office-gobmx/basegfx/source/polygon/b2dpolypolygonrasterconverter.cxx
2011-03-12 14:19:17 +01:00

704 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"
#include <basegfx/polygon/b2dpolypolygonrasterconverter.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <boost/mem_fn.hpp>
#include <algorithm>
namespace basegfx
{
class radixSort {
//! public interface
public:
//! default constructor
radixSort( void );
//! destructor
~radixSort( void );
bool sort( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride );
inline sal_uInt32 *indices( void ) const { return m_indices1; }
//! private attributes
private:
// current size of index list
sal_uInt32 m_current_size;
// last known size of index list
sal_uInt32 m_previous_size;
// index lists
sal_uInt32 *m_indices1;
sal_uInt32 *m_indices2;
sal_uInt32 m_counter[256*4];
sal_uInt32 m_offset[256];
//! private methods
private:
bool resize( sal_uInt32 nNumElements );
inline void reset_indices( void );
bool prepareCounters( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride );
};
inline radixSort::radixSort( void ) {
m_indices1 = NULL;
m_indices2 = NULL;
m_current_size = 0;
m_previous_size = 0;
reset_indices();
}
inline radixSort::~radixSort( void ) {
delete [] m_indices2;
delete [] m_indices1;
}
bool radixSort::resize( sal_uInt32 nNumElements ) {
if(nNumElements==m_previous_size)
return true;
if(nNumElements > m_current_size) {
// release index lists
if(m_indices2)
delete [] m_indices2;
if(m_indices1)
delete [] m_indices1;
// allocate new index lists
m_indices1 = new sal_uInt32[nNumElements];
m_indices2 = new sal_uInt32[nNumElements];
// check for out of memory situation
if(!m_indices1 || !m_indices2) {
delete [] m_indices1;
delete [] m_indices2;
m_indices1 = NULL;
m_indices2 = NULL;
m_current_size = 0;
return false;
}
m_current_size = nNumElements;
}
m_previous_size = nNumElements;
// initialize indices
reset_indices();
return true;
}
inline void radixSort::reset_indices( void ) {
for(sal_uInt32 i=0;i<m_current_size;i++)
m_indices1[i] = i;
}
bool radixSort::prepareCounters( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride ) {
// clear counters
sal_uInt32 *ptr = m_counter;
for(int i=0; i<64; ++i)
{
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
*ptr++ = 0;
}
// prepare pointers to relevant memory addresses
sal_uInt8 *p = (sal_uInt8*)pInput;
sal_uInt8 *pe = p+(nNumElements*dwStride);
sal_uInt32 *h0= &m_counter[0];
sal_uInt32 *h1= &m_counter[256];
sal_uInt32 *h2= &m_counter[512];
sal_uInt32 *h3= &m_counter[768];
sal_uInt32 *Indices = m_indices1;
float previous_value = *(float *)(((sal_uInt8 *)pInput)+(m_indices1[0]*dwStride));
bool bSorted = true;
while(p!=pe) {
float value = *(float *)(((sal_uInt8 *)pInput)+((*Indices++)*dwStride));
if(value<previous_value) {
bSorted = false;
break;
}
previous_value = value;
h0[*p++]++;
h1[*p++]++;
h2[*p++]++;
h3[*p++]++;
p += dwStride-4;
}
if(bSorted)
return true;
while(p!=pe) {
h0[*p++]++;
h1[*p++]++;
h2[*p++]++;
h3[*p++]++;
p += dwStride-4;
}
return false;
}
bool radixSort::sort( const float *pInput, sal_uInt32 nNumElements, sal_uInt32 dwStride ) {
if(!(pInput))
return false;
if(!(nNumElements))
return false;
if(!(resize(nNumElements)))
return false;
// prepare radix counters, return if already sorted
if(prepareCounters(pInput,nNumElements,dwStride))
return true;
// count number of negative values
sal_uInt32 num_negatives = 0;
sal_uInt32 *h3= &m_counter[768];
for(sal_uInt32 i=128;i<256;i++)
num_negatives += h3[i];
// perform passes, one for each byte
for(sal_uInt32 j=0;j<4;j++) {
// ignore this pass if all values have the same byte
bool bRun = true;
sal_uInt32 *current_counter = &m_counter[j<<8];
sal_uInt8 unique_value = *(((sal_uInt8*)pInput)+j);
if(current_counter[unique_value]==nNumElements)
bRun=false;
// does the incoming byte contain the sign bit?
sal_uInt32 i;
if(j!=3) {
if(bRun) {
m_offset[0] = 0;
for(i=1;i<256;i++)
m_offset[i] = m_offset[i-1] + current_counter[i-1];
sal_uInt8 *InputBytes = (sal_uInt8 *)pInput;
sal_uInt32 *Indices = m_indices1;
sal_uInt32 *IndicesEnd = &m_indices1[nNumElements];
InputBytes += j;
while(Indices!=IndicesEnd) {
sal_uInt32 id = *Indices++;
m_indices2[m_offset[InputBytes[id*dwStride]]++] = id;
}
sal_uInt32 *Tmp = m_indices1;
m_indices1 = m_indices2;
m_indices2 = Tmp;
}
}
else {
if(bRun) {
m_offset[0] = num_negatives;
for(i=1;i<128;i++)
m_offset[i] = m_offset[i-1] + current_counter[i-1];
m_offset[255] = 0;
for(i=0;i<127;i++)
m_offset[254-i] = m_offset[255-i] + current_counter[255-i];
for(i=128;i<256;i++)
m_offset[i] += current_counter[i];
for(i=0;i<nNumElements;i++) {
sal_uInt32 Radix = (*(sal_uInt32 *)(((sal_uInt8 *)pInput)+(m_indices1[i]*dwStride)))>>24;
if(Radix<128) m_indices2[m_offset[Radix]++] = m_indices1[i];
else m_indices2[--m_offset[Radix]] = m_indices1[i];
}
sal_uInt32 *Tmp = m_indices1;
m_indices1 = m_indices2;
m_indices2 = Tmp;
}
else {
if(unique_value>=128) {
for(i=0;i<nNumElements;i++)
m_indices2[i] = m_indices1[nNumElements-i-1];
sal_uInt32 *Tmp = m_indices1;
m_indices1 = m_indices2;
m_indices2 = Tmp;
}
}
}
}
return true;
}
//************************************************************
// Internal vertex storage of B2DPolyPolygonRasterConverter
//************************************************************
inline B2DPolyPolygonRasterConverter::Vertex::Vertex() :
aP1(),
aP2(),
bDownwards( true )
{
}
inline B2DPolyPolygonRasterConverter::Vertex::Vertex( const B2DPoint& rP1, const B2DPoint& rP2, bool bDown ) :
aP1( rP1 ),
aP2( rP2 ),
bDownwards( bDown )
{
}
//************************************************************
// Helper class for holding horizontal line segments during raster
// conversion
//************************************************************
namespace
{
class ImplLineNode
{
public:
sal_Int32 mnYCounter;
float mfXPos;
float mfXDelta;
bool mbDownwards;
public:
/**rP1 and rP2 must not have equal y values, when rounded
to integer!
*/
ImplLineNode(const B2DPoint& rP1, const B2DPoint& rP2, bool bDown) :
mnYCounter( fround(rP2.getY()) - fround(rP1.getY()) ),
mfXPos( (float)(rP1.getX()) ),
mfXDelta((float) ((rP2.getX() - rP1.getX()) / mnYCounter) ),
mbDownwards( bDown )
{
}
/// get current x position
const float& getXPos() const
{
return mfXPos;
}
/// returns true, if line ends on this Y value
float nextLine()
{
if(mnYCounter>=0)
{
// go one step in Y
mfXPos += mfXDelta;
--mnYCounter;
return mfXDelta;
}
return 0.0f;
}
bool isEnded() const
{
return mnYCounter<=0;
}
bool isDownwards() const
{
return mbDownwards;
}
};
}
typedef ::std::vector<ImplLineNode> VectorOfLineNodes;
//************************************************************
// Base2D PolyPolygon Raster Converter (Rasterizer)
//************************************************************
namespace
{
struct VertexComparator
{
bool operator()( const B2DPolyPolygonRasterConverter::Vertex& rLHS,
const B2DPolyPolygonRasterConverter::Vertex& rRHS )
{
return rLHS.aP1.getX() < rRHS.aP1.getX();
}
};
}
void B2DPolyPolygonRasterConverter::init()
{
if(!maPolyPolyRectangle.isEmpty())
{
const sal_Int32 nMinY( fround(maPolyPolyRectangle.getMinY()) );
const sal_Int32 nScanlines(fround(maPolyPolyRectangle.getMaxY()) - nMinY);
maScanlines.resize( nScanlines+1 );
// add all polygons
for( sal_uInt32 i(0), nCount(maPolyPolygon.count());
i < nCount;
++i )
{
// add all vertices
const B2DPolygon& rPoly( maPolyPolygon.getB2DPolygon(i) );
for( sal_uInt32 k(0), nVertices(rPoly.count());
k<nVertices;
++k )
{
const B2DPoint& rP1( rPoly.getB2DPoint(k) );
const B2DPoint& rP2( rPoly.getB2DPoint( (k + 1) % nVertices ) );
const sal_Int32 nVertexYP1( fround(rP1.getY()) );
const sal_Int32 nVertexYP2( fround(rP2.getY()) );
// insert only vertices which are not strictly
// horizontal. Note that the ImplLineNode relies on
// this.
if(nVertexYP1 != nVertexYP2)
{
if( nVertexYP2 < nVertexYP1 )
{
const sal_Int32 nStartScanline(nVertexYP2 - nMinY);
// swap edges
maScanlines[ nStartScanline ].push_back( Vertex(rP2, rP1, false) );
}
else
{
const sal_Int32 nStartScanline(nVertexYP1 - nMinY);
maScanlines[ nStartScanline ].push_back( Vertex(rP1, rP2, true) );
}
}
}
}
// now sort all scanlines, with increasing x coordinates
VectorOfVertexVectors::iterator aIter( maScanlines.begin() );
VectorOfVertexVectors::iterator aEnd( maScanlines.end() );
while( aIter != aEnd )
{
::std::sort( aIter->begin(),
aIter->end(),
VertexComparator() );
++aIter;
}
}
}
B2DPolyPolygonRasterConverter::B2DPolyPolygonRasterConverter( const B2DPolyPolygon& rPolyPoly ) :
maPolyPolygon( rPolyPoly ),
maPolyPolyRectangle( tools::getRange( rPolyPoly ) ),
maScanlines()
{
init();
}
namespace
{
B2DRectangle getCombinedBounds( const B2DPolyPolygon& rPolyPolyRaster,
const B2DRectangle& rRasterArea )
{
B2DRectangle aRect( tools::getRange( rPolyPolyRaster ) );
aRect.expand( rRasterArea );
return aRect;
}
}
B2DPolyPolygonRasterConverter::B2DPolyPolygonRasterConverter( const B2DPolyPolygon& rPolyPolyRaster,
const B2DRectangle& rRasterArea ) :
maPolyPolygon( rPolyPolyRaster ),
maPolyPolyRectangle(
getCombinedBounds( rPolyPolyRaster,
rRasterArea ) ),
maScanlines()
{
init();
}
B2DPolyPolygonRasterConverter::~B2DPolyPolygonRasterConverter()
{
}
namespace
{
class LineNodeGenerator
{
public:
LineNodeGenerator( VectorOfLineNodes& rActiveVertices ) :
mrActiveVertices( rActiveVertices )
{
}
void operator()( const B2DPolyPolygonRasterConverter::Vertex& rVertex )
{
mrActiveVertices.push_back( ImplLineNode(rVertex.aP1,
rVertex.aP2,
rVertex.bDownwards) );
}
private:
VectorOfLineNodes& mrActiveVertices;
};
struct LineNodeComparator
{
bool operator()( const ImplLineNode& rLHS, const ImplLineNode& rRHS )
{
return rLHS.getXPos() < rRHS.getXPos();
}
};
}
void B2DPolyPolygonRasterConverter::rasterConvert( FillRule eFillRule )
{
if( maScanlines.empty() )
return; // no scanlines at all -> bail out
const sal_Int32 nMinY( fround(maPolyPolyRectangle.getMinY()) );
const sal_Int32 nScanlines(fround(maPolyPolyRectangle.getMaxY()) - nMinY);
// Vector of currently active vertices. A vertex is active, if
// it crosses or touches the current scanline.
VectorOfLineNodes aActiveVertices;
// mickey's optimized version...
radixSort rs;
std::size_t nb(0);
std::size_t nb_previous(0);
bool bSort(false);
// process each scanline
for( sal_Int32 y(0); y <= nScanlines; ++y )
{
// add vertices which start at current scanline into
// active vertex vector
::std::for_each( maScanlines[y].begin(),
maScanlines[y].end(),
LineNodeGenerator( aActiveVertices ) );
nb = aActiveVertices.size();
if(nb != nb_previous)
{
nb_previous = nb;
bSort = true;
}
// sort with increasing X
if(bSort)
{
bSort = false;
if( nb )
{
rs.sort(&aActiveVertices[0].mfXPos,
nb,
sizeof(ImplLineNode));
}
}
const std::size_t nLen( nb );
if( !nLen )
{
// empty scanline - call derived with an 'off' span
// for the full width
span( maPolyPolyRectangle.getMinX(),
maPolyPolyRectangle.getMaxX(),
nMinY + y,
false );
}
else
{
const sal_Int32 nCurrY( nMinY + y );
// scanline not empty - forward all scans to derived,
// according to selected fill rule
// TODO(P1): Maybe allow these 'off' span calls to be
// switched off (or all 'on' span calls, depending on
// use case scenario)
// sorting didn't change the order of the elements
// in memory but prepared a list of indices in sorted order.
// thus we now process the nodes with an additional indirection.
sal_uInt32 *sorted = rs.indices();
// call derived with 'off' span for everything left of first active span
if( aActiveVertices[sorted[0]].getXPos() > maPolyPolyRectangle.getMinX() )
{
span( maPolyPolyRectangle.getMinX(),
aActiveVertices[sorted[0]].getXPos(),
nCurrY,
false );
}
switch( eFillRule )
{
default:
OSL_FAIL("B2DPolyPolygonRasterConverter::rasterConvert(): Unexpected fill rule");
return;
case FillRule_EVEN_ODD:
// process each span in current scanline, with
// even-odd fill rule
for( ::std::size_t i(0), nLength(aActiveVertices.size());
i+1 < nLength;
++i )
{
sal_uInt32 nIndex = sorted[i];
sal_uInt32 nNextIndex = sorted[i+1];
span( aActiveVertices[nIndex].getXPos(),
aActiveVertices[nNextIndex].getXPos(),
nCurrY,
i % 2 == 0 );
float delta = aActiveVertices[nIndex].nextLine();
if(delta > 0.0f)
{
if(aActiveVertices[nIndex].getXPos() > aActiveVertices[nNextIndex].getXPos())
bSort = true;
}
else if(delta < 0.0f)
{
if(i)
{
sal_uInt32 nPrevIndex = sorted[i-1];
if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
bSort = true;
}
}
}
break;
case FillRule_NONZERO_WINDING_NUMBER:
// process each span in current scanline, with
// non-zero winding numbe fill rule
sal_Int32 nWindingNumber(0);
for( ::std::size_t i(0), nLength(aActiveVertices.size());
i+1 < nLength;
++i )
{
sal_uInt32 nIndex = sorted[i];
sal_uInt32 nNextIndex = sorted[i+1];
nWindingNumber += -1 + 2*aActiveVertices[nIndex].isDownwards();
span( aActiveVertices[nIndex].getXPos(),
aActiveVertices[nNextIndex].getXPos(),
nCurrY,
nWindingNumber != 0 );
float delta = aActiveVertices[nIndex].nextLine();
if(delta > 0.0f)
{
if(aActiveVertices[nIndex].getXPos() > aActiveVertices[nNextIndex].getXPos())
bSort = true;
}
else if(delta < 0.0f)
{
if(i)
{
sal_uInt32 nPrevIndex = sorted[i-1];
if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
bSort = true;
}
}
}
break;
}
// call derived with 'off' span for everything right of last active span
if( aActiveVertices[sorted[nb-1]].getXPos()+1.0 < maPolyPolyRectangle.getMaxX() )
{
span( aActiveVertices[sorted[nb-1]].getXPos()+1.0,
maPolyPolyRectangle.getMaxX(),
nCurrY,
false );
}
// also call nextLine on very last line node
sal_uInt32 nIndex = sorted[nb-1];
float delta = aActiveVertices[nIndex].nextLine();
if(delta < 0.0f)
{
if(nb)
{
sal_uInt32 nPrevIndex = sorted[nb-2];
if(aActiveVertices[nIndex].getXPos() < aActiveVertices[nPrevIndex].getXPos())
bSort = true;
}
}
}
// remove line nodes which have ended on the current scanline
aActiveVertices.erase( ::std::remove_if( aActiveVertices.begin(),
aActiveVertices.end(),
::boost::mem_fn( &ImplLineNode::isEnded ) ),
aActiveVertices.end() );
nb = aActiveVertices.size();
if(nb != nb_previous)
{
nb_previous = nb;
bSort = true;
}
}
}
}
// eof
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */