office-gobmx/cppu/source/threadpool/threadpool.cxx
Jens-Heiner Rechtien 4027faeae0 INTEGRATION: CWS warnings01 (1.11.32); FILE MERGED
2005/09/22 20:43:40 sb 1.11.32.4: RESYNC: (1.11-1.12); FILE MERGED
2005/09/06 10:11:51 sb 1.11.32.3: #i53898# sal::reinterpret_int_cast is not needed.
2005/08/31 13:43:20 sb 1.11.32.2: #i53898# Made code warning-free.
2005/08/29 14:03:50 sb 1.11.32.1: #i53898# Made code warning-free.
2006-06-19 12:12:45 +00:00

507 lines
14 KiB
C++

/*************************************************************************
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: threadpool.cxx,v $
*
* $Revision: 1.15 $
*
* last change: $Author: hr $ $Date: 2006-06-19 13:12:45 $
*
* The Contents of this file are made available subject to
* the terms of GNU Lesser General Public License Version 2.1.
*
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2005 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
************************************************************************/
#include <hash_set>
#include <stdio.h>
#include <osl/diagnose.h>
#include <osl/mutex.hxx>
#include <osl/thread.h>
#include <uno/threadpool.h>
#include "threadpool.hxx"
#include "thread.hxx"
using namespace ::std;
using namespace ::osl;
namespace cppu_threadpool
{
DisposedCallerAdmin *DisposedCallerAdmin::getInstance()
{
static DisposedCallerAdmin *pDisposedCallerAdmin = 0;
if( ! pDisposedCallerAdmin )
{
MutexGuard guard( Mutex::getGlobalMutex() );
if( ! pDisposedCallerAdmin )
{
static DisposedCallerAdmin admin;
pDisposedCallerAdmin = &admin;
}
}
return pDisposedCallerAdmin;
}
DisposedCallerAdmin::~DisposedCallerAdmin()
{
#if OSL_DEBUG_LEVEL > 1
if( !m_lst.empty() )
{
printf( "DisposedCallerList : %d left\n" , m_lst.size( ));
}
#endif
}
void DisposedCallerAdmin::dispose( sal_Int64 nDisposeId )
{
MutexGuard guard( m_mutex );
m_lst.push_back( nDisposeId );
}
void DisposedCallerAdmin::stopDisposing( sal_Int64 nDisposeId )
{
MutexGuard guard( m_mutex );
for( DisposedCallerList::iterator ii = m_lst.begin() ;
ii != m_lst.end() ;
++ ii )
{
if( (*ii) == nDisposeId )
{
m_lst.erase( ii );
break;
}
}
}
sal_Bool DisposedCallerAdmin::isDisposed( sal_Int64 nDisposeId )
{
MutexGuard guard( m_mutex );
for( DisposedCallerList::iterator ii = m_lst.begin() ;
ii != m_lst.end() ;
++ ii )
{
if( (*ii) == nDisposeId )
{
return sal_True;
}
}
return sal_False;
}
//-------------------------------------------------------------------------------
ThreadPool::~ThreadPool()
{
#if OSL_DEBUG_LEVEL > 1
if( m_mapQueue.size() )
{
printf( "ThreadIdHashMap : %d left\n" , m_mapQueue.size() );
}
#endif
}
ThreadPool *ThreadPool::getInstance()
{
static ThreadPool *pThreadPool = 0;
if( ! pThreadPool )
{
MutexGuard guard( Mutex::getGlobalMutex() );
if( ! pThreadPool )
{
static ThreadPool pool;
pThreadPool = &pool;
}
}
return pThreadPool;
}
void ThreadPool::dispose( sal_Int64 nDisposeId )
{
if( nDisposeId )
{
DisposedCallerAdmin::getInstance()->dispose( nDisposeId );
MutexGuard guard( m_mutex );
for( ThreadIdHashMap::iterator ii = m_mapQueue.begin() ;
ii != m_mapQueue.end();
++ii)
{
if( (*ii).second.first )
{
(*ii).second.first->dispose( nDisposeId );
}
if( (*ii).second.second )
{
(*ii).second.second->dispose( nDisposeId );
}
}
}
else
{
{
MutexGuard guard( m_mutexWaitingThreadList );
for( WaitingThreadList::iterator ii = m_lstThreads.begin() ;
ii != m_lstThreads.end() ;
++ ii )
{
// wake the threads up
osl_setCondition( (*ii)->condition );
}
}
ThreadAdmin::getInstance()->join();
}
}
void ThreadPool::stopDisposing( sal_Int64 nDisposeId )
{
DisposedCallerAdmin::getInstance()->stopDisposing( nDisposeId );
}
/******************
* This methods lets the thread wait a certain amount of time. If within this timespan
* a new request comes in, this thread is reused. This is done only to improve performance,
* it is not required for threadpool functionality.
