d30f7435aa
Change-Id: I3491777281912e095c9222e83028d358d6826841 Reviewed-on: https://gerrit.libreoffice.org/65522 Tested-by: Jenkins Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
160 lines
5 KiB
C++
160 lines
5 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
// Natural, Clamped, or Periodic Cubic Splines
|
|
//
|
|
// Input: A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled
|
|
// from a function, a_i = f(x_i). The function f is unknown. Boundary
|
|
// conditions are
|
|
// (1) Natural splines: f"(x_0) = f"(x_N) = 0
|
|
// (2) Clamped splines: f'(x_0) and f'(x_N) are user-specified.
|
|
// (3) Periodic splines: f(x_0) = f(x_N) [in which case a_N = a_0 is
|
|
// required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N).
|
|
//
|
|
// Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic
|
|
// spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for
|
|
// x_i <= x < x_{i+1}.
|
|
//
|
|
// The natural and clamped algorithms were implemented from
|
|
//
|
|
// Numerical Analysis, 3rd edition
|
|
// Richard L. Burden and J. Douglas Faires
|
|
// Prindle, Weber & Schmidt
|
|
// Boston, 1985, pp. 122-124.
|
|
//
|
|
// The algorithm sets up a tridiagonal linear system of equations in the
|
|
// c_i values. This can be solved in O(N) time.
|
|
//
|
|
// The periodic spline algorithm was implemented from my own derivation. The
|
|
// linear system of equations is not tridiagonal. For now I use a standard
|
|
// linear solver that does not take advantage of the sparseness of the
|
|
// matrix. Therefore for very large N, you may have to worry about memory
|
|
// usage.
|
|
|
|
#include <sal/config.h>
|
|
#include <memory>
|
|
|
|
#include "cspline.h"
|
|
#include "solver.h"
|
|
|
|
void NaturalSpline (int N, const double* x, const double* a, std::unique_ptr<double[]>& b, std::unique_ptr<double[]>& c,
|
|
std::unique_ptr<double[]>& d)
|
|
{
|
|
const double oneThird = 1.0/3.0;
|
|
|
|
int i;
|
|
std::unique_ptr<double[]> h(new double[N]);
|
|
std::unique_ptr<double[]> hdiff(new double[N]);
|
|
std::unique_ptr<double[]> alpha(new double[N]);
|
|
|
|
for (i = 0; i < N; i++){
|
|
h[i] = x[i+1]-x[i];
|
|
}
|
|
|
|
for (i = 1; i < N; i++)
|
|
hdiff[i] = x[i+1]-x[i-1];
|
|
|
|
for (i = 1; i < N; i++)
|
|
{
|
|
double numer = 3.0*(a[i+1]*h[i-1]-a[i]*hdiff[i]+a[i-1]*h[i]);
|
|
double denom = h[i-1]*h[i];
|
|
alpha[i] = numer/denom;
|
|
}
|
|
|
|
std::unique_ptr<double[]> ell(new double[N+1]);
|
|
std::unique_ptr<double[]> mu(new double[N]);
|
|
std::unique_ptr<double[]> z(new double[N+1]);
|
|
double recip;
|
|
|
|
ell[0] = 1.0;
|
|
mu[0] = 0.0;
|
|
z[0] = 0.0;
|
|
|
|
for (i = 1; i < N; i++)
|
|
{
|
|
ell[i] = 2.0*hdiff[i]-h[i-1]*mu[i-1];
|
|
recip = 1.0/ell[i];
|
|
mu[i] = recip*h[i];
|
|
z[i] = recip*(alpha[i]-h[i-1]*z[i-1]);
|
|
}
|
|
ell[N] = 1.0;
|
|
z[N] = 0.0;
|
|
|
|
b.reset(new double[N]);
|
|
c.reset(new double[N+1]);
|
|
d.reset(new double[N]);
|
|
|
|
c[N] = 0.0;
|
|
|
|
for (i = N-1; i >= 0; i--)
|
|
{
|
|
c[i] = z[i]-mu[i]*c[i+1];
|
|
recip = 1.0/h[i];
|
|
b[i] = recip*(a[i+1]-a[i])-h[i]*(c[i+1]+2.0*c[i])*oneThird;
|
|
d[i] = oneThird*recip*(c[i+1]-c[i]);
|
|
}
|
|
}
|
|
|
|
void PeriodicSpline (int N, const double* x, const double* a, std::unique_ptr<double[]>& b, std::unique_ptr<double[]>& c,
|
|
std::unique_ptr<double[]>& d)
|
|
{
|
|
std::unique_ptr<double[]> h(new double[N]);
|
|
int i;
|
|
for (i = 0; i < N; i++)
|
|
h[i] = x[i+1]-x[i];
|
|
|
|
std::unique_ptr<std::unique_ptr<double[]>[]> mat = mgcLinearSystemD::NewMatrix(N+1); // guaranteed to be zeroed memory
|
|
c = mgcLinearSystemD::NewVector(N+1); // guaranteed to be zeroed memory
|
|
|
|
// c[0] - c[N] = 0
|
|
mat[0][0] = +1.0f;
|
|
mat[0][N] = -1.0f;
|
|
|
|
// h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] =
|
|
// 3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]}
|
|
for (i = 1; i <= N-1; i++)
|
|
{
|
|
mat[i][i-1] = h[i-1];
|
|
mat[i][i ] = 2.0f*(h[i-1]+h[i]);
|
|
mat[i][i+1] = h[i];
|
|
c[i] = 3.0f*((a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]);
|
|
}
|
|
|
|
// "wrap around equation" for periodicity
|
|
// h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] =
|
|
// 3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]}
|
|
mat[N][N-1] = h[N-1];
|
|
mat[N][0 ] = 2.0f*(h[N-1]+h[0]);
|
|
mat[N][1 ] = h[0];
|
|
c[N] = 3.0f*((a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]);
|
|
|
|
// solve for c[0] through c[N]
|
|
mgcLinearSystemD::Solve(N+1,mat,c.get());
|
|
|
|
const double oneThird = 1.0/3.0;
|
|
b.reset(new double[N]);
|
|
d.reset(new double[N]);
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
b[i] = (a[i+1]-a[i])/h[i] - oneThird*(c[i+1]+2.0f*c[i])*h[i];
|
|
d[i] = oneThird*(c[i+1]-c[i])/h[i];
|
|
}
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|