office-gobmx/package/source/zipapi/ZipFile.cxx
Kurt Zenker 3cacae672b INTEGRATION: CWS mav05 (1.38.12); FILE MERGED
2003/09/04 13:54:22 mav 1.38.12.4: RESYNC: (1.38-1.39); FILE MERGED
2003/09/04 07:57:15 mav 1.38.12.3: #i15929# WrongPasswordException.idl is in packages now
2003/07/21 14:14:22 mav 1.38.12.2: #i15929# include MediaType in raw stream header, and other fixes
2003/07/18 14:20:51 mav 1.38.12.1: #i15929# support encryption in storages
2003-09-11 09:17:20 +00:00

1064 lines
41 KiB
C++

/*************************************************************************
*
* $RCSfile: ZipFile.cxx,v $
*
* $Revision: 1.40 $
*
* last change: $Author: kz $ $Date: 2003-09-11 10:17:20 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): Martin Gallwey (gallwey@sun.com)
*
*
************************************************************************/
#ifndef _ZIP_FILE_HXX
#include <ZipFile.hxx>
#endif
#ifndef _ZIP_ENUMERATION_HXX
#include <ZipEnumeration.hxx>
#endif
#ifndef _COM_SUN_STAR_PACKAGES_ZIP_ZIPCONSTANTS_HPP_
#include <com/sun/star/packages/zip/ZipConstants.hpp>
#endif
#ifndef _RTL_CIPHER_H_
#include <rtl/cipher.h>
#endif
#ifndef _RTL_DIGEST_H_
#include <rtl/digest.h>
#endif
/*
#ifndef _XMEMORY_STREAM_HXX
#include <XMemoryStream.hxx>
#endif
#ifndef _XFILE_STREAM_HXX
#include <XFileStream.hxx>
#endif
*/
#ifndef _XUNBUFFERED_STREAM_HXX
#include <XUnbufferedStream.hxx>
#endif
#ifndef _PACKAGE_CONSTANTS_HXX_
#include <PackageConstants.hxx>
#endif
#ifndef _ENCRYPTED_DATA_HEADER_HXX_
#include <EncryptedDataHeader.hxx>
#endif
#ifndef _ENCRYPTION_DATA_HXX_
#include <EncryptionData.hxx>
#endif
#ifndef _MEMORY_BYTE_GRABBER_HXX_
#include <MemoryByteGrabber.hxx>
#endif
#ifndef _COM_SUN_STAR_LANG_XMULTISERVICEFACTORY_HPP_
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_UCB_XPROGRESSHANDLER_HPP_
#include <com/sun/star/ucb/XProgressHandler.hpp>
#endif
#ifndef _CRC32_HXX_
#include <CRC32.hxx>
#endif
#include <string.h> // for memcpy
#include <vector>
using namespace vos;
using namespace rtl;
using namespace com::sun::star;
using namespace com::sun::star::io;
using namespace com::sun::star::uno;
using namespace com::sun::star::ucb;
using namespace com::sun::star::lang;
using namespace com::sun::star::packages;
using namespace com::sun::star::packages::zip;
using namespace com::sun::star::packages::zip::ZipConstants;
/** This class is used to read entries from a zip file
*/
ZipFile::ZipFile( Reference < XInputStream > &xInput, const Reference < XMultiServiceFactory > &xNewFactory, sal_Bool bInitialise )
throw(IOException, ZipException, RuntimeException)
: xStream(xInput)
, xSeek(xInput, UNO_QUERY)
, aGrabber(xInput)
, aInflater (sal_True)
, xFactory ( xNewFactory )
{
if (bInitialise)
{
if ( readCEN() == -1 )
{
aEntries.clear();
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "stream data looks to be broken" ) ), Reference < XInterface > () );
}
}
}
ZipFile::ZipFile( Reference < XInputStream > &xInput, const Reference < XMultiServiceFactory > &xNewFactory, sal_Bool bInitialise, sal_Bool bForceRecovery, Reference < XProgressHandler > xProgress )
throw(IOException, ZipException, RuntimeException)
: xStream(xInput)
, xSeek(xInput, UNO_QUERY)
, aGrabber(xInput)
, aInflater (sal_True)
, xFactory ( xNewFactory )
, xProgressHandler( xProgress )
{
if (bInitialise)
{
if ( bForceRecovery )
{
recover();
}
else if ( readCEN() == -1 )
{
aEntries.clear();
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "stream data looks to be broken" ) ), Reference < XInterface > () );
}
}
}
ZipFile::~ZipFile()
{
aEntries.clear();
}
void ZipFile::setInputStream ( Reference < XInputStream > xNewStream )
{
xStream = xNewStream;
xSeek = Reference < XSeekable > ( xStream, UNO_QUERY );
aGrabber.setInputStream ( xStream );
}
void ZipFile::StaticGetCipher ( const ORef < EncryptionData > & xEncryptionData, rtlCipher &rCipher )
{
if ( ! xEncryptionData.isEmpty() )
{
Sequence < sal_uInt8 > aDerivedKey (16);
rtlCipherError aResult;
Sequence < sal_Int8 > aDecryptBuffer;
// Get the key
rtl_digest_PBKDF2 ( aDerivedKey.getArray(), 16,
reinterpret_cast < const sal_uInt8 * > (xEncryptionData->aKey.getConstArray() ),
xEncryptionData->aKey.getLength(),
reinterpret_cast < const sal_uInt8 * > ( xEncryptionData->aSalt.getConstArray() ),
xEncryptionData->aSalt.getLength(),
xEncryptionData->nIterationCount );
rCipher = rtl_cipher_create (rtl_Cipher_AlgorithmBF, rtl_Cipher_ModeStream);
aResult = rtl_cipher_init( rCipher, rtl_Cipher_DirectionDecode,
aDerivedKey.getConstArray(),
aDerivedKey.getLength(),
reinterpret_cast < const sal_uInt8 * > ( xEncryptionData->aInitVector.getConstArray() ),
xEncryptionData->aInitVector.getLength());
OSL_ASSERT (aResult == rtl_Cipher_E_None);
}
}
void ZipFile::StaticFillHeader ( const ORef < EncryptionData > & rData,
sal_Int32 nSize,
const ::rtl::OUString& aMediaType,
sal_Int8 * & pHeader )
{
// I think it's safe to restrict vector and salt length to 2 bytes !
sal_Int16 nIVLength = static_cast < sal_Int16 > ( rData->aInitVector.getLength() );
sal_Int16 nSaltLength = static_cast < sal_Int16 > ( rData->aSalt.getLength() );
sal_Int16 nDigestLength = static_cast < sal_Int16 > ( rData->aDigest.getLength() );
sal_Int16 nMediaTypeLength = static_cast < sal_Int16 > ( aMediaType.getLength() * sizeof( sal_Unicode ) );
// First the header
*(pHeader++) = ( n_ConstHeader >> 0 ) & 0xFF;
*(pHeader++) = ( n_ConstHeader >> 8 ) & 0xFF;
*(pHeader++) = ( n_ConstHeader >> 16 ) & 0xFF;
*(pHeader++) = ( n_ConstHeader >> 24 ) & 0xFF;
// Then the version
*(pHeader++) = ( n_ConstCurrentVersion >> 0 ) & 0xFF;
*(pHeader++) = ( n_ConstCurrentVersion >> 8 ) & 0xFF;
// Then the iteration Count
sal_Int32 nIterationCount = rData->nIterationCount;
*(pHeader++) = ( nIterationCount >> 0 ) & 0xFF;
*(pHeader++) = ( nIterationCount >> 8 ) & 0xFF;
*(pHeader++) = ( nIterationCount >> 16 ) & 0xFF;
*(pHeader++) = ( nIterationCount >> 24 ) & 0xFF;
// Then the size
*(pHeader++) = ( nSize >> 0 ) & 0xFF;
*(pHeader++) = ( nSize >> 8 ) & 0xFF;
*(pHeader++) = ( nSize >> 16 ) & 0xFF;
*(pHeader++) = ( nSize >> 24 ) & 0xFF;
// Then the salt length
*(pHeader++) = ( nSaltLength >> 0 ) & 0xFF;
*(pHeader++) = ( nSaltLength >> 8 ) & 0xFF;
// Then the IV length
*(pHeader++) = ( nIVLength >> 0 ) & 0xFF;
*(pHeader++) = ( nIVLength >> 8 ) & 0xFF;
// Then the digest length
*(pHeader++) = ( nDigestLength >> 0 ) & 0xFF;
*(pHeader++) = ( nDigestLength >> 8 ) & 0xFF;
// Then the mediatype length
*(pHeader++) = ( nMediaTypeLength >> 0 ) & 0xFF;
*(pHeader++) = ( nMediaTypeLength >> 8 ) & 0xFF;
// Then the salt content
memcpy ( pHeader, rData->aSalt.getConstArray(), nSaltLength );
pHeader += nSaltLength;
// Then the IV content
memcpy ( pHeader, rData->aInitVector.getConstArray(), nIVLength );
pHeader += nIVLength;
// Then the digest content
memcpy ( pHeader, rData->aDigest.getConstArray(), nDigestLength );
pHeader += nDigestLength;
// Then the mediatype itself
memcpy ( pHeader, aMediaType.getStr(), nMediaTypeLength );
pHeader += nMediaTypeLength;
}
sal_Bool ZipFile::StaticFillData ( ORef < EncryptionData > & rData,
sal_Int32 &rSize,
::rtl::OUString& aMediaType,
Reference < XInputStream > &rStream )
{
sal_Bool bOk = sal_False;
const sal_Int32 nHeaderSize = n_ConstHeaderSize - 4;
Sequence < sal_Int8 > aBuffer ( nHeaderSize );
if ( nHeaderSize == rStream->readBytes ( aBuffer, nHeaderSize ) )
{
sal_Int16 nPos = 0;
sal_Int8 *pBuffer = aBuffer.getArray();
sal_Int16 nVersion = pBuffer[nPos++] & 0xFF;
nVersion |= ( pBuffer[nPos++] & 0xFF ) << 8;
if ( nVersion == n_ConstCurrentVersion )
{
sal_Int32 nCount = pBuffer[nPos++] & 0xFF;
nCount |= ( pBuffer[nPos++] & 0xFF ) << 8;
nCount |= ( pBuffer[nPos++] & 0xFF ) << 16;
nCount |= ( pBuffer[nPos++] & 0xFF ) << 24;
rData->nIterationCount = nCount;
rSize = pBuffer[nPos++] & 0xFF;
rSize |= ( pBuffer[nPos++] & 0xFF ) << 8;
rSize |= ( pBuffer[nPos++] & 0xFF ) << 16;
rSize |= ( pBuffer[nPos++] & 0xFF ) << 24;
sal_Int16 nSaltLength = pBuffer[nPos++] & 0xFF;
nSaltLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
sal_Int16 nIVLength = ( pBuffer[nPos++] & 0xFF );
nIVLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
sal_Int16 nDigestLength = pBuffer[nPos++] & 0xFF;
nDigestLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
sal_Int16 nMediaTypeLength = pBuffer[nPos++] & 0xFF;
nMediaTypeLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
if ( nSaltLength == rStream->readBytes ( aBuffer, nSaltLength ) )
{
rData->aSalt.realloc ( nSaltLength );
memcpy ( rData->aSalt.getArray(), aBuffer.getConstArray(), nSaltLength );
if ( nIVLength == rStream->readBytes ( aBuffer, nIVLength ) )
{
rData->aInitVector.realloc ( nIVLength );
memcpy ( rData->aInitVector.getArray(), aBuffer.getConstArray(), nIVLength );
if ( nDigestLength == rStream->readBytes ( aBuffer, nDigestLength ) )
{
rData->aDigest.realloc ( nDigestLength );
memcpy ( rData->aDigest.getArray(), aBuffer.getConstArray(), nDigestLength );
if ( nMediaTypeLength == rStream->readBytes ( aBuffer, nMediaTypeLength ) )
{
aMediaType = ::rtl::OUString( (sal_Unicode*)aBuffer.getConstArray(),
nMediaTypeLength / sizeof( sal_Unicode ) );
bOk = sal_True;
}
}
}
}
}
}
return bOk;
}
Reference< XInputStream > ZipFile::StaticGetDataFromRawStream( const Reference< XInputStream >& xStream,
const ORef < EncryptionData > &rData )
throw ( packages::WrongPasswordException, ZipIOException, RuntimeException )
{
if ( rData.isEmpty() )
throw ZipIOException( OUString::createFromAscii( "Encrypted stream without encryption data!\n" ),
Reference< XInterface >() );
if ( !rData->aKey.getLength() )
throw packages::WrongPasswordException();
Reference< XSeekable > xSeek( xStream, UNO_QUERY );
if ( !xSeek.is() )
throw ZipIOException( OUString::createFromAscii( "The stream must be seekable!\n" ),
Reference< XInterface >() );
// if we have a digest, then this file is an encrypted one and we should
// check if we can decrypt it or not
OSL_ENSURE( rData->aDigest.getLength(), "Can't detect password correctness without digest!\n" );
if ( rData->aDigest.getLength() )
{
sal_Int32 nSize = xSeek->getLength();
nSize = nSize > n_ConstDigestLength ? n_ConstDigestLength : nSize;
// skip header
xSeek->seek( n_ConstHeaderSize + rData->aInitVector.getLength() +
rData->aSalt.getLength() + rData->aDigest.getLength() );
// Only want to read enough to verify the digest
Sequence < sal_Int8 > aReadBuffer ( nSize );
xStream->readBytes( aReadBuffer, nSize );
if ( !StaticHasValidPassword( aReadBuffer, rData ) )
throw packages::WrongPasswordException();
}
return new XUnbufferedStream ( xStream, rData );
}
sal_Bool ZipFile::StaticHasValidPassword( const Sequence< sal_Int8 > &aReadBuffer, const ORef < EncryptionData > &rData )
{
if ( !rData.isValid() || !rData->aKey.getLength() )
return sal_False;
sal_Bool bRet = sal_False;
sal_Int32 nSize = aReadBuffer.getLength();
// make a temporary cipher
rtlCipher aCipher;
StaticGetCipher ( rData, aCipher );
Sequence < sal_Int8 > aDecryptBuffer ( nSize );
rtlDigest aDigest = rtl_digest_createSHA1();
rtlDigestError aDigestResult;
Sequence < sal_uInt8 > aDigestSeq ( RTL_DIGEST_LENGTH_SHA1 );
rtlCipherError aResult = rtl_cipher_decode ( aCipher,
aReadBuffer.getConstArray(),
nSize,
reinterpret_cast < sal_uInt8 * > (aDecryptBuffer.getArray()),
nSize);
OSL_ASSERT (aResult == rtl_Cipher_E_None);
aDigestResult = rtl_digest_updateSHA1 ( aDigest,
static_cast < const void * > ( aDecryptBuffer.getConstArray() ), nSize );
OSL_ASSERT ( aDigestResult == rtl_Digest_E_None );
aDigestResult = rtl_digest_getSHA1 ( aDigest, aDigestSeq.getArray(), RTL_DIGEST_LENGTH_SHA1 );
OSL_ASSERT ( aDigestResult == rtl_Digest_E_None );
// If we don't have a digest, then we have to assume that the password is correct
if ( rData->aDigest.getLength() != 0 &&
( aDigestSeq.getLength() != rData->aDigest.getLength() ||
0 != rtl_compareMemory ( aDigestSeq.getConstArray(),
rData->aDigest.getConstArray(),
aDigestSeq.getLength() ) ) )
{
// We should probably tell the user that the password they entered was wrong
}
else
bRet = sal_True;
rtl_digest_destroySHA1 ( aDigest );
return bRet;
}
sal_Bool ZipFile::hasValidPassword ( ZipEntry & rEntry, const ORef < EncryptionData > &rData )
{
sal_Bool bRet = sal_False;
if ( rData->aKey.getLength() )
{
xSeek->seek( rEntry.nOffset );
sal_Int32 nSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize;
// Only want to read enough to verify the digest
nSize = nSize > n_ConstDigestLength ? n_ConstDigestLength : nSize;
Sequence < sal_Int8 > aReadBuffer ( nSize );
xStream->readBytes( aReadBuffer, nSize );
bRet = StaticHasValidPassword( aReadBuffer, rData );
}
return bRet;
}
#if 0
Reference < XInputStream > ZipFile::createFileStream(
ZipEntry & rEntry,
const ORef < EncryptionData > &rData,
sal_Bool bRawStream,
sal_Bool bIsEncrypted )
{
static OUString sServiceName ( RTL_CONSTASCII_USTRINGPARAM ( "com.sun.star.io.TempFile" ) );
Reference < XInputStream > xTempStream = Reference < XInputStream > ( xFactory->createInstance ( sServiceName ), UNO_QUERY );
return new XFileStream ( rEntry, xStream, xTempStream, rData, bRawStream, bIsEncrypted );
}
Reference < XInputStream > ZipFile::createMemoryStream(
ZipEntry & rEntry,
const ORef < EncryptionData > &rData,
sal_Bool bRawStream,
sal_Bool bIsEncrypted )
{
sal_Int32 nUncompressedSize, nEnd;
if (bRawStream)
{
nUncompressedSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize;
nEnd = rEntry.nOffset + nUncompressedSize;
}
else
{
nUncompressedSize = rEntry.nSize;
nEnd = rEntry.nMethod == DEFLATED ? rEntry.nOffset + rEntry.nCompressedSize : rEntry.nOffset + rEntry.nSize;
}
sal_Int32 nSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize;
Sequence < sal_Int8 > aReadBuffer ( nSize ), aDecryptBuffer, aWriteBuffer;
rtlCipher aCipher;
// If the encryption key is zero, we need to return the raw stream. First check if
// we have the salt. If we have the salt, then check if we have the encryption key
// if not, return rawStream instead.
sal_Bool bHaveEncryptData = ( !rData.isEmpty() && rData->aSalt.getLength() && rData->aInitVector.getLength() && rData->nIterationCount != 0 ) ? sal_True : sal_False;
sal_Bool bMustDecrypt = ( !bRawStream && bHaveEncryptData && bIsEncrypted ) ? sal_True : sal_False;
if ( bMustDecrypt )
{
StaticGetCipher ( rData, aCipher );
aDecryptBuffer.realloc ( nSize );
}
if ( nSize <0 )
throw IOException ( );
xSeek->seek( rEntry.nOffset );
xStream->readBytes( aReadBuffer, nSize ); // Now it holds the raw stuff from disk
if ( bMustDecrypt )
{
rtlCipherError aResult = rtl_cipher_decode ( aCipher,
aReadBuffer.getConstArray(),
nSize,
reinterpret_cast < sal_uInt8 * > (aDecryptBuffer.getArray()),
nSize);
OSL_ASSERT (aResult == rtl_Cipher_E_None);
aReadBuffer = aDecryptBuffer; // Now it holds the decrypted data
}
if (bRawStream || rEntry.nMethod == STORED)
aWriteBuffer = aReadBuffer; // bRawStream means the caller doesn't want it decompressed
else
{
aInflater.setInputSegment( aReadBuffer, 0, nSize );
aWriteBuffer.realloc( nUncompressedSize );
aInflater.doInflate( aWriteBuffer );
aInflater.reset();
}
if ( bHaveEncryptData && !bMustDecrypt && bIsEncrypted )
{
// if we have the data needed to decrypt it, but didn't want it decrypted (or
// we couldn't decrypt it due to wrong password), then we prepend this
// data to the stream
// Make a buffer big enough to hold both the header and the data itself
Sequence < sal_Int8 > aEncryptedDataHeader ( n_ConstHeaderSize +
rData->aInitVector.getLength() +
rData->aSalt.getLength() +
rData->aDigest.getLength() +
aWriteBuffer.getLength() );
sal_Int8 * pHeader = aEncryptedDataHeader.getArray();
StaticFillHeader ( rData, rEntry.nSize, pHeader );
memcpy ( pHeader, aWriteBuffer.getConstArray(), aWriteBuffer.getLength() );
// dump old buffer and point aWriteBuffer to the new one with the header
aWriteBuffer = aEncryptedDataHeader;
}
return Reference < XInputStream > ( new XMemoryStream ( aWriteBuffer ) );
}
#endif
Reference < XInputStream > ZipFile::createUnbufferedStream(
ZipEntry & rEntry,
const ORef < EncryptionData > &rData,
sal_Int8 nStreamMode,
sal_Bool bIsEncrypted,
::rtl::OUString aMediaType )
{
return new XUnbufferedStream ( rEntry, xStream, rData, nStreamMode, bIsEncrypted, aMediaType );
}
ZipEnumeration * SAL_CALL ZipFile::entries( )
{
return new ZipEnumeration ( aEntries );
}
::rtl::OUString SAL_CALL ZipFile::getName( )
throw(RuntimeException)
{
return sName;
}
sal_Int32 SAL_CALL ZipFile::getSize( )
throw(RuntimeException)
{
return aEntries.size();
}
Reference< XInputStream > SAL_CALL ZipFile::getInputStream( ZipEntry& rEntry,
const vos::ORef < EncryptionData > &rData,
sal_Bool bIsEncrypted )
throw(IOException, ZipException, RuntimeException)
{
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
// We want to return a rawStream if we either don't have a key or if the
// key is wrong
sal_Bool bNeedRawStream = rEntry.nMethod == STORED;
// if we have a digest, then this file is an encrypted one and we should
// check if we can decrypt it or not
if ( bIsEncrypted && !rData.isEmpty() && rData->aDigest.getLength() )
bNeedRawStream = !hasValidPassword ( rEntry, rData );
return createUnbufferedStream ( rEntry,
rData,
bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA,
bIsEncrypted );
}
Reference< XInputStream > SAL_CALL ZipFile::getDataStream( ZipEntry& rEntry,
const vos::ORef < EncryptionData > &rData,
sal_Bool bIsEncrypted )
throw ( packages::WrongPasswordException,
IOException,
ZipException,
RuntimeException )
{
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
// An exception must be thrown in case stream is encrypted and
// there is no key or the key is wrong
sal_Bool bNeedRawStream = sal_False;
if ( bIsEncrypted )
{
// in case no digest is provided there is no way
// to detect password correctness
if ( rData.isEmpty() )
throw ZipException( OUString::createFromAscii( "Encrypted stream without encryption data!\n" ),
Reference< XInterface >() );
// if we have a digest, then this file is an encrypted one and we should
// check if we can decrypt it or not
OSL_ENSURE( rData->aDigest.getLength(), "Can't detect password correctness without digest!\n" );
if ( rData->aDigest.getLength() && !hasValidPassword ( rEntry, rData ) )
throw packages::WrongPasswordException();
}
else
bNeedRawStream = ( rEntry.nMethod == STORED );
return createUnbufferedStream ( rEntry,
rData,
bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA,
bIsEncrypted );
}
Reference< XInputStream > SAL_CALL ZipFile::getRawData( ZipEntry& rEntry,
const vos::ORef < EncryptionData > &rData,
sal_Bool bIsEncrypted )
throw(IOException, ZipException, RuntimeException)
{
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
return createUnbufferedStream ( rEntry, rData, UNBUFF_STREAM_RAW, bIsEncrypted );
}
Reference< XInputStream > SAL_CALL ZipFile::getWrappedRawStream(
ZipEntry& rEntry,
const vos::ORef < EncryptionData > &rData,
const ::rtl::OUString& aMediaType )
throw ( packages::NoEncryptionException,
IOException,
ZipException,
RuntimeException )
{
if ( rData.isEmpty() )
throw packages::NoEncryptionException();
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
return createUnbufferedStream ( rEntry, rData, UNBUFF_STREAM_WRAPPEDRAW, sal_True, aMediaType );
}
sal_Bool ZipFile::readLOC( ZipEntry &rEntry )
throw(IOException, ZipException, RuntimeException)
{
sal_Int32 nTestSig, nTime, nCRC, nSize, nCompressedSize;
sal_Int16 nVersion, nFlag, nHow, nNameLen, nExtraLen;
sal_Int32 nPos = -rEntry.nOffset;
aGrabber.seek(nPos);
aGrabber >> nTestSig;
if (nTestSig != LOCSIG)
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid LOC header (bad signature") ), Reference < XInterface > () );
aGrabber >> nVersion;
aGrabber >> nFlag;
aGrabber >> nHow;
aGrabber >> nTime;
aGrabber >> nCRC;
aGrabber >> nCompressedSize;
aGrabber >> nSize;
aGrabber >> nNameLen;
aGrabber >> nExtraLen;
rEntry.nOffset = static_cast < sal_Int32 > (aGrabber.getPosition()) + nNameLen + nExtraLen;
if ( rEntry.nNameLen == -1 ) // the file was created
rEntry.nNameLen = nNameLen;
// the method can be reset for internal use so it is not checked
sal_Bool bBroken = rEntry.nVersion != nVersion
|| rEntry.nFlag != nFlag
|| rEntry.nTime != nTime
|| rEntry.nNameLen != nNameLen;
if ( bBroken )
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM( "The stream seems to be broken!" ) ),
Reference< XInterface >() );
return sal_True;
}
sal_Int32 ZipFile::findEND( )
throw(IOException, ZipException, RuntimeException)
{
sal_Int32 nLength, nPos, nEnd;
Sequence < sal_Int8 > aBuffer;
try
{
nLength = static_cast <sal_Int32 > (aGrabber.getLength());
if (nLength == 0 || nLength < ENDHDR)
return -1;
nPos = nLength - ENDHDR - ZIP_MAXNAMELEN;
nEnd = nPos >= 0 ? nPos : 0 ;
aGrabber.seek( nEnd );
aGrabber.readBytes ( aBuffer, nLength - nEnd );
const sal_Int8 *pBuffer = aBuffer.getConstArray();
nPos = nLength - nEnd - ENDHDR;
while ( nPos >= 0 )
{
if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 5 && pBuffer[nPos+3] == 6 )
return nPos + nEnd;
nPos--;
}
}
catch ( IllegalArgumentException& )
{
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
catch ( NotConnectedException& )
{
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
catch ( BufferSizeExceededException& )
{
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
sal_Int32 ZipFile::readCEN()
throw(IOException, ZipException, RuntimeException)
{
sal_Int32 nCenLen, nCenPos = -1, nCenOff, nEndPos, nLocPos;
sal_uInt16 nCount, nTotal;
try
{
nEndPos = findEND();
if (nEndPos == -1)
return -1;
aGrabber.seek(nEndPos + ENDTOT);
aGrabber >> nTotal;
aGrabber >> nCenLen;
aGrabber >> nCenOff;
if ( nTotal < 0 || nTotal * CENHDR > nCenLen )
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "invalid END header (bad entry count)") ), Reference < XInterface > () );
if ( nTotal > ZIP_MAXENTRIES )
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "too many entries in ZIP File") ), Reference < XInterface > () );
if ( nCenLen < 0 || nCenLen > nEndPos )
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid END header (bad central directory size)") ), Reference < XInterface > () );
nCenPos = nEndPos - nCenLen;
if ( nCenOff < 0 || nCenOff > nCenPos )
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid END header (bad central directory size)") ), Reference < XInterface > () );
nLocPos = nCenPos - nCenOff;
aGrabber.seek( nCenPos );
Sequence < sal_Int8 > aCENBuffer ( nCenLen );
sal_Int64 nRead = aGrabber.readBytes ( aCENBuffer, nCenLen );
if ( static_cast < sal_Int64 > ( nCenLen ) != nRead )
throw ZipException ( OUString ( RTL_CONSTASCII_USTRINGPARAM ( "Error reading CEN into memory buffer!") ), Reference < XInterface > () );
MemoryByteGrabber aMemGrabber ( aCENBuffer );
ZipEntry aEntry;
sal_Int32 nTestSig;
sal_Int16 nCommentLen;
for (nCount = 0 ; nCount < nTotal; nCount++)
{
aMemGrabber >> nTestSig;
if ( nTestSig != CENSIG )
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid CEN header (bad signature)") ), Reference < XInterface > () );
aMemGrabber.skipBytes ( 2 );
aMemGrabber >> aEntry.nVersion;
if ( ( aEntry.nVersion & 1 ) == 1 )
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid CEN header (encrypted entry)") ), Reference < XInterface > () );
aMemGrabber >> aEntry.nFlag;
aMemGrabber >> aEntry.nMethod;
if ( aEntry.nMethod != STORED && aEntry.nMethod != DEFLATED)
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Invalid CEN header (bad compression method)") ), Reference < XInterface > () );
aMemGrabber >> aEntry.nTime;
aMemGrabber >> aEntry.nCrc;
aMemGrabber >> aEntry.nCompressedSize;
aMemGrabber >> aEntry.nSize;
aMemGrabber >> aEntry.nNameLen;
aMemGrabber >> aEntry.nExtraLen;
aMemGrabber >> nCommentLen;
aMemGrabber.skipBytes ( 8 );
aMemGrabber >> aEntry.nOffset;
aEntry.nOffset += nLocPos;
aEntry.nOffset *= -1;
if ( aEntry.nNameLen > ZIP_MAXNAMELEN )
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "name length exceeds ZIP_MAXNAMELEN bytes" ) ), Reference < XInterface > () );
if ( nCommentLen > ZIP_MAXNAMELEN )
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "comment length exceeds ZIP_MAXNAMELEN bytes" ) ), Reference < XInterface > () );
if ( aEntry.nExtraLen > ZIP_MAXEXTRA )
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "extra header info exceeds ZIP_MAXEXTRA bytes") ), Reference < XInterface > () );
aEntry.sName = OUString ( (sal_Char *) aMemGrabber.getCurrentPos(),
aEntry.nNameLen,
RTL_TEXTENCODING_ASCII_US);
aMemGrabber.skipBytes( aEntry.nNameLen + aEntry.nExtraLen + nCommentLen );
aEntries[aEntry.sName] = aEntry;
}
if (nCount != nTotal)
throw ZipException(OUString( RTL_CONSTASCII_USTRINGPARAM ( "Count != Total") ), Reference < XInterface > () );
}
catch ( IllegalArgumentException & )
{
// seek can throw this...
nCenPos = -1; // make sure we return -1 to indicate an error
}
return nCenPos;
}
sal_Int32 ZipFile::recover()
throw(IOException, ZipException, RuntimeException)
{
sal_Int32 nLength;
Sequence < sal_Int8 > aBuffer;
Sequence < sal_Int32 > aHeaderOffsets;
sal_Int32 nNumOfHeaders = 0;
try
{
nLength = static_cast <sal_Int32 > (aGrabber.getLength());
if (nLength == 0 || nLength < ENDHDR)
return -1;
aGrabber.seek( 0 );
for( sal_Int32 nGenPos = 0; aGrabber.readBytes( aBuffer, 32000 ) && aBuffer.getLength() > 30; )
{
const sal_Int8 *pBuffer = aBuffer.getConstArray();
sal_Int32 nBufSize = aBuffer.getLength();
sal_Int32 nPos = 0;
while( nPos < nBufSize - 16 )
{
if ( nPos < nBufSize - 30 && pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 3 && pBuffer[nPos+3] == 4 )
{
ZipEntry aEntry;
MemoryByteGrabber aMemGrabber ( Sequence< sal_Int8 >( ((sal_Int8*)(&(pBuffer[nPos+4]))), 26 ) );
aMemGrabber >> aEntry.nVersion;
if ( ( aEntry.nVersion & 1 ) != 1 )
{
aMemGrabber >> aEntry.nFlag;
aMemGrabber >> aEntry.nMethod;
if ( aEntry.nMethod == STORED || aEntry.nMethod == DEFLATED )
{
aMemGrabber >> aEntry.nTime;
aMemGrabber >> aEntry.nCrc;
aMemGrabber >> aEntry.nCompressedSize;
aMemGrabber >> aEntry.nSize;
aMemGrabber >> aEntry.nNameLen;
aMemGrabber >> aEntry.nExtraLen;
sal_Int32 nDescrLength =
( aEntry.nMethod == DEFLATED && ( aEntry.nFlag & 8 ) ) ?
16 : 0;
// This is a quick fix for OOo1.1RC
// For OOo2.0 the whole package must be switched to unsigned values
if ( aEntry.nCompressedSize < 0 ) aEntry.nCompressedSize = 0x7FFFFFFF;
if ( aEntry.nSize < 0 ) aEntry.nSize = 0x7FFFFFFF;
if ( aEntry.nNameLen < 0 ) aEntry.nNameLen = 0x7FFF;
if ( aEntry.nExtraLen < 0 ) aEntry.nExtraLen = 0x7FFF;
// End of quick fix
sal_Int32 nBlockLength = aEntry.nSize + aEntry.nNameLen + aEntry.nExtraLen + 30 + nDescrLength;
if ( aEntry.nNameLen <= ZIP_MAXNAMELEN && aEntry.nExtraLen < ZIP_MAXEXTRA
&& ( nGenPos + nPos + nBlockLength ) <= nLength )
{
if( nPos + 30 + aEntry.nNameLen <= nBufSize )
aEntry.sName = OUString ( (sal_Char *) &pBuffer[nPos + 30],
aEntry.nNameLen,
RTL_TEXTENCODING_ASCII_US);
else
{
Sequence < sal_Int8 > aFileName;
aGrabber.seek( nGenPos + nPos + 30 );
aGrabber.readBytes( aFileName, aEntry.nNameLen );
aEntry.sName = OUString ( (sal_Char *) aFileName.getArray(),
aFileName.getLength(),
RTL_TEXTENCODING_ASCII_US);
aEntry.nNameLen = aFileName.getLength();
}
aEntry.nOffset = nGenPos + nPos + 30 + aEntry.nNameLen + aEntry.nExtraLen;
if ( ( aEntry.nSize || aEntry.nCompressedSize ) && !checkSizeAndCRC( aEntry ) )
{
aEntry.nCrc = 0;
aEntry.nCompressedSize = 0;
aEntry.nSize = 0;
}
if ( aEntries.find( aEntry.sName ) == aEntries.end() )
aEntries[aEntry.sName] = aEntry;
}
}
}
nPos += 4;
}
else if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 7 && pBuffer[nPos+3] == 8 )
{
sal_Int32 nCompressedSize, nSize, nCRC32;
MemoryByteGrabber aMemGrabber ( Sequence< sal_Int8 >( ((sal_Int8*)(&(pBuffer[nPos+4]))), 12 ) );
aMemGrabber >> nCRC32;
aMemGrabber >> nCompressedSize;
aMemGrabber >> nSize;
for( EntryHash::iterator aIter = aEntries.begin(); aIter != aEntries.end(); aIter++ )
{
ZipEntry aTmp = (*aIter).second;
if( (*aIter).second.nMethod == DEFLATED && (*aIter).second.nFlag & 8 )
{
sal_Int32 nStreamOffset = nGenPos + nPos - nCompressedSize;
sal_Int32 nTmp1 = (*aIter).second.nOffset;
if ( nStreamOffset == (*aIter).second.nOffset && nCompressedSize > (*aIter).second.nCompressedSize )
{
sal_Int32 nRealSize = 0, nRealCRC = 0;
getSizeAndCRC( nStreamOffset, nCompressedSize, &nRealSize, &nRealCRC );
if ( nRealSize == nSize && nRealCRC == nCRC32 )
{
(*aIter).second.nCrc = nCRC32;
(*aIter).second.nCompressedSize = nCompressedSize;
(*aIter).second.nSize = nSize;
}
}
#if 0
// for now ignore clearly broken streams
else if( !(*aIter).second.nCompressedSize )
{
(*aIter).second.nCrc = nCRC32;
sal_Int32 nRealStreamSize = nGenPos + nPos - (*aIter).second.nOffset;
(*aIter).second.nCompressedSize = nGenPos + nPos - (*aIter).second.nOffset;
(*aIter).second.nSize = nSize;
}
#endif
}
}
nPos += 4;
}
else
nPos++;
}
nGenPos += nPos;
aGrabber.seek( nGenPos );
}
return 0;
}
catch ( IllegalArgumentException& )
{
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
catch ( NotConnectedException& )
{
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
catch ( BufferSizeExceededException& )
{
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
throw ZipException( OUString( RTL_CONSTASCII_USTRINGPARAM ( "Zip END signature not found!") ), Reference < XInterface > () );
}
sal_Bool ZipFile::checkSizeAndCRC( const ZipEntry& aEntry )
{
sal_Int32 nSize = 0, nCRC = 0;
if( aEntry.nMethod == STORED )
return ( getCRC( aEntry.nOffset, aEntry.nSize ) == aEntry.nCrc );
getSizeAndCRC( aEntry.nOffset, aEntry.nCompressedSize, &nSize, &nCRC );
return ( aEntry.nSize == nSize && aEntry.nCrc == nCRC );
}
sal_Int32 ZipFile::getCRC( sal_Int32 nOffset, sal_Int32 nSize )
{
Sequence < sal_Int8 > aBuffer;
CRC32 aCRC;
sal_Int32 nBlockSize = ::std::min( nSize, 32000L );
aGrabber.seek( nOffset );
for ( int ind = 0;
aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nSize;
ind++ )
{
aCRC.updateSegment( aBuffer, 0, ::std::min( nBlockSize, nSize - ind * nBlockSize ) );
}
return aCRC.getValue();
}
void ZipFile::getSizeAndCRC( sal_Int32 nOffset, sal_Int32 nCompressedSize, sal_Int32 *nSize, sal_Int32 *nCRC )
{
Sequence < sal_Int8 > aBuffer;
CRC32 aCRC;
sal_Int32 nRealSize = 0;
Inflater aInflater( sal_True );
sal_Int32 nBlockSize = ::std::min( nCompressedSize, 32000L );
aGrabber.seek( nOffset );
for ( int ind = 0;
!aInflater.finished() && aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nCompressedSize;
ind++ )
{
Sequence < sal_Int8 > aData( nBlockSize );
sal_Int32 nLastInflated = 0;
sal_Int32 nInBlock = 0;
aInflater.setInput( aBuffer );
do
{
nLastInflated = aInflater.doInflateSegment( aData, 0, nBlockSize );
aCRC.updateSegment( aData, 0, nLastInflated );
nInBlock += nLastInflated;
} while( !aInflater.finished() && nLastInflated );
nRealSize += nInBlock;
}
if( aInflater.finished() )
{
*nSize = nRealSize;
*nCRC = aCRC.getValue();
}
else
*nSize = *nCRC = 0;
}