******************/
void ThreadPool::waitInPool( ORequestThread * pThread )
{
struct WaitingThread waitingThread;
waitingThread.condition = osl_createCondition();
waitingThread.thread = pThread;
{
MutexGuard guard( m_mutexWaitingThreadList );
m_lstThreads.push_front( &waitingThread );
}
// let the thread wait 2 seconds
TimeValue time = { 2 , 0 };
osl_waitCondition( waitingThread.condition , &time );
{
MutexGuard guard ( m_mutexWaitingThreadList );
if( waitingThread.thread )
{
// thread wasn't reused, remove it from the list
WaitingThreadList::iterator ii = find(
m_lstThreads.begin(), m_lstThreads.end(), &waitingThread );
OSL_ASSERT( ii != m_lstThreads.end() );
m_lstThreads.erase( ii );
}
}
osl_destroyCondition( waitingThread.condition );
}
void ThreadPool::createThread( JobQueue *pQueue ,
const ByteSequence &aThreadId,
sal_Bool bAsynchron )
{
sal_Bool bCreate = sal_True;
{
// Can a thread be reused ?
MutexGuard guard( m_mutexWaitingThreadList );
if( ! m_lstThreads.empty() )
{
// inform the thread and let it go
struct WaitingThread *pWaitingThread = m_lstThreads.back();
pWaitingThread->thread->setTask( pQueue , aThreadId , bAsynchron );
pWaitingThread->thread = 0;
// remove from list
m_lstThreads.pop_back();
// let the thread go
osl_setCondition( pWaitingThread->condition );
bCreate = sal_False;
}
}
if( bCreate )
{
ORequestThread *pThread =
new ORequestThread( pQueue , aThreadId, bAsynchron);
// deletes itself !
pThread->create();
}
}
sal_Bool ThreadPool::revokeQueue( const ByteSequence &aThreadId, sal_Bool bAsynchron )
{
MutexGuard guard( m_mutex );
ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
OSL_ASSERT( ii != m_mapQueue.end() );
if( bAsynchron )
{
if( ! (*ii).second.second->isEmpty() )
{
// another thread has put something into the queue
return sal_False;
}
(*ii).second.second = 0;
if( (*ii).second.first )
{
// all oneway request have been processed, now
// synchronus requests may go on
(*ii).second.first->resume();
}
}
else
{
if( ! (*ii).second.first->isEmpty() )
{
// another thread has put something into the queue
return sal_False;
}
(*ii).second.first = 0;
}
if( 0 == (*ii).second.first && 0 == (*ii).second.second )
{
m_mapQueue.erase( ii );
}
return sal_True;
}
void ThreadPool::addJob(
const ByteSequence &aThreadId ,
sal_Bool bAsynchron,
void *pThreadSpecificData,
RequestFun * doRequest )
{
sal_Bool bCreateThread = sal_False;
JobQueue *pQueue = 0;
{
MutexGuard guard( m_mutex );
ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
if( ii == m_mapQueue.end() )
{
m_mapQueue[ aThreadId ] = pair < JobQueue * , JobQueue * > ( 0 , 0 );
ii = m_mapQueue.find( aThreadId );
OSL_ASSERT( ii != m_mapQueue.end() );
}
if( bAsynchron )
{
if( ! (*ii).second.second )
{
(*ii).second.second = new JobQueue();
bCreateThread = sal_True;
}
pQueue = (*ii).second.second;
}
else
{
if( ! (*ii).second.first )
{
(*ii).second.first = new JobQueue();
bCreateThread = sal_True;
}
pQueue = (*ii).second.first;
if( (*ii).second.second && ( (*ii).second.second->isBusy() ) )
{
pQueue->suspend();
}
}
pQueue->add( pThreadSpecificData , doRequest );
}
if( bCreateThread )
{
createThread( pQueue , aThreadId , bAsynchron);
}
}
void ThreadPool::prepare( const ByteSequence &aThreadId )
{
MutexGuard guard( m_mutex );
ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
if( ii == m_mapQueue.end() )
{
JobQueue *p = new JobQueue();
m_mapQueue[ aThreadId ] = pair< JobQueue * , JobQueue * > ( p , 0 );
}
else if( 0 == (*ii).second.first )
{
(*ii).second.first = new JobQueue();
}
}
void * ThreadPool::enter( const ByteSequence & aThreadId , sal_Int64 nDisposeId )
{
JobQueue *pQueue = 0;
{
MutexGuard guard( m_mutex );
ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
OSL_ASSERT( ii != m_mapQueue.end() );
pQueue = (*ii).second.first;
}
OSL_ASSERT( pQueue );
void *pReturn = pQueue->enter( nDisposeId );
if( pQueue->isCallstackEmpty() )
{
if( revokeQueue( aThreadId , sal_False) )
{
// remove queue
delete pQueue;
}
}
return pReturn;
}
}
using namespace cppu_threadpool;
struct uno_ThreadPool_Equal
{
sal_Bool operator () ( const uno_ThreadPool &a , const uno_ThreadPool &b ) const
{
return a == b;
}
};
struct uno_ThreadPool_Hash
{
sal_Size operator () ( const uno_ThreadPool &a ) const
{
return (sal_Size) a;
}
};
typedef ::std::hash_set< uno_ThreadPool, uno_ThreadPool_Hash, uno_ThreadPool_Equal > ThreadpoolHashSet;
static ThreadpoolHashSet *g_pThreadpoolHashSet;
struct _uno_ThreadPool
{
sal_Int32 dummy;
};
extern "C" uno_ThreadPool SAL_CALL
uno_threadpool_create() SAL_THROW_EXTERN_C()
{
MutexGuard guard( Mutex::getGlobalMutex() );
if( ! g_pThreadpoolHashSet )
{
g_pThreadpoolHashSet = new ThreadpoolHashSet();
}
// Just ensure that the handle is unique in the process (via heap)
uno_ThreadPool h = new struct _uno_ThreadPool;
g_pThreadpoolHashSet->insert( h );
return h;
}
extern "C" void SAL_CALL
uno_threadpool_attach( uno_ThreadPool ) SAL_THROW_EXTERN_C()
{
sal_Sequence *pThreadId = 0;
uno_getIdOfCurrentThread( &pThreadId );
ThreadPool::getInstance()->prepare( pThreadId );
rtl_byte_sequence_release( pThreadId );
uno_releaseIdFromCurrentThread();
}
extern "C" void SAL_CALL
uno_threadpool_enter( uno_ThreadPool hPool , void **ppJob )
SAL_THROW_EXTERN_C()
{
sal_Sequence *pThreadId = 0;
uno_getIdOfCurrentThread( &pThreadId );
*ppJob =
ThreadPool::getInstance()->enter(
pThreadId,
sal::static_int_cast< sal_Int64 >(
reinterpret_cast< sal_IntPtr >(hPool)) );
rtl_byte_sequence_release( pThreadId );
uno_releaseIdFromCurrentThread();
}
extern "C" void SAL_CALL
uno_threadpool_detach( uno_ThreadPool ) SAL_THROW_EXTERN_C()
{
// we might do here some tiding up in case a thread called attach but never detach
}
extern "C" void SAL_CALL
uno_threadpool_putJob(
uno_ThreadPool,
sal_Sequence *pThreadId,
void *pJob,
void ( SAL_CALL * doRequest ) ( void *pThreadSpecificData ),
sal_Bool bIsOneway ) SAL_THROW_EXTERN_C()
{
ThreadPool::getInstance()->addJob( pThreadId, bIsOneway, pJob ,doRequest );
}
extern "C" void SAL_CALL
uno_threadpool_dispose( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
{
ThreadPool::getInstance()->dispose(
sal::static_int_cast< sal_Int64 >(
reinterpret_cast< sal_IntPtr >(hPool)) );
}
extern "C" void SAL_CALL
uno_threadpool_destroy( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
{
ThreadPool::getInstance()->stopDisposing(
sal::static_int_cast< sal_Int64 >(
reinterpret_cast< sal_IntPtr >(hPool)) );
if( hPool )
{
// special treatment for 0 !
OSL_ASSERT( g_pThreadpoolHashSet );
MutexGuard guard( Mutex::getGlobalMutex() );
ThreadpoolHashSet::iterator ii = g_pThreadpoolHashSet->find( hPool );
OSL_ASSERT( ii != g_pThreadpoolHashSet->end() );
g_pThreadpoolHashSet->erase( ii );
delete hPool;
if( g_pThreadpoolHashSet->empty() )
{
delete g_pThreadpoolHashSet;
g_pThreadpoolHashSet = 0;
}
}
}