office-gobmx/hwpfilter/source/solver.h
Rüdiger Timm 084f45520d INTEGRATION: CWS changefileheader (1.2.58); FILE MERGED
2008/03/28 15:36:41 rt 1.2.58.1: #i87441# Change license header to LPGL v3.
2008-04-10 11:13:45 +00:00

170 lines
5.4 KiB
C++

/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2008 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: solver.h,v $
* $Revision: 1.3 $
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#ifndef _SOLVER_H_
#define _SOLVER_H_
class mgcLinearSystem
{
public:
mgcLinearSystem() {;}
float** NewMatrix (int N);
void DeleteMatrix (int N, float** A);
float* NewVector (int N);
void DeleteVector (int N, float* B);
int Inverse (int N, float** A);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N], inverse matrix
int Solve (int N, float** A, float* b);
// Input:
// A[N][N] coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N] is inverse matrix
// b[N] is solution x to Ax = b
int SolveTri (int N, float* a, float* b, float* c, float* r, float* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal a[N-1]
// Main diagonal b[N]
// Upper diagonal c[N-1]
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveConstTri (int N, float a, float b, float c, float* r, float* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal is constant, a
// Main diagonal is constant, b
// Upper diagonal is constant, c
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveSymmetric (int N, float** A, float* b);
// Input:
// A[N][N] symmetric coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if (nearly) singular
// decomposition A = L D L^t (diagonal terms of L are all 1)
// A[i][i] = entries of diagonal D
// A[i][j] for i > j = lower triangular part of L
// b[N] is solution to x to Ax = b
int SymmetricInverse (int N, float** A, float** Ainv);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if algorithm failed
// Ainv[N][N], inverse matrix
};
class mgcLinearSystemD
{
public:
mgcLinearSystemD() {;}
double** NewMatrix (int N);
void DeleteMatrix (int N, double** A);
double* NewVector (int N);
void DeleteVector (int N, double* B);
int Inverse (int N, double** A);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N], inverse matrix
int Solve (int N, double** A, double* b);
// Input:
// A[N][N] coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N] is inverse matrix
// b[N] is solution x to Ax = b
int SolveTri (int N, double* a, double* b, double* c, double* r,
double* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal a[N-1]
// Main diagonal b[N]
// Upper diagonal c[N-1]
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveConstTri (int N, double a, double b, double c, double* r,
double* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal is constant, a
// Main diagonal is constant, b
// Upper diagonal is constant, c
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveSymmetric (int N, double** A, double* b);
// Input:
// A[N][N] symmetric coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if (nearly) singular
// decomposition A = L D L^t (diagonal terms of L are all 1)
// A[i][i] = entries of diagonal D
// A[i][j] for i > j = lower triangular part of L
// b[N] is solution to x to Ax = b
int SymmetricInverse (int N, double** A, double** Ainv);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if algorithm failed
// Ainv[N][N], inverse matrix
};
#endif