office-gobmx/tools/source/generic/poly.cxx
2011-12-15 16:38:50 +00:00

2168 lines
71 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#define _SV_POLY_CXX
#include <osl/endian.h>
#include <tools/bigint.hxx>
#include <tools/debug.hxx>
#include <tools/stream.hxx>
#include <tools/vcompat.hxx>
#include <poly.h>
#include <tools/line.hxx>
#include <tools/vector2d.hxx>
#include <tools/poly.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/curve/b2dcubicbezier.hxx>
#include <vector>
#include <iterator>
#include <algorithm>
#include <cstring>
#include <limits.h>
#include <cmath>
// =======================================================================
DBG_NAME( Polygon )
// -----------------------------------------------------------------------
#define EDGE_LEFT 1
#define EDGE_TOP 2
#define EDGE_RIGHT 4
#define EDGE_BOTTOM 8
#define EDGE_HORZ (EDGE_RIGHT | EDGE_LEFT)
#define EDGE_VERT (EDGE_TOP | EDGE_BOTTOM)
#define SMALL_DVALUE 0.0000001
#define FSQRT2 1.4142135623730950488016887242097
// -----------------------------------------------------------------------
static ImplPolygonData aStaticImplPolygon =
{
NULL, NULL, 0, 0
};
// =======================================================================
ImplPolygon::ImplPolygon( sal_uInt16 nInitSize, sal_Bool bFlags )
{
if ( nInitSize )
{
mpPointAry = (Point*)new char[(sal_uIntPtr)nInitSize*sizeof(Point)];
memset( mpPointAry, 0, (sal_uIntPtr)nInitSize*sizeof(Point) );
}
else
mpPointAry = NULL;
if( bFlags )
{
mpFlagAry = new sal_uInt8[ nInitSize ];
memset( mpPointAry, 0, nInitSize );
}
else
mpFlagAry = NULL;
mnRefCount = 1;
mnPoints = nInitSize;
}
// -----------------------------------------------------------------------
ImplPolygon::ImplPolygon( const ImplPolygon& rImpPoly )
{
if ( rImpPoly.mnPoints )
{
mpPointAry = (Point*)new char[(sal_uIntPtr)rImpPoly.mnPoints*sizeof(Point)];
memcpy( mpPointAry, rImpPoly.mpPointAry, (sal_uIntPtr)rImpPoly.mnPoints*sizeof(Point) );
if( rImpPoly.mpFlagAry )
{
mpFlagAry = new sal_uInt8[ rImpPoly.mnPoints ];
memcpy( mpFlagAry, rImpPoly.mpFlagAry, rImpPoly.mnPoints );
}
else
mpFlagAry = NULL;
}
else
{
mpPointAry = NULL;
mpFlagAry = NULL;
}
mnRefCount = 1;
mnPoints = rImpPoly.mnPoints;
}
// -----------------------------------------------------------------------
ImplPolygon::ImplPolygon( sal_uInt16 nInitSize, const Point* pInitAry, const sal_uInt8* pInitFlags )
{
if ( nInitSize )
{
mpPointAry = (Point*)new char[(sal_uIntPtr)nInitSize*sizeof(Point)];
memcpy( mpPointAry, pInitAry, (sal_uIntPtr)nInitSize*sizeof( Point ) );
if( pInitFlags )
{
mpFlagAry = new sal_uInt8[ nInitSize ];
memcpy( mpFlagAry, pInitFlags, nInitSize );
}
else
mpFlagAry = NULL;
}
else
{
mpPointAry = NULL;
mpFlagAry = NULL;
}
mnRefCount = 1;
mnPoints = nInitSize;
}
// -----------------------------------------------------------------------
ImplPolygon::~ImplPolygon()
{
if ( mpPointAry )
{
delete[] (char*) mpPointAry;
}
if( mpFlagAry )
delete[] mpFlagAry;
}
// -----------------------------------------------------------------------
void ImplPolygon::ImplSetSize( sal_uInt16 nNewSize, sal_Bool bResize )
{
if( mnPoints == nNewSize )
return;
Point* pNewAry;
if ( nNewSize )
{
pNewAry = (Point*)new char[(sal_uIntPtr)nNewSize*sizeof(Point)];
if ( bResize )
{
// Alte Punkte kopieren
if ( mnPoints < nNewSize )
{
// Neue Punkte mit 0 initialisieren
memset( pNewAry+mnPoints, 0, (sal_uIntPtr)(nNewSize-mnPoints)*sizeof(Point) );
if ( mpPointAry )
memcpy( pNewAry, mpPointAry, mnPoints*sizeof(Point) );
}
else
{
if ( mpPointAry )
memcpy( pNewAry, mpPointAry, (sal_uIntPtr)nNewSize*sizeof(Point) );
}
}
}
else
pNewAry = NULL;
if ( mpPointAry )
delete[] (char*) mpPointAry;
// ggf. FlagArray beruecksichtigen
if( mpFlagAry )
{
sal_uInt8* pNewFlagAry;
if( nNewSize )
{
pNewFlagAry = new sal_uInt8[ nNewSize ];
if( bResize )
{
// Alte Flags kopieren
if ( mnPoints < nNewSize )
{
// Neue Punkte mit 0 initialisieren
memset( pNewFlagAry+mnPoints, 0, nNewSize-mnPoints );
memcpy( pNewFlagAry, mpFlagAry, mnPoints );
}
else
memcpy( pNewFlagAry, mpFlagAry, nNewSize );
}
}
else
pNewFlagAry = NULL;
delete[] mpFlagAry;
mpFlagAry = pNewFlagAry;
}
mpPointAry = pNewAry;
mnPoints = nNewSize;
}
// -----------------------------------------------------------------------
void ImplPolygon::ImplSplit( sal_uInt16 nPos, sal_uInt16 nSpace, ImplPolygon* pInitPoly )
{
const sal_uIntPtr nSpaceSize = nSpace * sizeof( Point );
//Can't fit this in :-(, throw ?
if (mnPoints + nSpace > USHRT_MAX)
return;
const sal_uInt16 nNewSize = mnPoints + nSpace;
if( nPos >= mnPoints )
{
// Hinten anhaengen
nPos = mnPoints;
ImplSetSize( nNewSize, sal_True );
if( pInitPoly )
{
memcpy( mpPointAry + nPos, pInitPoly->mpPointAry, nSpaceSize );
if( pInitPoly->mpFlagAry )
memcpy( mpFlagAry + nPos, pInitPoly->mpFlagAry, nSpace );
}
}
else
{
// PointArray ist in diesem Zweig immer vorhanden
const sal_uInt16 nSecPos = nPos + nSpace;
const sal_uInt16 nRest = mnPoints - nPos;
Point* pNewAry = (Point*) new char[ (sal_uIntPtr) nNewSize * sizeof( Point ) ];
memcpy( pNewAry, mpPointAry, nPos * sizeof( Point ) );
if( pInitPoly )
memcpy( pNewAry + nPos, pInitPoly->mpPointAry, nSpaceSize );
else
memset( pNewAry + nPos, 0, nSpaceSize );
memcpy( pNewAry + nSecPos, mpPointAry + nPos, nRest * sizeof( Point ) );
delete[] (char*) mpPointAry;
// ggf. FlagArray beruecksichtigen
if( mpFlagAry )
{
sal_uInt8* pNewFlagAry = new sal_uInt8[ nNewSize ];
memcpy( pNewFlagAry, mpFlagAry, nPos );
if( pInitPoly && pInitPoly->mpFlagAry )
memcpy( pNewFlagAry + nPos, pInitPoly->mpFlagAry, nSpace );
else
memset( pNewFlagAry + nPos, 0, nSpace );
memcpy( pNewFlagAry + nSecPos, mpFlagAry + nPos, nRest );
delete[] mpFlagAry;
mpFlagAry = pNewFlagAry;
}
mpPointAry = pNewAry;
mnPoints = nNewSize;
}
}
// -----------------------------------------------------------------------
void ImplPolygon::ImplCreateFlagArray()
{
if( !mpFlagAry )
{
mpFlagAry = new sal_uInt8[ mnPoints ];
memset( mpFlagAry, 0, mnPoints );
}
}
// =======================================================================
inline void Polygon::ImplMakeUnique()
{
// Falls noch andere Referenzen bestehen, dann kopieren
if ( mpImplPolygon->mnRefCount != 1 )
{
if ( mpImplPolygon->mnRefCount )
mpImplPolygon->mnRefCount--;
mpImplPolygon = new ImplPolygon( *mpImplPolygon );
}
}
// -----------------------------------------------------------------------
inline double ImplGetParameter( const Point& rCenter, const Point& rPt, double fWR, double fHR )
{
const long nDX = rPt.X() - rCenter.X();
double fAngle = atan2( -rPt.Y() + rCenter.Y(), ( ( nDX == 0L ) ? 0.000000001 : nDX ) );
return atan2(fWR*sin(fAngle), fHR*cos(fAngle));
}
// -----------------------------------------------------------------------
Polygon::Polygon()
{
DBG_CTOR( Polygon, NULL );
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
}
// -----------------------------------------------------------------------
Polygon::Polygon( sal_uInt16 nSize )
{
DBG_CTOR( Polygon, NULL );
if ( nSize )
mpImplPolygon = new ImplPolygon( nSize );
else
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
}
// -----------------------------------------------------------------------
Polygon::Polygon( sal_uInt16 nPoints, const Point* pPtAry, const sal_uInt8* pFlagAry )
{
DBG_CTOR( Polygon, NULL );
if( nPoints )
mpImplPolygon = new ImplPolygon( nPoints, pPtAry, pFlagAry );
else
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
}
// -----------------------------------------------------------------------
Polygon::Polygon( const Polygon& rPoly )
{
DBG_CTOR( Polygon, NULL );
DBG_CHKOBJ( &rPoly, Polygon, NULL );
DBG_ASSERT( rPoly.mpImplPolygon->mnRefCount < 0xFFFFFFFE, "Polygon: RefCount overflow" );
mpImplPolygon = rPoly.mpImplPolygon;
if ( mpImplPolygon->mnRefCount )
mpImplPolygon->mnRefCount++;
}
// -----------------------------------------------------------------------
Polygon::Polygon( const Rectangle& rRect )
{
DBG_CTOR( Polygon, NULL );
if ( rRect.IsEmpty() )
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
else
{
mpImplPolygon = new ImplPolygon( 5 );
mpImplPolygon->mpPointAry[0] = rRect.TopLeft();
mpImplPolygon->mpPointAry[1] = rRect.TopRight();
mpImplPolygon->mpPointAry[2] = rRect.BottomRight();
mpImplPolygon->mpPointAry[3] = rRect.BottomLeft();
mpImplPolygon->mpPointAry[4] = rRect.TopLeft();
}
}
// -----------------------------------------------------------------------
Polygon::Polygon( const Rectangle& rRect, sal_uIntPtr nHorzRound, sal_uIntPtr nVertRound )
{
DBG_CTOR( Polygon, NULL );
if ( rRect.IsEmpty() )
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
else
{
Rectangle aRect( rRect );
aRect.Justify(); // SJ: i9140
nHorzRound = Min( nHorzRound, (sal_uIntPtr) labs( aRect.GetWidth() >> 1 ) );
nVertRound = Min( nVertRound, (sal_uIntPtr) labs( aRect.GetHeight() >> 1 ) );
if( !nHorzRound && !nVertRound )
{
mpImplPolygon = new ImplPolygon( 5 );
mpImplPolygon->mpPointAry[0] = aRect.TopLeft();
mpImplPolygon->mpPointAry[1] = aRect.TopRight();
mpImplPolygon->mpPointAry[2] = aRect.BottomRight();
mpImplPolygon->mpPointAry[3] = aRect.BottomLeft();
mpImplPolygon->mpPointAry[4] = aRect.TopLeft();
}
else
{
const Point aTL( aRect.Left() + nHorzRound, aRect.Top() + nVertRound );
const Point aTR( aRect.Right() - nHorzRound, aRect.Top() + nVertRound );
const Point aBR( aRect.Right() - nHorzRound, aRect.Bottom() - nVertRound );
const Point aBL( aRect.Left() + nHorzRound, aRect.Bottom() - nVertRound );
Polygon* pEllipsePoly = new Polygon( Point(), nHorzRound, nVertRound );
sal_uInt16 i, nEnd, nSize4 = pEllipsePoly->GetSize() >> 2;
mpImplPolygon = new ImplPolygon( pEllipsePoly->GetSize() + 1 );
const Point* pSrcAry = pEllipsePoly->GetConstPointAry();
Point* pDstAry = mpImplPolygon->mpPointAry;
for( i = 0, nEnd = nSize4; i < nEnd; i++ )
( pDstAry[ i ] = pSrcAry[ i ] ) += aTR;
for( nEnd = nEnd + nSize4; i < nEnd; i++ )
( pDstAry[ i ] = pSrcAry[ i ] ) += aTL;
for( nEnd = nEnd + nSize4; i < nEnd; i++ )
( pDstAry[ i ] = pSrcAry[ i ] ) += aBL;
for( nEnd = nEnd + nSize4; i < nEnd; i++ )
( pDstAry[ i ] = pSrcAry[ i ] ) += aBR;
pDstAry[ nEnd ] = pDstAry[ 0 ];
delete pEllipsePoly;
}
}
}
// -----------------------------------------------------------------------
Polygon::Polygon( const Point& rCenter, long nRadX, long nRadY, sal_uInt16 nPoints )
{
DBG_CTOR( Polygon, NULL );
if( nRadX && nRadY )
{
// Default berechnen (abhaengig von Groesse)
if( !nPoints )
{
nPoints = (sal_uInt16) ( F_PI * ( 1.5 * ( nRadX + nRadY ) -
sqrt( (double) labs( nRadX * nRadY ) ) ) );
nPoints = (sal_uInt16) MinMax( nPoints, 32, 256 );
if( ( nRadX > 32 ) && ( nRadY > 32 ) && ( nRadX + nRadY ) < 8192 )
nPoints >>= 1;
}
// Anzahl der Punkte auf durch 4 teilbare Zahl aufrunden
mpImplPolygon = new ImplPolygon( nPoints = (nPoints + 3) & ~3 );
Point* pPt;
sal_uInt16 i;
sal_uInt16 nPoints2 = nPoints >> 1;
sal_uInt16 nPoints4 = nPoints >> 2;
double nAngle;
double nAngleStep = F_PI2 / ( nPoints4 - 1 );
for( i=0, nAngle = 0.0; i < nPoints4; i++, nAngle += nAngleStep )
{
long nX = FRound( nRadX * cos( nAngle ) );
long nY = FRound( -nRadY * sin( nAngle ) );
pPt = &(mpImplPolygon->mpPointAry[i]);
pPt->X() = nX + rCenter.X();
pPt->Y() = nY + rCenter.Y();
pPt = &(mpImplPolygon->mpPointAry[nPoints2-i-1]);
pPt->X() = -nX + rCenter.X();
pPt->Y() = nY + rCenter.Y();
pPt = &(mpImplPolygon->mpPointAry[i+nPoints2]);
pPt->X() = -nX + rCenter.X();
pPt->Y() = -nY + rCenter.Y();
pPt = &(mpImplPolygon->mpPointAry[nPoints-i-1]);
pPt->X() = nX + rCenter.X();
pPt->Y() = -nY + rCenter.Y();
}
}
else
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
}
// -----------------------------------------------------------------------
Polygon::Polygon( const Rectangle& rBound,
const Point& rStart, const Point& rEnd, PolyStyle eStyle )
{
DBG_CTOR( Polygon, NULL );
const long nWidth = rBound.GetWidth();
const long nHeight = rBound.GetHeight();
if( ( nWidth > 1 ) && ( nHeight > 1 ) )
{
const Point aCenter( rBound.Center() );
const long nRadX = aCenter.X() - rBound.Left();
const long nRadY = aCenter.Y() - rBound.Top();
sal_uInt16 nPoints;
nPoints = (sal_uInt16) ( F_PI * ( 1.5 * ( nRadX + nRadY ) -
sqrt( (double) labs( nRadX * nRadY ) ) ) );
nPoints = (sal_uInt16) MinMax( nPoints, 32, 256 );
if( ( nRadX > 32 ) && ( nRadY > 32 ) && ( nRadX + nRadY ) < 8192 )
nPoints >>= 1;
// Winkel berechnen
const double fRadX = nRadX;
const double fRadY = nRadY;
const double fCenterX = aCenter.X();
const double fCenterY = aCenter.Y();
double fStart = ImplGetParameter( aCenter, rStart, fRadX, fRadY );
double fEnd = ImplGetParameter( aCenter, rEnd, fRadX, fRadY );
double fDiff = fEnd - fStart;
double fStep;
sal_uInt16 nStart;
sal_uInt16 nEnd;
if( fDiff < 0. )
fDiff += F_2PI;
// Punktanzahl proportional verkleinern ( fDiff / (2PI) );
// ist eingentlich nur fuer einen Kreis richtig; wir
// machen es hier aber trotzdem
nPoints = Max( (sal_uInt16) ( ( fDiff * 0.1591549 ) * nPoints ), (sal_uInt16) 16 );
fStep = fDiff / ( nPoints - 1 );
if( POLY_PIE == eStyle )
{
const Point aCenter2( FRound( fCenterX ), FRound( fCenterY ) );
nStart = 1;
nEnd = nPoints + 1;
mpImplPolygon = new ImplPolygon( nPoints + 2 );
mpImplPolygon->mpPointAry[ 0 ] = aCenter2;
mpImplPolygon->mpPointAry[ nEnd ] = aCenter2;
}
else
{
mpImplPolygon = new ImplPolygon( ( POLY_CHORD == eStyle ) ? ( nPoints + 1 ) : nPoints );
nStart = 0;
nEnd = nPoints;
}
for(; nStart < nEnd; nStart++, fStart += fStep )
{
Point& rPt = mpImplPolygon->mpPointAry[ nStart ];
rPt.X() = FRound( fCenterX + fRadX * cos( fStart ) );
rPt.Y() = FRound( fCenterY - fRadY * sin( fStart ) );
}
if( POLY_CHORD == eStyle )
mpImplPolygon->mpPointAry[ nPoints ] = mpImplPolygon->mpPointAry[ 0 ];
}
else
mpImplPolygon = (ImplPolygon*) &aStaticImplPolygon;
}
// -----------------------------------------------------------------------
Polygon::Polygon( const Point& rBezPt1, const Point& rCtrlPt1,
const Point& rBezPt2, const Point& rCtrlPt2,
sal_uInt16 nPoints )
{
DBG_CTOR( Polygon, NULL );
nPoints = ( 0 == nPoints ) ? 25 : ( ( nPoints < 2 ) ? 2 : nPoints );
const double fInc = 1.0 / ( nPoints - 1 );
double fK_1 = 0.0, fK1_1 = 1.0;
double fK_2, fK_3, fK1_2, fK1_3, fK12, fK21;
const double fX0 = rBezPt1.X();
const double fY0 = rBezPt1.Y();
const double fX1 = 3.0 * rCtrlPt1.X();
const double fY1 = 3.0 * rCtrlPt1.Y();
const double fX2 = 3.0 * rCtrlPt2.X();
const double fY2 = 3.0 * rCtrlPt2.Y();
const double fX3 = rBezPt2.X();
const double fY3 = rBezPt2.Y();
mpImplPolygon = new ImplPolygon( nPoints );
for( sal_uInt16 i = 0; i < nPoints; i++, fK_1 += fInc, fK1_1 -= fInc )
{
Point& rPt = mpImplPolygon->mpPointAry[ i ];
fK_2 = fK_1, fK_3 = ( fK_2 *= fK_1 ), fK_3 *= fK_1;
fK1_2 = fK1_1, fK1_3 = ( fK1_2 *= fK1_1 ), fK1_3 *= fK1_1;
fK12 = fK_1 * fK1_2, fK21 = fK_2 * fK1_1;
rPt.X() = FRound( fK1_3 * fX0 + fK12 * fX1 + fK21 * fX2 + fK_3 * fX3 );
rPt.Y() = FRound( fK1_3 * fY0 + fK12 * fY1 + fK21 * fY2 + fK_3 * fY3 );
}
}
// -----------------------------------------------------------------------
Polygon::~Polygon()
{
DBG_DTOR( Polygon, NULL );
// Wenn es keine statischen ImpDaten sind, dann loeschen, wenn es
// die letzte Referenz ist, sonst Referenzcounter decrementieren
if ( mpImplPolygon->mnRefCount )
{
if ( mpImplPolygon->mnRefCount > 1 )
mpImplPolygon->mnRefCount--;
else
delete mpImplPolygon;
}
}
// -----------------------------------------------------------------------
const Point* Polygon::GetConstPointAry() const
{
DBG_CHKTHIS( Polygon, NULL );
return (Point*)mpImplPolygon->mpPointAry;
}
// -----------------------------------------------------------------------
const sal_uInt8* Polygon::GetConstFlagAry() const
{
DBG_CHKTHIS( Polygon, NULL );
return mpImplPolygon->mpFlagAry;
}
// -----------------------------------------------------------------------
void Polygon::SetPoint( const Point& rPt, sal_uInt16 nPos )
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( nPos < mpImplPolygon->mnPoints,
"Polygon::SetPoint(): nPos >= nPoints" );
ImplMakeUnique();
mpImplPolygon->mpPointAry[nPos] = rPt;
}
// -----------------------------------------------------------------------
void Polygon::SetFlags( sal_uInt16 nPos, PolyFlags eFlags )
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( nPos < mpImplPolygon->mnPoints,
"Polygon::SetFlags(): nPos >= nPoints" );
// we do only want to create the flag array if there
// is at least one flag different to POLY_NORMAL
if ( mpImplPolygon || ( eFlags != POLY_NORMAL ) )
{
ImplMakeUnique();
mpImplPolygon->ImplCreateFlagArray();
mpImplPolygon->mpFlagAry[ nPos ] = (sal_uInt8) eFlags;
}
}
// -----------------------------------------------------------------------
const Point& Polygon::GetPoint( sal_uInt16 nPos ) const
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( nPos < mpImplPolygon->mnPoints,
"Polygon::GetPoint(): nPos >= nPoints" );
return mpImplPolygon->mpPointAry[nPos];
}
// -----------------------------------------------------------------------
PolyFlags Polygon::GetFlags( sal_uInt16 nPos ) const
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( nPos < mpImplPolygon->mnPoints,
"Polygon::GetFlags(): nPos >= nPoints" );
return( mpImplPolygon->mpFlagAry ?
(PolyFlags) mpImplPolygon->mpFlagAry[ nPos ] :
POLY_NORMAL );
}
// -----------------------------------------------------------------------
sal_Bool Polygon::HasFlags() const
{
return mpImplPolygon->mpFlagAry != NULL;
}
// -----------------------------------------------------------------------
sal_Bool Polygon::IsRect() const
{
sal_Bool bIsRect = sal_False;
if ( mpImplPolygon->mpFlagAry == NULL )
{
if ( ( ( mpImplPolygon->mnPoints == 5 ) && ( mpImplPolygon->mpPointAry[ 0 ] == mpImplPolygon->mpPointAry[ 4 ] ) ) ||
( mpImplPolygon->mnPoints == 4 ) )
{
if ( ( mpImplPolygon->mpPointAry[ 0 ].X() == mpImplPolygon->mpPointAry[ 3 ].X() ) &&
( mpImplPolygon->mpPointAry[ 0 ].Y() == mpImplPolygon->mpPointAry[ 1 ].Y() ) &&
( mpImplPolygon->mpPointAry[ 1 ].X() == mpImplPolygon->mpPointAry[ 2 ].X() ) &&
( mpImplPolygon->mpPointAry[ 2 ].Y() == mpImplPolygon->mpPointAry[ 3 ].Y() ) )
bIsRect = sal_True;
}
}
return bIsRect;
}
// -----------------------------------------------------------------------
void Polygon::SetSize( sal_uInt16 nNewSize )
{
DBG_CHKTHIS( Polygon, NULL );
if( nNewSize != mpImplPolygon->mnPoints )
{
ImplMakeUnique();
mpImplPolygon->ImplSetSize( nNewSize );
}
}
// -----------------------------------------------------------------------
sal_uInt16 Polygon::GetSize() const
{
DBG_CHKTHIS( Polygon, NULL );
return mpImplPolygon->mnPoints;
}
// -----------------------------------------------------------------------
void Polygon::Clear()
{
DBG_CHKTHIS( Polygon, NULL );
if ( mpImplPolygon->mnRefCount )
{
if ( mpImplPolygon->mnRefCount > 1 )
mpImplPolygon->mnRefCount--;
else
delete mpImplPolygon;
}
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
}
// -----------------------------------------------------------------------
double Polygon::CalcDistance( sal_uInt16 nP1, sal_uInt16 nP2 )
{
DBG_ASSERT( nP1 < mpImplPolygon->mnPoints,
"Polygon::CalcDistance(): nPos1 >= nPoints" );
DBG_ASSERT( nP2 < mpImplPolygon->mnPoints,
"Polygon::CalcDistance(): nPos2 >= nPoints" );
const Point& rP1 = mpImplPolygon->mpPointAry[ nP1 ];
const Point& rP2 = mpImplPolygon->mpPointAry[ nP2 ];
const double fDx = rP2.X() - rP1.X();
const double fDy = rP2.Y() - rP1.Y();
return sqrt( fDx * fDx + fDy * fDy );
}
// -----------------------------------------------------------------------
void Polygon::Optimize( sal_uIntPtr nOptimizeFlags, const PolyOptimizeData* pData )
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( !mpImplPolygon->mpFlagAry, "Optimizing could fail with beziers!" );
sal_uInt16 nSize = mpImplPolygon->mnPoints;
if( nOptimizeFlags && nSize )
{
if( nOptimizeFlags & POLY_OPTIMIZE_EDGES )
{
const Rectangle aBound( GetBoundRect() );
const double fArea = ( aBound.GetWidth() + aBound.GetHeight() ) * 0.5;
const sal_uInt16 nPercent = pData ? pData->GetPercentValue() : 50;
Optimize( POLY_OPTIMIZE_NO_SAME );
ImplReduceEdges( *this, fArea, nPercent );
}
else if( nOptimizeFlags & ( POLY_OPTIMIZE_REDUCE | POLY_OPTIMIZE_NO_SAME ) )
{
Polygon aNewPoly;
const Point& rFirst = mpImplPolygon->mpPointAry[ 0 ];
sal_uIntPtr nReduce;
if( nOptimizeFlags & ( POLY_OPTIMIZE_REDUCE ) )
nReduce = pData ? pData->GetAbsValue() : 4UL;
else
nReduce = 0UL;
while( nSize && ( mpImplPolygon->mpPointAry[ nSize - 1 ] == rFirst ) )
nSize--;
if( nSize > 1 )
{
sal_uInt16 nLast = 0, nNewCount = 1;
aNewPoly.SetSize( nSize );
aNewPoly[ 0 ] = rFirst;
for( sal_uInt16 i = 1; i < nSize; i++ )
{
if( ( mpImplPolygon->mpPointAry[ i ] != mpImplPolygon->mpPointAry[ nLast ] ) &&
( !nReduce || ( nReduce < (sal_uIntPtr) FRound( CalcDistance( nLast, i ) ) ) ) )
{
aNewPoly[ nNewCount++ ] = mpImplPolygon->mpPointAry[ nLast = i ];
}
}
if( nNewCount == 1 )
aNewPoly.Clear();
else
aNewPoly.SetSize( nNewCount );
}
*this = aNewPoly;
}
nSize = mpImplPolygon->mnPoints;
if( nSize > 1 )
{
if( ( nOptimizeFlags & POLY_OPTIMIZE_CLOSE ) &&
( mpImplPolygon->mpPointAry[ 0 ] != mpImplPolygon->mpPointAry[ nSize - 1 ] ) )
{
SetSize( mpImplPolygon->mnPoints + 1 );
mpImplPolygon->mpPointAry[ mpImplPolygon->mnPoints - 1 ] = mpImplPolygon->mpPointAry[ 0 ];
}
else if( ( nOptimizeFlags & POLY_OPTIMIZE_OPEN ) &&
( mpImplPolygon->mpPointAry[ 0 ] == mpImplPolygon->mpPointAry[ nSize - 1 ] ) )
{
const Point& rFirst = mpImplPolygon->mpPointAry[ 0 ];
while( nSize && ( mpImplPolygon->mpPointAry[ nSize - 1 ] == rFirst ) )
nSize--;
SetSize( nSize );
}
}
}
}
// =======================================================================
/* Recursively subdivide cubic bezier curve via deCasteljau.
@param rPointIter
Output iterator, where the subdivided polylines are written to.
@param d
Squared difference of curve to a straight line
@param P*
Exactly four points, interpreted as support and control points of
a cubic bezier curve. Must be in device coordinates, since stop
criterion is based on the following assumption: the device has a
finite resolution, it is thus sufficient to stop subdivision if the
curve does not deviate more than one pixel from a straight line.
*/
static void ImplAdaptiveSubdivide( ::std::back_insert_iterator< ::std::vector< Point > >& rPointIter,
const double old_d2,
int recursionDepth,
const double d2,
const double P1x, const double P1y,
const double P2x, const double P2y,
const double P3x, const double P3y,
const double P4x, const double P4y )
{
// Hard limit on recursion depth, empiric number.
enum {maxRecursionDepth=128};
// Perform bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
//
// ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
// 0<=j<=n
//
// What is calculated here is an upper bound to the distance from
// a line through b_0 and b_3 (P1 and P4 in our notation) and the
// curve. We can drop 0 and n from the running indices, since the
// argument of max becomes zero for those cases.
const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
const double distance2( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
fJ2x*fJ2x + fJ2y*fJ2y) );
// stop if error measure does not improve anymore. This is a
// safety guard against floating point inaccuracies.
// stop at recursion level 128. This is a safety guard against
// floating point inaccuracies.
// stop if distance from line is guaranteed to be bounded by d
if( old_d2 > d2 &&
recursionDepth < maxRecursionDepth &&
distance2 >= d2 )
{
// deCasteljau bezier arc, split at t=0.5
// Foley/vanDam, p. 508
const double L1x( P1x ), L1y( P1y );
const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
const double R4x( P4x ), R4y( P4y );
const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
const double L4x( R1x ), L4y( R1y );
// subdivide further
++recursionDepth;
ImplAdaptiveSubdivide(rPointIter, distance2, recursionDepth, d2, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y);
ImplAdaptiveSubdivide(rPointIter, distance2, recursionDepth, d2, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y);
}
else
{
// requested resolution reached.
// Add end points to output iterator.
// order is preserved, since this is so to say depth first traversal.
*rPointIter++ = Point( FRound(P1x), FRound(P1y) );
}
}
// =======================================================================
void Polygon::AdaptiveSubdivide( Polygon& rResult, const double d ) const
{
if( !mpImplPolygon->mpFlagAry )
{
rResult = *this;
}
else
{
sal_uInt16 i;
sal_uInt16 nPts( GetSize() );
::std::vector< Point > aPoints;
aPoints.reserve( nPts );
::std::back_insert_iterator< ::std::vector< Point > > aPointIter( aPoints );
for(i=0; i<nPts;)
{
if( ( i + 3 ) < nPts )
{
sal_uInt8 P1( mpImplPolygon->mpFlagAry[ i ] );
sal_uInt8 P4( mpImplPolygon->mpFlagAry[ i + 3 ] );
if( ( POLY_NORMAL == P1 || POLY_SMOOTH == P1 || POLY_SYMMTR == P1 ) &&
( POLY_CONTROL == mpImplPolygon->mpFlagAry[ i + 1 ] ) &&
( POLY_CONTROL == mpImplPolygon->mpFlagAry[ i + 2 ] ) &&
( POLY_NORMAL == P4 || POLY_SMOOTH == P4 || POLY_SYMMTR == P4 ) )
{
ImplAdaptiveSubdivide( aPointIter, d*d+1.0, 0, d*d,
mpImplPolygon->mpPointAry[ i ].X(), mpImplPolygon->mpPointAry[ i ].Y(),
mpImplPolygon->mpPointAry[ i+1 ].X(), mpImplPolygon->mpPointAry[ i+1 ].Y(),
mpImplPolygon->mpPointAry[ i+2 ].X(), mpImplPolygon->mpPointAry[ i+2 ].Y(),
mpImplPolygon->mpPointAry[ i+3 ].X(), mpImplPolygon->mpPointAry[ i+3 ].Y() );
i += 3;
continue;
}
}
*aPointIter++ = mpImplPolygon->mpPointAry[ i++ ];
}
// fill result polygon
rResult = Polygon( (sal_uInt16)aPoints.size() ); // ensure sufficient size for copy
::std::copy(aPoints.begin(), aPoints.end(), rResult.mpImplPolygon->mpPointAry);
}
}
// -----------------------------------------------------------------------
void Polygon::ImplReduceEdges( Polygon& rPoly, const double& rArea, sal_uInt16 nPercent )
{
const double fBound = 2000.0 * ( 100 - nPercent ) * 0.01;
sal_uInt16 nNumNoChange = 0, nNumRuns = 0;
while( nNumNoChange < 2 )
{
sal_uInt16 nPntCnt = rPoly.GetSize(), nNewPos = 0;
Polygon aNewPoly( nPntCnt );
sal_Bool bChangeInThisRun = sal_False;
for( sal_uInt16 n = 0; n < nPntCnt; n++ )
{
sal_Bool bDeletePoint = sal_False;
if( ( n + nNumRuns ) % 2 )
{
sal_uInt16 nIndPrev = !n ? nPntCnt - 1 : n - 1;
sal_uInt16 nIndPrevPrev = !nIndPrev ? nPntCnt - 1 : nIndPrev - 1;
sal_uInt16 nIndNext = ( n == nPntCnt-1 ) ? 0 : n + 1;
sal_uInt16 nIndNextNext = ( nIndNext == nPntCnt - 1 ) ? 0 : nIndNext + 1;
Vector2D aVec1( rPoly[ nIndPrev ] ); aVec1 -= rPoly[ nIndPrevPrev ];
Vector2D aVec2( rPoly[ n ] ); aVec2 -= rPoly[ nIndPrev ];
Vector2D aVec3( rPoly[ nIndNext ] ); aVec3 -= rPoly[ n ];
Vector2D aVec4( rPoly[ nIndNextNext ] ); aVec4 -= rPoly[ nIndNext ];
double fDist1 = aVec1.GetLength(), fDist2 = aVec2.GetLength();
double fDist3 = aVec3.GetLength(), fDist4 = aVec4.GetLength();
double fTurnB = aVec2.Normalize().Scalar( aVec3.Normalize() );
if( fabs( fTurnB ) < ( 1.0 + SMALL_DVALUE ) && fabs( fTurnB ) > ( 1.0 - SMALL_DVALUE ) )
bDeletePoint = sal_True;
else
{
Vector2D aVecB( rPoly[ nIndNext ] );
double fDistB = ( aVecB -= rPoly[ nIndPrev ] ).GetLength();
double fLenWithB = fDist2 + fDist3;
double fLenFact = ( fDistB != 0.0 ) ? fLenWithB / fDistB : 1.0;
double fTurnPrev = aVec1.Normalize().Scalar( aVec2 );
double fTurnNext = aVec3.Scalar( aVec4.Normalize() );
double fGradPrev, fGradB, fGradNext;
if( fabs( fTurnPrev ) < ( 1.0 + SMALL_DVALUE ) && fabs( fTurnPrev ) > ( 1.0 - SMALL_DVALUE ) )
fGradPrev = 0.0;
else
fGradPrev = acos( fTurnPrev ) / ( aVec1.IsNegative( aVec2 ) ? -F_PI180 : F_PI180 );
fGradB = acos( fTurnB ) / ( aVec2.IsNegative( aVec3 ) ? -F_PI180 : F_PI180 );
if( fabs( fTurnNext ) < ( 1.0 + SMALL_DVALUE ) && fabs( fTurnNext ) > ( 1.0 - SMALL_DVALUE ) )
fGradNext = 0.0;
else
fGradNext = acos( fTurnNext ) / ( aVec3.IsNegative( aVec4 ) ? -F_PI180 : F_PI180 );
if( ( fGradPrev > 0.0 && fGradB < 0.0 && fGradNext > 0.0 ) ||
( fGradPrev < 0.0 && fGradB > 0.0 && fGradNext < 0.0 ) )
{
if( ( fLenFact < ( FSQRT2 + SMALL_DVALUE ) ) &&
( ( ( fDist1 + fDist4 ) / ( fDist2 + fDist3 ) ) * 2000.0 ) > fBound )
{
bDeletePoint = sal_True;
}
}
else
{
double fRelLen = 1.0 - sqrt( fDistB / rArea );
if( fRelLen < 0.0 )
fRelLen = 0.0;
else if( fRelLen > 1.0 )
fRelLen = 1.0;
if( ( (sal_uInt32) ( ( ( fLenFact - 1.0 ) * 1000000.0 ) + 0.5 ) < fBound ) &&
( fabs( fGradB ) <= ( fRelLen * fBound * 0.01 ) ) )
{
bDeletePoint = sal_True;
}
}
}
}
if( !bDeletePoint )
aNewPoly[ nNewPos++ ] = rPoly[ n ];
else
bChangeInThisRun = sal_True;
}
if( bChangeInThisRun && nNewPos )
{
aNewPoly.SetSize( nNewPos );
rPoly = aNewPoly;
nNumNoChange = 0;
}
else
nNumNoChange++;
nNumRuns++;
}
}
// -----------------------------------------------------------------------
void Polygon::Move( long nHorzMove, long nVertMove )
{
DBG_CHKTHIS( Polygon, NULL );
// Diese Abfrage sollte man fuer die DrawEngine durchfuehren
if ( !nHorzMove && !nVertMove )
return;
ImplMakeUnique();
// Punkte verschieben
sal_uInt16 nCount = mpImplPolygon->mnPoints;
for ( sal_uInt16 i = 0; i < nCount; i++ )
{
Point* pPt = &(mpImplPolygon->mpPointAry[i]);
pPt->X() += nHorzMove;
pPt->Y() += nVertMove;
}
}
// -----------------------------------------------------------------------
void Polygon::Translate(const Point& rTrans)
{
DBG_CHKTHIS( Polygon, NULL );
ImplMakeUnique();
for ( sal_uInt16 i = 0, nCount = mpImplPolygon->mnPoints; i < nCount; i++ )
mpImplPolygon->mpPointAry[ i ] += rTrans;
}
// -----------------------------------------------------------------------
void Polygon::Scale( double fScaleX, double fScaleY )
{
DBG_CHKTHIS( Polygon, NULL );
ImplMakeUnique();
for ( sal_uInt16 i = 0, nCount = mpImplPolygon->mnPoints; i < nCount; i++ )
{
Point& rPnt = mpImplPolygon->mpPointAry[i];
rPnt.X() = (long) ( fScaleX * rPnt.X() );
rPnt.Y() = (long) ( fScaleY * rPnt.Y() );
}
}
// -----------------------------------------------------------------------
void Polygon::Rotate( const Point& rCenter, sal_uInt16 nAngle10 )
{
DBG_CHKTHIS( Polygon, NULL );
nAngle10 %= 3600;
if( nAngle10 )
{
const double fAngle = F_PI1800 * nAngle10;
Rotate( rCenter, sin( fAngle ), cos( fAngle ) );
}
}
// -----------------------------------------------------------------------
void Polygon::Rotate( const Point& rCenter, double fSin, double fCos )
{
DBG_CHKTHIS( Polygon, NULL );
ImplMakeUnique();
long nX, nY;
long nCenterX = rCenter.X();
long nCenterY = rCenter.Y();
for( sal_uInt16 i = 0, nCount = mpImplPolygon->mnPoints; i < nCount; i++ )
{
Point& rPt = mpImplPolygon->mpPointAry[ i ];
nX = rPt.X() - nCenterX;
nY = rPt.Y() - nCenterY;
rPt.X() = (long) FRound( fCos * nX + fSin * nY ) + nCenterX;
rPt.Y() = -(long) FRound( fSin * nX - fCos * nY ) + nCenterY;
}
}
// -----------------------------------------------------------------------
class ImplPointFilter
{
public:
virtual void LastPoint() = 0;
virtual void Input( const Point& rPoint ) = 0;
};
class ImplPolygonPointFilter : public ImplPointFilter
{
public:
ImplPolygon* mpPoly; // Nicht loeschen, wird dem Polygon zugewiesen
sal_uInt16 mnSize;
ImplPolygonPointFilter( sal_uInt16 nDestSize ) :
mnSize( 0 )
{
mpPoly = new ImplPolygon( nDestSize );
}
virtual void LastPoint();
virtual void Input( const Point& rPoint );
};
void ImplPolygonPointFilter::Input( const Point& rPoint )
{
if ( !mnSize || (rPoint != mpPoly->mpPointAry[mnSize-1]) )
{
mnSize++;
if ( mnSize > mpPoly->mnPoints )
mpPoly->ImplSetSize( mnSize );
mpPoly->mpPointAry[mnSize-1] = rPoint;
}
}
void ImplPolygonPointFilter::LastPoint()
{
if ( mnSize < mpPoly->mnPoints )
mpPoly->ImplSetSize( mnSize );
};
class ImplEdgePointFilter : public ImplPointFilter
{
Point maFirstPoint;
Point maLastPoint;
ImplPointFilter& mrNextFilter;
const long mnLow;
const long mnHigh;
const int mnEdge;
int mnLastOutside;
sal_Bool mbFirst;
public:
ImplEdgePointFilter( int nEdge, long nLow, long nHigh,
ImplPointFilter& rNextFilter ) :
mrNextFilter( rNextFilter ),
mnLow( nLow ),
mnHigh( nHigh ),
mnEdge( nEdge ),
mbFirst( sal_True )
{
}
Point EdgeSection( const Point& rPoint, int nEdge ) const;
int VisibleSide( const Point& rPoint ) const;
int IsPolygon() const
{ return maFirstPoint == maLastPoint; }
virtual void Input( const Point& rPoint );
virtual void LastPoint();
};
inline int ImplEdgePointFilter::VisibleSide( const Point& rPoint ) const
{
if ( mnEdge & EDGE_HORZ )
{
return rPoint.X() < mnLow ? EDGE_LEFT :
rPoint.X() > mnHigh ? EDGE_RIGHT : 0;
}
else
{
return rPoint.Y() < mnLow ? EDGE_TOP :
rPoint.Y() > mnHigh ? EDGE_BOTTOM : 0;
}
}
Point ImplEdgePointFilter::EdgeSection( const Point& rPoint, int nEdge ) const
{
long lx = maLastPoint.X();
long ly = maLastPoint.Y();
long md = rPoint.X() - lx;
long mn = rPoint.Y() - ly;
long nNewX;
long nNewY;
if ( nEdge & EDGE_VERT )
{
nNewY = (nEdge == EDGE_TOP) ? mnLow : mnHigh;
long dy = nNewY - ly;
if ( !md )
nNewX = lx;
else if ( (LONG_MAX / Abs(md)) >= Abs(dy) )
nNewX = (dy * md) / mn + lx;
else
{
BigInt ady = dy;
ady *= md;
if( ady.IsNeg() )
if( mn < 0 )
ady += mn/2;
else
ady -= (mn-1)/2;
else
if( mn < 0 )
ady -= (mn+1)/2;
else
ady += mn/2;
ady /= mn;
nNewX = (long)ady + lx;
}
}
else
{
nNewX = (nEdge == EDGE_LEFT) ? mnLow : mnHigh;
long dx = nNewX - lx;
if ( !mn )
nNewY = ly;
else if ( (LONG_MAX / Abs(mn)) >= Abs(dx) )
nNewY = (dx * mn) / md + ly;
else
{
BigInt adx = dx;
adx *= mn;
if( adx.IsNeg() )
if( md < 0 )
adx += md/2;
else
adx -= (md-1)/2;
else
if( md < 0 )
adx -= (md+1)/2;
else
adx += md/2;
adx /= md;
nNewY = (long)adx + ly;
}
}
return Point( nNewX, nNewY );
}
void ImplEdgePointFilter::Input( const Point& rPoint )
{
int nOutside = VisibleSide( rPoint );
if ( mbFirst )
{
maFirstPoint = rPoint;
mbFirst = sal_False;
if ( !nOutside )
mrNextFilter.Input( rPoint );
}
else if ( rPoint == maLastPoint )
return;
else if ( !nOutside )
{
if ( mnLastOutside )
mrNextFilter.Input( EdgeSection( rPoint, mnLastOutside ) );
mrNextFilter.Input( rPoint );
}
else if ( !mnLastOutside )
mrNextFilter.Input( EdgeSection( rPoint, nOutside ) );
else if ( nOutside != mnLastOutside )
{
mrNextFilter.Input( EdgeSection( rPoint, mnLastOutside ) );
mrNextFilter.Input( EdgeSection( rPoint, nOutside ) );
}
maLastPoint = rPoint;
mnLastOutside = nOutside;
}
void ImplEdgePointFilter::LastPoint()
{
if ( !mbFirst )
{
int nOutside = VisibleSide( maFirstPoint );
if ( nOutside != mnLastOutside )
Input( maFirstPoint );
mrNextFilter.LastPoint();
}
}
// -----------------------------------------------------------------------
void Polygon::Clip( const Rectangle& rRect, sal_Bool bPolygon )
{
// #105251# Justify rect befor edge filtering
Rectangle aJustifiedRect( rRect );
aJustifiedRect.Justify();
sal_uInt16 nSourceSize = mpImplPolygon->mnPoints;
ImplPolygonPointFilter aPolygon( nSourceSize );
ImplEdgePointFilter aHorzFilter( EDGE_HORZ, aJustifiedRect.Left(), aJustifiedRect.Right(),
aPolygon );
ImplEdgePointFilter aVertFilter( EDGE_VERT, aJustifiedRect.Top(), aJustifiedRect.Bottom(),
aHorzFilter );
for ( sal_uInt16 i = 0; i < nSourceSize; i++ )
aVertFilter.Input( mpImplPolygon->mpPointAry[i] );
if ( bPolygon || aVertFilter.IsPolygon() )
aVertFilter.LastPoint();
else
aPolygon.LastPoint();
// Alte ImpPolygon-Daten loeschen und die vom ImpPolygonPointFilter
// zuweisen
if ( mpImplPolygon->mnRefCount )
{
if ( mpImplPolygon->mnRefCount > 1 )
mpImplPolygon->mnRefCount--;
else
delete mpImplPolygon;
}
mpImplPolygon = aPolygon.mpPoly;
}
// -----------------------------------------------------------------------
Rectangle Polygon::GetBoundRect() const
{
DBG_CHKTHIS( Polygon, NULL );
// Removing the assert. Bezier curves have the attribute that each single
// curve segment defined by four points can not exit the four-point polygon
// defined by that points. This allows to say that the curve segment can also
// never leave the Range of it's defining points.
// The result is that Polygon::GetBoundRect() may not create the minimal
// BoundRect of the Polygon (to get that, use basegfx::B2DPolygon classes),
// but will always create a valid BoundRect, at least as long as this method
// 'blindly' travels over all points, including control points.
//
// DBG_ASSERT( !mpImplPolygon->mpFlagAry, "GetBoundRect could fail with beziers!" );
sal_uInt16 nCount = mpImplPolygon->mnPoints;
if( ! nCount )
return Rectangle();
long nXMin, nXMax, nYMin, nYMax;
const Point* pPt = &(mpImplPolygon->mpPointAry[0]);
nXMin = nXMax = pPt->X();
nYMin = nYMax = pPt->Y();
for ( sal_uInt16 i = 0; i < nCount; i++ )
{
pPt = &(mpImplPolygon->mpPointAry[i]);
if ( pPt->X() < nXMin )
nXMin = pPt->X();
if ( pPt->X() > nXMax )
nXMax = pPt->X();
if ( pPt->Y() < nYMin )
nYMin = pPt->Y();
if ( pPt->Y() > nYMax )
nYMax = pPt->Y();
}
return Rectangle( nXMin, nYMin, nXMax, nYMax );
}
// -----------------------------------------------------------------------
double Polygon::GetSignedArea() const
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( !mpImplPolygon->mpFlagAry, "GetArea could fail with beziers!" );
double fArea = 0.0;
if( mpImplPolygon->mnPoints > 2 )
{
const sal_uInt16 nCount1 = mpImplPolygon->mnPoints - 1;
for( sal_uInt16 i = 0; i < nCount1; )
{
const Point& rPt = mpImplPolygon->mpPointAry[ i ];
const Point& rPt1 = mpImplPolygon->mpPointAry[ ++i ];
fArea += ( rPt.X() - rPt1.X() ) * ( rPt.Y() + rPt1.Y() );
}
const Point& rPt = mpImplPolygon->mpPointAry[ nCount1 ];
const Point& rPt0 = mpImplPolygon->mpPointAry[ 0 ];
fArea += ( rPt.X() - rPt0.X() ) * ( rPt.Y() + rPt0.Y() );
}
return fArea;
}
// -----------------------------------------------------------------------
sal_Bool Polygon::IsInside( const Point& rPoint ) const
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( !mpImplPolygon->mpFlagAry, "IsInside could fail with beziers!" );
const Rectangle aBound( GetBoundRect() );
const Line aLine( rPoint, Point( aBound.Right() + 100L, rPoint.Y() ) );
sal_uInt16 nCount = mpImplPolygon->mnPoints;
sal_uInt16 nPCounter = 0;
if ( ( nCount > 2 ) && aBound.IsInside( rPoint ) )
{
Point aPt1( mpImplPolygon->mpPointAry[ 0 ] );
Point aIntersection;
Point aLastIntersection;
while ( ( aPt1 == mpImplPolygon->mpPointAry[ nCount - 1 ] ) && ( nCount > 3 ) )
nCount--;
for ( sal_uInt16 i = 1; i <= nCount; i++ )
{
const Point& rPt2 = mpImplPolygon->mpPointAry[ ( i < nCount ) ? i : 0 ];
if ( aLine.Intersection( Line( aPt1, rPt2 ), aIntersection ) )
{
// Hiermit verhindern wir das Einfuegen von
// doppelten Intersections, die gleich hintereinander folgen
if ( nPCounter )
{
if ( aIntersection != aLastIntersection )
{
aLastIntersection = aIntersection;
nPCounter++;
}
}
else
{
aLastIntersection = aIntersection;
nPCounter++;
}
}
aPt1 = rPt2;
}
}
// innerhalb, wenn die Anzahl der Schnittpunkte ungerade ist
return ( ( nPCounter & 1 ) == 1 );
}
// -----------------------------------------------------------------------
sal_Bool Polygon::IsRightOrientated() const
{
DBG_CHKTHIS( Polygon, NULL );
return GetSignedArea() >= 0.0;
}
// -----------------------------------------------------------------------
void Polygon::Insert( sal_uInt16 nPos, const Point& rPt, PolyFlags eFlags )
{
DBG_CHKTHIS( Polygon, NULL );
ImplMakeUnique();
if( nPos >= mpImplPolygon->mnPoints )
nPos = mpImplPolygon->mnPoints;
mpImplPolygon->ImplSplit( nPos, 1 );
mpImplPolygon->mpPointAry[ nPos ] = rPt;
if( POLY_NORMAL != eFlags )
{
mpImplPolygon->ImplCreateFlagArray();
mpImplPolygon->mpFlagAry[ nPos ] = (sal_uInt8) eFlags;
}
}
// -----------------------------------------------------------------------
void Polygon::Insert( sal_uInt16 nPos, const Polygon& rPoly )
{
DBG_CHKTHIS( Polygon, NULL );
const sal_uInt16 nInsertCount = rPoly.mpImplPolygon->mnPoints;
if( nInsertCount )
{
ImplMakeUnique();
if( nPos >= mpImplPolygon->mnPoints )
nPos = mpImplPolygon->mnPoints;
if( rPoly.mpImplPolygon->mpFlagAry )
mpImplPolygon->ImplCreateFlagArray();
mpImplPolygon->ImplSplit( nPos, nInsertCount, rPoly.mpImplPolygon );
}
}
// -----------------------------------------------------------------------
Point& Polygon::operator[]( sal_uInt16 nPos )
{
DBG_CHKTHIS( Polygon, NULL );
DBG_ASSERT( nPos < mpImplPolygon->mnPoints, "Polygon::[]: nPos >= nPoints" );
ImplMakeUnique();
return mpImplPolygon->mpPointAry[nPos];
}
// -----------------------------------------------------------------------
Polygon& Polygon::operator=( const Polygon& rPoly )
{
DBG_CHKTHIS( Polygon, NULL );
DBG_CHKOBJ( &rPoly, Polygon, NULL );
DBG_ASSERT( rPoly.mpImplPolygon->mnRefCount < 0xFFFFFFFE, "Polygon: RefCount overflow" );
// Zuerst Referenzcounter erhoehen, damit man sich selbst zuweisen kann
// RefCount == 0 fuer statische Objekte
if ( rPoly.mpImplPolygon->mnRefCount )
rPoly.mpImplPolygon->mnRefCount++;
// Wenn es keine statischen ImpDaten sind, dann loeschen, wenn es
// die letzte Referenz ist, sonst Referenzcounter decrementieren
if ( mpImplPolygon->mnRefCount )
{
if ( mpImplPolygon->mnRefCount > 1 )
mpImplPolygon->mnRefCount--;
else
delete mpImplPolygon;
}
mpImplPolygon = rPoly.mpImplPolygon;
return *this;
}
// -----------------------------------------------------------------------
sal_Bool Polygon::operator==( const Polygon& rPoly ) const
{
DBG_CHKTHIS( Polygon, NULL );
DBG_CHKOBJ( &rPoly, Polygon, NULL );
if ( (rPoly.mpImplPolygon == mpImplPolygon) )
return sal_True;
else
return sal_False;
}
// -----------------------------------------------------------------------
sal_Bool Polygon::IsEqual( const Polygon& rPoly ) const
{
sal_Bool bIsEqual = sal_True;
sal_uInt16 i;
if ( GetSize() != rPoly.GetSize() )
bIsEqual = sal_False;
else
{
for ( i = 0; i < GetSize(); i++ )
{
if ( ( GetPoint( i ) != rPoly.GetPoint( i ) ) ||
( GetFlags( i ) != rPoly.GetFlags( i ) ) )
{
bIsEqual = sal_False;
break;
}
}
}
return bIsEqual;
}
// -----------------------------------------------------------------------
SvStream& operator>>( SvStream& rIStream, Polygon& rPoly )
{
DBG_CHKOBJ( &rPoly, Polygon, NULL );
DBG_ASSERTWARNING( rIStream.GetVersion(), "Polygon::>> - Solar-Version not set on rIStream" );
sal_uInt16 i;
sal_uInt16 nStart;
sal_uInt16 nCurPoints;
sal_uInt16 nPoints;
// Anzahl der Punkte einlesen und Array erzeugen
rIStream >> nPoints;
if ( rPoly.mpImplPolygon->mnRefCount != 1 )
{
if ( rPoly.mpImplPolygon->mnRefCount )
rPoly.mpImplPolygon->mnRefCount--;
rPoly.mpImplPolygon = new ImplPolygon( nPoints );
}
else
rPoly.mpImplPolygon->ImplSetSize( nPoints, sal_False );
// Je nach CompressMode das Polygon einlesen
if ( rIStream.GetCompressMode() == COMPRESSMODE_FULL )
{
i = 0;
unsigned char bShort;
while ( i < nPoints )
{
rIStream >> bShort >> nCurPoints;
if ( bShort )
{
short nShortX;
short nShortY;
for ( nStart = i; i < nStart+nCurPoints; i++ )
{
rIStream >> nShortX >> nShortY;
rPoly.mpImplPolygon->mpPointAry[i].X() = nShortX;
rPoly.mpImplPolygon->mpPointAry[i].Y() = nShortY;
}
}
else
{
long nLongX;
long nLongY;
for ( nStart = i; i < nStart+nCurPoints; i++ )
{
rIStream >> nLongX >> nLongY;
rPoly.mpImplPolygon->mpPointAry[i].X() = nLongX;
rPoly.mpImplPolygon->mpPointAry[i].Y() = nLongY;
}
}
}
}
else
{
// Feststellen, ob ueber die Operatoren geschrieben werden muss
#if (SAL_TYPES_SIZEOFLONG) != 4
if ( 1 )
#else
#ifdef OSL_BIGENDIAN
if ( rIStream.GetNumberFormatInt() != NUMBERFORMAT_INT_BIGENDIAN )
#else
if ( rIStream.GetNumberFormatInt() != NUMBERFORMAT_INT_LITTLEENDIAN )
#endif
#endif
{
for( i = 0; i < nPoints; i++ )
{
rIStream >> rPoly.mpImplPolygon->mpPointAry[i].X()
>> rPoly.mpImplPolygon->mpPointAry[i].Y();
}
}
else
rIStream.Read( rPoly.mpImplPolygon->mpPointAry, nPoints*sizeof(Point) );
}
return rIStream;
}
// -----------------------------------------------------------------------
SvStream& operator<<( SvStream& rOStream, const Polygon& rPoly )
{
DBG_CHKOBJ( &rPoly, Polygon, NULL );
DBG_ASSERTWARNING( rOStream.GetVersion(), "Polygon::<< - Solar-Version not set on rOStream" );
sal_uInt16 nStart;
sal_uInt16 i;
sal_uInt16 nPoints = rPoly.GetSize();
// Anzahl der Punkte rausschreiben
rOStream << nPoints;
// Je nach CompressMode das Polygon rausschreiben
if ( rOStream.GetCompressMode() == COMPRESSMODE_FULL )
{
i = 0;
unsigned char bShort;
while ( i < nPoints )
{
nStart = i;
// Feststellen, welcher Typ geschrieben werden soll
if ( ((rPoly.mpImplPolygon->mpPointAry[nStart].X() >= SHRT_MIN) &&
(rPoly.mpImplPolygon->mpPointAry[nStart].X() <= SHRT_MAX)) &&
((rPoly.mpImplPolygon->mpPointAry[nStart].Y() >= SHRT_MIN) &&
(rPoly.mpImplPolygon->mpPointAry[nStart].Y() <= SHRT_MAX)) )
bShort = sal_True;
else
bShort = sal_False;
unsigned char bCurShort;
while ( i < nPoints )
{
// Feststellen, welcher Typ geschrieben werden soll
if ( ((rPoly.mpImplPolygon->mpPointAry[nStart].X() >= SHRT_MIN) &&
(rPoly.mpImplPolygon->mpPointAry[nStart].X() <= SHRT_MAX)) &&
((rPoly.mpImplPolygon->mpPointAry[nStart].Y() >= SHRT_MIN) &&
(rPoly.mpImplPolygon->mpPointAry[nStart].Y() <= SHRT_MAX)) )
bCurShort = sal_True;
else
bCurShort = sal_False;
// Wenn sich die Werte in einen anderen Bereich begeben,
// muessen wir neu rausschreiben
if ( bCurShort != bShort )
{
bShort = bCurShort;
break;
}
i++;
}
rOStream << bShort << (sal_uInt16)(i-nStart);
if ( bShort )
{
for( ; nStart < i; nStart++ )
{
rOStream << (short)rPoly.mpImplPolygon->mpPointAry[nStart].X()
<< (short)rPoly.mpImplPolygon->mpPointAry[nStart].Y();
}
}
else
{
for( ; nStart < i; nStart++ )
{
rOStream << rPoly.mpImplPolygon->mpPointAry[nStart].X()
<< rPoly.mpImplPolygon->mpPointAry[nStart].Y();
}
}
}
}
else
{
// Feststellen, ob ueber die Operatoren geschrieben werden muss
#if (SAL_TYPES_SIZEOFLONG) != 4
if ( 1 )
#else
#ifdef OSL_BIGENDIAN
if ( rOStream.GetNumberFormatInt() != NUMBERFORMAT_INT_BIGENDIAN )
#else
if ( rOStream.GetNumberFormatInt() != NUMBERFORMAT_INT_LITTLEENDIAN )
#endif
#endif
{
for( i = 0; i < nPoints; i++ )
{
rOStream << rPoly.mpImplPolygon->mpPointAry[i].X()
<< rPoly.mpImplPolygon->mpPointAry[i].Y();
}
}
else
{
if ( nPoints )
rOStream.Write( rPoly.mpImplPolygon->mpPointAry, nPoints*sizeof(Point) );
}
}
return rOStream;
}
// -----------------------------------------------------------------------
void Polygon::ImplRead( SvStream& rIStream )
{
sal_uInt8 bHasPolyFlags;
rIStream >> *this
>> bHasPolyFlags;
if ( bHasPolyFlags )
{
mpImplPolygon->mpFlagAry = new sal_uInt8[ mpImplPolygon->mnPoints ];
rIStream.Read( mpImplPolygon->mpFlagAry, mpImplPolygon->mnPoints );
}
}
// -----------------------------------------------------------------------
void Polygon::Read( SvStream& rIStream )
{
VersionCompat aCompat( rIStream, STREAM_READ );
ImplRead( rIStream );
}
// -----------------------------------------------------------------------
void Polygon::ImplWrite( SvStream& rOStream ) const
{
sal_uInt8 bHasPolyFlags = mpImplPolygon->mpFlagAry != NULL;
rOStream << *this
<< bHasPolyFlags;
if ( bHasPolyFlags )
rOStream.Write( mpImplPolygon->mpFlagAry, mpImplPolygon->mnPoints );
}
// -----------------------------------------------------------------------
void Polygon::Write( SvStream& rOStream ) const
{
VersionCompat aCompat( rOStream, STREAM_WRITE, 1 );
ImplWrite( rOStream );
}
// -----------------------------------------------------------------------
// #i74631# numerical correction method for B2DPolygon
void impCorrectContinuity(basegfx::B2DPolygon& roPolygon, sal_uInt32 nIndex, sal_uInt8 nCFlag)
{
const sal_uInt32 nPointCount(roPolygon.count());
OSL_ENSURE(nIndex < nPointCount, "impCorrectContinuity: index access out of range (!)");
if(nIndex < nPointCount && (POLY_SMOOTH == nCFlag || POLY_SYMMTR == nCFlag))
{
if(roPolygon.isPrevControlPointUsed(nIndex) && roPolygon.isNextControlPointUsed(nIndex))
{
const basegfx::B2DPoint aPoint(roPolygon.getB2DPoint(nIndex));
if(POLY_SMOOTH == nCFlag)
{
// C1: apply inverse direction of prev to next, keep length of next
const basegfx::B2DVector aOriginalNext(roPolygon.getNextControlPoint(nIndex) - aPoint);
basegfx::B2DVector aNewNext(aPoint - roPolygon.getPrevControlPoint(nIndex));
aNewNext.setLength(aOriginalNext.getLength());
roPolygon.setNextControlPoint(nIndex, basegfx::B2DPoint(aPoint + aNewNext));
}
else // POLY_SYMMTR
{
// C2: apply inverse control point to next
roPolygon.setNextControlPoint(nIndex, (2.0 * aPoint) - roPolygon.getPrevControlPoint(nIndex));
}
}
}
}
// -----------------------------------------------------------------------
// convert to basegfx::B2DPolygon and return
basegfx::B2DPolygon Polygon::getB2DPolygon() const
{
basegfx::B2DPolygon aRetval;
const sal_uInt16 nCount(mpImplPolygon->mnPoints);
if(nCount)
{
if(mpImplPolygon->mpFlagAry)
{
// handling for curves. Add start point
const Point aStartPoint(mpImplPolygon->mpPointAry[0]);
sal_uInt8 nPointFlag(mpImplPolygon->mpFlagAry[0]);
aRetval.append(basegfx::B2DPoint(aStartPoint.X(), aStartPoint.Y()));
Point aControlA, aControlB;
for(sal_uInt16 a(1); a < nCount;)
{
bool bControlA(false);
bool bControlB(false);
if(POLY_CONTROL == mpImplPolygon->mpFlagAry[a])
{
aControlA = mpImplPolygon->mpPointAry[a++];
bControlA = true;
}
if(a < nCount && POLY_CONTROL == mpImplPolygon->mpFlagAry[a])
{
aControlB = mpImplPolygon->mpPointAry[a++];
bControlB = true;
}
// assert invalid polygons
OSL_ENSURE(bControlA == bControlB, "Polygon::getB2DPolygon: Invalid source polygon (!)");
(void)bControlB;
if(a < nCount)
{
const Point aEndPoint(mpImplPolygon->mpPointAry[a]);
if(bControlA)
{
// bezier edge, add
aRetval.appendBezierSegment(
basegfx::B2DPoint(aControlA.X(), aControlA.Y()),
basegfx::B2DPoint(aControlB.X(), aControlB.Y()),
basegfx::B2DPoint(aEndPoint.X(), aEndPoint.Y()));
impCorrectContinuity(aRetval, aRetval.count() - 2, nPointFlag);
}
else
{
// no bezier edge, add end point
aRetval.append(basegfx::B2DPoint(aEndPoint.X(), aEndPoint.Y()));
}
nPointFlag = mpImplPolygon->mpFlagAry[a++];
}
}
// if exist, remove double first/last points, set closed and correct control points
basegfx::tools::checkClosed(aRetval);
if(aRetval.isClosed())
{
// closeWithGeometryChange did really close, so last point(s) were removed.
// Correct the continuity in the changed point
impCorrectContinuity(aRetval, 0, mpImplPolygon->mpFlagAry[0]);
}
}
else
{
// extra handling for non-curves (most-used case) for speedup
for(sal_uInt16 a(0); a < nCount; a++)
{
// get point and add
const Point aPoint(mpImplPolygon->mpPointAry[a]);
aRetval.append(basegfx::B2DPoint(aPoint.X(), aPoint.Y()));
}
// set closed flag
basegfx::tools::checkClosed(aRetval);
}
}
return aRetval;
}
// -----------------------------------------------------------------------
// constructor to convert from basegfx::B2DPolygon
// #i76891# Needed to change from adding all control points (even for unused
// edges) and creating a fixed-size Polygon in the first run to creating the
// minimal Polygon. This requires a temporary Point- and Flag-Array for curves
// and a memcopy at ImplPolygon creation, but contains no zero-controlpoints
// for straight edges.
Polygon::Polygon(const basegfx::B2DPolygon& rPolygon)
: mpImplPolygon(0)
{
DBG_CTOR( Polygon, NULL );
const bool bCurve(rPolygon.areControlPointsUsed());
const bool bClosed(rPolygon.isClosed());
sal_uInt32 nB2DLocalCount(rPolygon.count());
if(bCurve)
{
// #127979# Reduce source point count hard to the limit of the tools Polygon
if(nB2DLocalCount > ((0x0000ffff / 3L) - 1L))
{
OSL_FAIL("Polygon::Polygon: Too many points in given B2DPolygon, need to reduce hard to maximum of tools Polygon (!)");
nB2DLocalCount = ((0x0000ffff / 3L) - 1L);
}
// calculate target point count
const sal_uInt32 nLoopCount(bClosed ? nB2DLocalCount : (nB2DLocalCount ? nB2DLocalCount - 1L : 0L ));
if(nLoopCount)
{
// calculate maximum array size and allocate; prepare insert index
const sal_uInt32 nMaxTargetCount((nLoopCount * 3) + 1);
mpImplPolygon = new ImplPolygon(static_cast< sal_uInt16 >(nMaxTargetCount), true);
// prepare insert index and current point
sal_uInt32 nArrayInsert(0);
basegfx::B2DCubicBezier aBezier;
aBezier.setStartPoint(rPolygon.getB2DPoint(0));
for(sal_uInt32 a(0L); a < nLoopCount; a++)
{
// add current point (always) and remember StartPointIndex for evtl. later corrections
const Point aStartPoint(FRound(aBezier.getStartPoint().getX()), FRound(aBezier.getStartPoint().getY()));
const sal_uInt32 nStartPointIndex(nArrayInsert);
mpImplPolygon->mpPointAry[nStartPointIndex] = aStartPoint;
mpImplPolygon->mpFlagAry[nStartPointIndex] = (sal_uInt8)POLY_NORMAL;
nArrayInsert++;
// prepare next segment
const sal_uInt32 nNextIndex((a + 1) % nB2DLocalCount);
aBezier.setEndPoint(rPolygon.getB2DPoint(nNextIndex));
aBezier.setControlPointA(rPolygon.getNextControlPoint(a));
aBezier.setControlPointB(rPolygon.getPrevControlPoint(nNextIndex));
if(aBezier.isBezier())
{
// if one is used, add always two control points due to the old schema
mpImplPolygon->mpPointAry[nArrayInsert] = Point(FRound(aBezier.getControlPointA().getX()), FRound(aBezier.getControlPointA().getY()));
mpImplPolygon->mpFlagAry[nArrayInsert] = (sal_uInt8)POLY_CONTROL;
nArrayInsert++;
mpImplPolygon->mpPointAry[nArrayInsert] = Point(FRound(aBezier.getControlPointB().getX()), FRound(aBezier.getControlPointB().getY()));
mpImplPolygon->mpFlagAry[nArrayInsert] = (sal_uInt8)POLY_CONTROL;
nArrayInsert++;
}
// test continuity with previous control point to set flag value
if(aBezier.getControlPointA() != aBezier.getStartPoint() && (bClosed || a))
{
const basegfx::B2VectorContinuity eCont(rPolygon.getContinuityInPoint(a));
if(basegfx::CONTINUITY_C1 == eCont)
{
mpImplPolygon->mpFlagAry[nStartPointIndex] = (sal_uInt8)POLY_SMOOTH;
}
else if(basegfx::CONTINUITY_C2 == eCont)
{
mpImplPolygon->mpFlagAry[nStartPointIndex] = (sal_uInt8)POLY_SYMMTR;
}
}
// prepare next polygon step
aBezier.setStartPoint(aBezier.getEndPoint());
}
if(bClosed)
{
// add first point again as closing point due to old definition
mpImplPolygon->mpPointAry[nArrayInsert] = mpImplPolygon->mpPointAry[0];
mpImplPolygon->mpFlagAry[nArrayInsert] = (sal_uInt8)POLY_NORMAL;
nArrayInsert++;
}
else
{
// add last point as closing point
const basegfx::B2DPoint aClosingPoint(rPolygon.getB2DPoint(nB2DLocalCount - 1L));
const Point aEnd(FRound(aClosingPoint.getX()), FRound(aClosingPoint.getY()));
mpImplPolygon->mpPointAry[nArrayInsert] = aEnd;
mpImplPolygon->mpFlagAry[nArrayInsert] = (sal_uInt8)POLY_NORMAL;
nArrayInsert++;
}
DBG_ASSERT(nArrayInsert <= nMaxTargetCount, "Polygon::Polygon from basegfx::B2DPolygon: wrong max point count estimation (!)");
if(nArrayInsert != nMaxTargetCount)
{
mpImplPolygon->ImplSetSize(static_cast< sal_uInt16 >(nArrayInsert), true);
}
}
}
else
{
// #127979# Reduce source point count hard to the limit of the tools Polygon
if(nB2DLocalCount > (0x0000ffff - 1L))
{
OSL_FAIL("Polygon::Polygon: Too many points in given B2DPolygon, need to reduce hard to maximum of tools Polygon (!)");
nB2DLocalCount = (0x0000ffff - 1L);
}
if(nB2DLocalCount)
{
// point list creation
const sal_uInt32 nTargetCount(nB2DLocalCount + (bClosed ? 1L : 0L));
mpImplPolygon = new ImplPolygon( static_cast< sal_uInt16 >(nTargetCount) );
sal_uInt16 nIndex(0);
for(sal_uInt32 a(0L); a < nB2DLocalCount; a++)
{
basegfx::B2DPoint aB2DPoint(rPolygon.getB2DPoint(a));
Point aPoint(FRound(aB2DPoint.getX()), FRound(aB2DPoint.getY()));
mpImplPolygon->mpPointAry[nIndex++] = aPoint;
}
if(bClosed)
{
// add first point as closing point
mpImplPolygon->mpPointAry[nIndex] = mpImplPolygon->mpPointAry[0];
}
}
}
if(!mpImplPolygon)
{
// no content yet, create empty polygon
mpImplPolygon = (ImplPolygon*)(&aStaticImplPolygon);
}
}
// eof
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */