office-gobmx/basegfx/source/polygon/b2dpolypolygontools.cxx
Sebastian Spaeth 4905a19032 Add vim/emacs modelines to all source files
Fixes #fdo30794
Based on bin/add-modelines script (originally posted in mail
1286706307.1871.1399280959@webmail.messagingengine.com)

Signed-off-by: Sebastian Spaeth <Sebastian@SSpaeth.de>
2010-10-14 17:02:15 +02:00

588 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <osl/diagnose.h>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/polygon/b2dpolypolygoncutter.hxx>
#include <numeric>
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
namespace tools
{
B2DPolyPolygon correctOrientations(const B2DPolyPolygon& rCandidate)
{
B2DPolyPolygon aRetval(rCandidate);
const sal_uInt32 nCount(aRetval.count());
for(sal_uInt32 a(0L); a < nCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
const B2VectorOrientation aOrientation(tools::getOrientation(aCandidate));
sal_uInt32 nDepth(0L);
for(sal_uInt32 b(0L); b < nCount; b++)
{
if(b != a)
{
const B2DPolygon aCompare(rCandidate.getB2DPolygon(b));
if(tools::isInside(aCompare, aCandidate, true))
{
nDepth++;
}
}
}
const bool bShallBeHole(1L == (nDepth & 0x00000001));
const bool bIsHole(ORIENTATION_NEGATIVE == aOrientation);
if(bShallBeHole != bIsHole && ORIENTATION_NEUTRAL != aOrientation)
{
B2DPolygon aFlipped(aCandidate);
aFlipped.flip();
aRetval.setB2DPolygon(a, aFlipped);
}
}
return aRetval;
}
B2DPolyPolygon correctOutmostPolygon(const B2DPolyPolygon& rCandidate)
{
const sal_uInt32 nCount(rCandidate.count());
if(nCount > 1L)
{
for(sal_uInt32 a(0L); a < nCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
sal_uInt32 nDepth(0L);
for(sal_uInt32 b(0L); b < nCount; b++)
{
if(b != a)
{
const B2DPolygon aCompare(rCandidate.getB2DPolygon(b));
if(tools::isInside(aCompare, aCandidate, true))
{
nDepth++;
}
}
}
if(!nDepth)
{
B2DPolyPolygon aRetval(rCandidate);
if(a != 0L)
{
// exchange polygon a and polygon 0L
aRetval.setB2DPolygon(0L, aCandidate);
aRetval.setB2DPolygon(a, rCandidate.getB2DPolygon(0L));
}
// exit
return aRetval;
}
}
}
return rCandidate;
}
B2DPolyPolygon adaptiveSubdivideByDistance(const B2DPolyPolygon& rCandidate, double fDistanceBound)
{
if(rCandidate.areControlPointsUsed())
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
if(aCandidate.areControlPointsUsed())
{
aRetval.append(tools::adaptiveSubdivideByDistance(aCandidate, fDistanceBound));
}
else
{
aRetval.append(aCandidate);
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolyPolygon adaptiveSubdivideByAngle(const B2DPolyPolygon& rCandidate, double fAngleBound)
{
if(rCandidate.areControlPointsUsed())
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
if(aCandidate.areControlPointsUsed())
{
aRetval.append(tools::adaptiveSubdivideByAngle(aCandidate, fAngleBound));
}
else
{
aRetval.append(aCandidate);
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolyPolygon adaptiveSubdivideByCount(const B2DPolyPolygon& rCandidate, sal_uInt32 nCount)
{
if(rCandidate.areControlPointsUsed())
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
if(aCandidate.areControlPointsUsed())
{
aRetval.append(tools::adaptiveSubdivideByCount(aCandidate, nCount));
}
else
{
aRetval.append(aCandidate);
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
bool isInside(const B2DPolyPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
if(1L == nPolygonCount)
{
return isInside(rCandidate.getB2DPolygon(0L), rPoint, bWithBorder);
}
else
{
sal_Int32 nInsideCount(0L);
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aPolygon(rCandidate.getB2DPolygon(a));
const bool bInside(isInside(aPolygon, rPoint, bWithBorder));
if(bInside)
{
nInsideCount++;
}
}
return (nInsideCount % 2L);
}
}
B2DRange getRangeWithControlPoints(const B2DPolyPolygon& rCandidate)
{
B2DRange aRetval;
const sal_uInt32 nPolygonCount(rCandidate.count());
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
B2DPolygon aCandidate = rCandidate.getB2DPolygon(a);
aRetval.expand(tools::getRangeWithControlPoints(aCandidate));
}
return aRetval;
}
B2DRange getRange(const B2DPolyPolygon& rCandidate)
{
B2DRange aRetval;
const sal_uInt32 nPolygonCount(rCandidate.count());
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
B2DPolygon aCandidate = rCandidate.getB2DPolygon(a);
aRetval.expand(tools::getRange(aCandidate));
}
return aRetval;
}
void applyLineDashing(const B2DPolyPolygon& rCandidate, const ::std::vector<double>& rDotDashArray, B2DPolyPolygon* pLineTarget, B2DPolyPolygon* pGapTarget, double fFullDashDotLen)
{
if(0.0 == fFullDashDotLen && rDotDashArray.size())
{
// calculate fFullDashDotLen from rDotDashArray
fFullDashDotLen = ::std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0);
}
if(rCandidate.count() && fFullDashDotLen > 0.0)
{
B2DPolyPolygon aLineTarget, aGapTarget;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
applyLineDashing(
aCandidate,
rDotDashArray,
pLineTarget ? &aLineTarget : 0,
pGapTarget ? &aGapTarget : 0,
fFullDashDotLen);
if(pLineTarget)
{
pLineTarget->append(aLineTarget);
}
if(pGapTarget)
{
pGapTarget->append(aGapTarget);
}
}
}
}
bool isInEpsilonRange(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
if(isInEpsilonRange(aCandidate, rTestPosition, fDistance))
{
return true;
}
}
return false;
}
B3DPolyPolygon createB3DPolyPolygonFromB2DPolyPolygon(const B2DPolyPolygon& rCandidate, double fZCoordinate)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B3DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
aRetval.append(createB3DPolygonFromB2DPolygon(aCandidate, fZCoordinate));
}
return aRetval;
}
B2DPolyPolygon createB2DPolyPolygonFromB3DPolyPolygon(const B3DPolyPolygon& rCandidate, const B3DHomMatrix& rMat)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
B3DPolygon aCandidate(rCandidate.getB3DPolygon(a));
aRetval.append(createB2DPolygonFromB3DPolygon(aCandidate, rMat));
}
return aRetval;
}
double getSmallestDistancePointToPolyPolygon(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rPolygonIndex, sal_uInt32& rEdgeIndex, double& rCut)
{
double fRetval(DBL_MAX);
const double fZero(0.0);
const sal_uInt32 nPolygonCount(rCandidate.count());
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
sal_uInt32 nNewEdgeIndex;
double fNewCut;
const double fNewDistance(getSmallestDistancePointToPolygon(aCandidate, rTestPoint, nNewEdgeIndex, fNewCut));
if(DBL_MAX == fRetval || fNewDistance < fRetval)
{
fRetval = fNewDistance;
rPolygonIndex = a;
rEdgeIndex = nNewEdgeIndex;
rCut = fNewCut;
if(fTools::equal(fRetval, fZero))
{
// already found zero distance, cannot get better. Ensure numerical zero value and end loop.
fRetval = 0.0;
break;
}
}
}
return fRetval;
}
B2DPolyPolygon distort(const B2DPolyPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
aRetval.append(distort(aCandidate, rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight));
}
return aRetval;
}
B2DPolyPolygon rotateAroundPoint(const B2DPolyPolygon& rCandidate, const B2DPoint& rCenter, double fAngle)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
aRetval.append(rotateAroundPoint(aCandidate, rCenter, fAngle));
}
return aRetval;
}
B2DPolyPolygon expandToCurve(const B2DPolyPolygon& rCandidate)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
aRetval.append(expandToCurve(aCandidate));
}
return aRetval;
}
B2DPolyPolygon setContinuity(const B2DPolyPolygon& rCandidate, B2VectorContinuity eContinuity)
{
if(rCandidate.areControlPointsUsed())
{
const sal_uInt32 nPolygonCount(rCandidate.count());
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a));
aRetval.append(setContinuity(aCandidate, eContinuity));
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolyPolygon growInNormalDirection(const B2DPolyPolygon& rCandidate, double fValue)
{
if(0.0 != fValue)
{
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(growInNormalDirection(rCandidate.getB2DPolygon(a), fValue));
}
return aRetval;
}
else
{
return rCandidate;
}
}
void correctGrowShrinkPolygonPair(B2DPolyPolygon& /*rOriginal*/, B2DPolyPolygon& /*rGrown*/)
{
}
B2DPolyPolygon reSegmentPolyPolygon(const B2DPolyPolygon& rCandidate, sal_uInt32 nSegments)
{
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(reSegmentPolygon(rCandidate.getB2DPolygon(a), nSegments));
}
return aRetval;
}
B2DPolyPolygon interpolate(const B2DPolyPolygon& rOld1, const B2DPolyPolygon& rOld2, double t)
{
OSL_ENSURE(rOld1.count() == rOld2.count(), "B2DPolyPolygon interpolate: Different geometry (!)");
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rOld1.count(); a++)
{
aRetval.append(interpolate(rOld1.getB2DPolygon(a), rOld2.getB2DPolygon(a), t));
}
return aRetval;
}
bool isRectangle( const B2DPolyPolygon& rPoly )
{
// exclude some cheap cases first
if( rPoly.count() != 1 )
return false;
return isRectangle( rPoly.getB2DPolygon(0) );
}
// #i76891#
B2DPolyPolygon simplifyCurveSegments(const B2DPolyPolygon& rCandidate)
{
if(rCandidate.areControlPointsUsed())
{
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(simplifyCurveSegments(rCandidate.getB2DPolygon(a)));
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolyPolygon reSegmentPolyPolygonEdges(const B2DPolyPolygon& rCandidate, sal_uInt32 nSubEdges, bool bHandleCurvedEdges, bool bHandleStraightEdges)
{
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(reSegmentPolygonEdges(rCandidate.getB2DPolygon(a), nSubEdges, bHandleCurvedEdges, bHandleStraightEdges));
}
return aRetval;
}
//////////////////////////////////////////////////////////////////////
// comparators with tolerance for 2D PolyPolygons
bool equal(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB, const double& rfSmallValue)
{
const sal_uInt32 nPolygonCount(rCandidateA.count());
if(nPolygonCount != rCandidateB.count())
return false;
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
const B2DPolygon aCandidate(rCandidateA.getB2DPolygon(a));
if(!equal(aCandidate, rCandidateB.getB2DPolygon(a), rfSmallValue))
return false;
}
return true;
}
bool equal(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
{
const double fSmallValue(fTools::getSmallValue());
return equal(rCandidateA, rCandidateB, fSmallValue);
}
B2DPolyPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolyPolygon& rCandidate)
{
B2DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(snapPointsOfHorizontalOrVerticalEdges(rCandidate.getB2DPolygon(a)));
}
return aRetval;
}
} // end of namespace tools
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
// eof
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */