084f45520d
2008/03/28 15:36:41 rt 1.2.58.1: #i87441# Change license header to LPGL v3.
170 lines
5.4 KiB
C++
170 lines
5.4 KiB
C++
/*************************************************************************
|
|
*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* Copyright 2008 by Sun Microsystems, Inc.
|
|
*
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
|
*
|
|
* $RCSfile: solver.h,v $
|
|
* $Revision: 1.3 $
|
|
*
|
|
* This file is part of OpenOffice.org.
|
|
*
|
|
* OpenOffice.org is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 3
|
|
* only, as published by the Free Software Foundation.
|
|
*
|
|
* OpenOffice.org is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License version 3 for more details
|
|
* (a copy is included in the LICENSE file that accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* version 3 along with OpenOffice.org. If not, see
|
|
* <http://www.openoffice.org/license.html>
|
|
* for a copy of the LGPLv3 License.
|
|
*
|
|
************************************************************************/
|
|
|
|
#ifndef _SOLVER_H_
|
|
#define _SOLVER_H_
|
|
|
|
class mgcLinearSystem
|
|
{
|
|
public:
|
|
mgcLinearSystem() {;}
|
|
|
|
float** NewMatrix (int N);
|
|
void DeleteMatrix (int N, float** A);
|
|
float* NewVector (int N);
|
|
void DeleteVector (int N, float* B);
|
|
|
|
int Inverse (int N, float** A);
|
|
// Input:
|
|
// A[N][N], entries are A[row][col]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// A[N][N], inverse matrix
|
|
|
|
int Solve (int N, float** A, float* b);
|
|
// Input:
|
|
// A[N][N] coefficient matrix, entries are A[row][col]
|
|
// b[N] vector, entries are b[row]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// A[N][N] is inverse matrix
|
|
// b[N] is solution x to Ax = b
|
|
|
|
int SolveTri (int N, float* a, float* b, float* c, float* r, float* u);
|
|
// Input:
|
|
// Matrix is tridiagonal.
|
|
// Lower diagonal a[N-1]
|
|
// Main diagonal b[N]
|
|
// Upper diagonal c[N-1]
|
|
// Right-hand side r[N]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// u[N] is solution
|
|
|
|
int SolveConstTri (int N, float a, float b, float c, float* r, float* u);
|
|
// Input:
|
|
// Matrix is tridiagonal.
|
|
// Lower diagonal is constant, a
|
|
// Main diagonal is constant, b
|
|
// Upper diagonal is constant, c
|
|
// Right-hand side r[N]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// u[N] is solution
|
|
|
|
int SolveSymmetric (int N, float** A, float* b);
|
|
// Input:
|
|
// A[N][N] symmetric coefficient matrix, entries are A[row][col]
|
|
// b[N] vector, entries are b[row]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if (nearly) singular
|
|
// decomposition A = L D L^t (diagonal terms of L are all 1)
|
|
// A[i][i] = entries of diagonal D
|
|
// A[i][j] for i > j = lower triangular part of L
|
|
// b[N] is solution to x to Ax = b
|
|
|
|
int SymmetricInverse (int N, float** A, float** Ainv);
|
|
// Input:
|
|
// A[N][N], entries are A[row][col]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if algorithm failed
|
|
// Ainv[N][N], inverse matrix
|
|
};
|
|
|
|
class mgcLinearSystemD
|
|
{
|
|
public:
|
|
mgcLinearSystemD() {;}
|
|
|
|
double** NewMatrix (int N);
|
|
void DeleteMatrix (int N, double** A);
|
|
double* NewVector (int N);
|
|
void DeleteVector (int N, double* B);
|
|
|
|
int Inverse (int N, double** A);
|
|
// Input:
|
|
// A[N][N], entries are A[row][col]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// A[N][N], inverse matrix
|
|
|
|
int Solve (int N, double** A, double* b);
|
|
// Input:
|
|
// A[N][N] coefficient matrix, entries are A[row][col]
|
|
// b[N] vector, entries are b[row]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// A[N][N] is inverse matrix
|
|
// b[N] is solution x to Ax = b
|
|
|
|
int SolveTri (int N, double* a, double* b, double* c, double* r,
|
|
double* u);
|
|
// Input:
|
|
// Matrix is tridiagonal.
|
|
// Lower diagonal a[N-1]
|
|
// Main diagonal b[N]
|
|
// Upper diagonal c[N-1]
|
|
// Right-hand side r[N]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// u[N] is solution
|
|
|
|
int SolveConstTri (int N, double a, double b, double c, double* r,
|
|
double* u);
|
|
// Input:
|
|
// Matrix is tridiagonal.
|
|
// Lower diagonal is constant, a
|
|
// Main diagonal is constant, b
|
|
// Upper diagonal is constant, c
|
|
// Right-hand side r[N]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if pivoting failed
|
|
// u[N] is solution
|
|
|
|
int SolveSymmetric (int N, double** A, double* b);
|
|
// Input:
|
|
// A[N][N] symmetric coefficient matrix, entries are A[row][col]
|
|
// b[N] vector, entries are b[row]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if (nearly) singular
|
|
// decomposition A = L D L^t (diagonal terms of L are all 1)
|
|
// A[i][i] = entries of diagonal D
|
|
// A[i][j] for i > j = lower triangular part of L
|
|
// b[N] is solution to x to Ax = b
|
|
|
|
int SymmetricInverse (int N, double** A, double** Ainv);
|
|
// Input:
|
|
// A[N][N], entries are A[row][col]
|
|
// Output:
|
|
// return value is TRUE if successful, FALSE if algorithm failed
|
|
// Ainv[N][N], inverse matrix
|
|
};
|
|
|
|
#endif
|