClass_LONG:
insertArgs(*static_cast<sal_Int32*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
// Todo: what type is enum?
case typelib_TypeClass_ENUM:
case typelib_TypeClass_UNSIGNED_HYPER:
insertArgs(*static_cast<sal_uInt64*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
case typelib_TypeClass_HYPER:
insertArgs(*static_cast<sal_Int64*>(pCppArgs[nPos]), nGPR, pGPR, pStack);
break;
// Floating point register -> General purpose register -> Stack
case typelib_TypeClass_FLOAT:
char* higher32Bit;
if (nFPR < MAX_FP_REGS)
{
higher32Bit = reinterpret_cast<char*>(&pFPR[nFPR]) + 4;
std::memcpy(&(pFPR[nFPR++]), pCppArgs[nPos], 4);
}
else if (nGPR < MAX_GP_REGS)
{
higher32Bit = reinterpret_cast<char*>(&pGPR[nGPR]) + 4;
std::memcpy(&(pGPR[nGPR++]), pCppArgs[nPos], 4);
}
else
{
higher32Bit = reinterpret_cast<char*>(pStack) + 4;
std::memcpy(pStack++, pCppArgs[nPos], 4);
}
// Assure that the higher 32 bits are set to 1
std::memset(higher32Bit, 0xFF, 4);
break;
case typelib_TypeClass_DOUBLE:
if (nFPR < MAX_FP_REGS)
{
std::memcpy(&(pFPR[nFPR++]), pCppArgs[nPos], 8);
}
else if (nGPR < MAX_GP_REGS)
{
std::memcpy(&(pGPR[nGPR++]), pCppArgs[nPos], 8);
}
else
{
std::memcpy(pStack++, pCppArgs[nPos], 8);
}
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE(pParamTypeDescr);
}
else // ptr to complex value | ref
{
if (!rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(pCppArgs[nPos] = alloca(pParamTypeDescr->nSize), pParamTypeDescr);
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType(pParamTypeDescr))
{
uno_copyAndConvertData(pCppArgs[nPos] = alloca(pParamTypeDescr->nSize),
pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp());
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE(pParamTypeDescr);
}
insertArgs(reinterpret_cast<sal_uInt64>(pCppArgs[nPos]), nGPR, pGPR, pStack);
}
}
try
{
try
{
callVirtualMethod(pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef,
bSimpleReturn, pStackStart, (pStack - pStackStart), pGPR, pFPR,
pReturnTypeDescr);
}
catch (css::uno::Exception&)
{
throw;
}
catch (std::exception& e)
{
throw css::uno::RuntimeException("C++ code threw "
+ o3tl::runtimeToOUString(typeid(e).name()) + ": "
+ o3tl::runtimeToOUString(e.what()));
}
catch (...)
{
throw css::uno::RuntimeException("C++ code threw unknown exception");
}
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for (; nTempIndices--;)
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription* pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData(pUnoArgs[nIndex], pParamTypeDescr, 0); // destroy uno value
uno_copyAndConvertData(pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno());
}
}
else // pure out
{
uno_copyAndConvertData(pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno());
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData(pCppArgs[nIndex], pParamTypeDescr, cpp_release);
TYPELIB_DANGER_RELEASE(pParamTypeDescr);
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData(pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno());
uno_destructData(pCppReturn, pReturnTypeDescr, cpp_release);
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());
// temporary params
for (; nTempIndices--;)
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData(pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release);
TYPELIB_DANGER_RELEASE(ppTempParamTypeDescr[nTempIndices]);
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE(pReturnTypeDescr);
}
}
}
namespace bridges::cpp_uno::shared
{
void unoInterfaceProxyDispatch(uno_Interface* pUnoI, const typelib_TypeDescription* pMemberDescr,
void* pReturn, void* pArgs[], uno_Any** ppException)
{
BRIDGE_LOG("In unoInterfaceProxyDispatch:\n");
BRIDGE_LOG("pMemberDescr = %p, pReturn = %p, pArgs = %p, ppException = %p\n", pMemberDescr,
pReturn, pArgs, ppException);
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy* pThis
= static_cast<bridges::cpp_uno::shared::UnoInterfaceProxy*>(pUnoI);
//typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
BRIDGE_LOG("in dispatch\n");
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(getVtableSlot(
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const*>(pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription*)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException);
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef
= ((typelib_InterfaceAttributeTypeDescription*)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference* pReturnTypeRef = 0;
OUString aVoidName("void");
typelib_typedescriptionreference_new(&pReturnTypeRef, typelib_TypeClass_VOID,
aVoidName.pData);
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs,
ppException);
typelib_typedescriptionreference_release(pReturnTypeRef);
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(getVtableSlot(
reinterpret_cast<typelib_InterfaceMethodTypeDescription const*>(pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)(pUnoI);
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)(pUnoI);
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription* pTD = 0;
TYPELIB_DANGER_GET(&pTD, reinterpret_cast<Type*>(pArgs[0])->getTypeLibType());
if (pTD)
{
uno_Interface* pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(), (void**)&pInterface, pThis->oid.pData,
(typelib_InterfaceTypeDescription*)pTD);
if (pInterface)
{
::uno_any_construct(reinterpret_cast<uno_Any*>(pReturn), &pInterface,
pTD, 0);
(*pInterface->release)(pInterface);
TYPELIB_DANGER_RELEASE(pTD);
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE(pTD);
}
[[fallthrough]];
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->pParams, pReturn,
pArgs, ppException);
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
"illegal member type description!",
::com::sun::star::uno::Reference<::com::sun::star::uno::XInterface>());
Type const& rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct(*ppException, &aExc, rExcType.getTypeLibType(), 0);
}
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */