d991795635
Change-Id: Ia0314a985ae2183727587ad254faec12ee49b66c Reviewed-on: https://gerrit.libreoffice.org/c/core/+/176769 Tested-by: Jenkins Reviewed-by: Xisco Fauli <xiscofauli@libreoffice.org>
1069 lines
52 KiB
C++
1069 lines
52 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <sal/config.h>
|
|
|
|
#include <cstdlib>
|
|
#include <tuple>
|
|
|
|
#include <basegfx/matrix/b2dhommatrix.hxx>
|
|
#include <basegfx/numeric/ftools.hxx>
|
|
#include <basegfx/point/b2dpoint.hxx>
|
|
#include <basegfx/polygon/b2dpolygon.hxx>
|
|
#include <basegfx/polygon/b2dpolygontools.hxx>
|
|
#include <basegfx/range/b2drectangle.hxx>
|
|
#include <basegfx/utils/canvastools.hxx>
|
|
#include <basegfx/utils/keystoplerp.hxx>
|
|
#include <basegfx/utils/lerp.hxx>
|
|
#include <basegfx/utils/tools.hxx>
|
|
#include <com/sun/star/rendering/TexturingMode.hpp>
|
|
#include <rtl/math.hxx>
|
|
#include <comphelper/diagnose_ex.hxx>
|
|
#include <tools/poly.hxx>
|
|
#include <vcl/bitmapex.hxx>
|
|
#include <vcl/canvastools.hxx>
|
|
#include <vcl/virdev.hxx>
|
|
#include <vcl/gradient.hxx>
|
|
|
|
#include <canvas/canvastools.hxx>
|
|
#include <parametricpolypolygon.hxx>
|
|
|
|
#include "canvashelper.hxx"
|
|
#include "impltools.hxx"
|
|
|
|
|
|
using namespace ::com::sun::star;
|
|
|
|
namespace vclcanvas
|
|
{
|
|
namespace
|
|
{
|
|
bool textureFill( OutputDevice& rOutDev,
|
|
const GraphicObject& rGraphic,
|
|
const ::Point& rPosPixel,
|
|
const ::Size& rNextTileX,
|
|
const ::Size& rNextTileY,
|
|
sal_Int32 nTilesX,
|
|
sal_Int32 nTilesY,
|
|
const ::Size& rTileSize,
|
|
const GraphicAttr& rAttr)
|
|
{
|
|
bool bRet( false );
|
|
Point aCurrPos;
|
|
int nX, nY;
|
|
|
|
for( nY=0; nY < nTilesY; ++nY )
|
|
{
|
|
aCurrPos.setX( rPosPixel.X() + nY*rNextTileY.Width() );
|
|
aCurrPos.setY( rPosPixel.Y() + nY*rNextTileY.Height() );
|
|
|
|
for( nX=0; nX < nTilesX; ++nX )
|
|
{
|
|
// update return value. This method should return true, if
|
|
// at least one of the looped Draws succeeded.
|
|
bRet |= rGraphic.Draw(rOutDev,
|
|
aCurrPos,
|
|
rTileSize,
|
|
&rAttr);
|
|
|
|
aCurrPos.AdjustX(rNextTileX.Width() );
|
|
aCurrPos.AdjustY(rNextTileX.Height() );
|
|
}
|
|
}
|
|
|
|
return bRet;
|
|
}
|
|
|
|
|
|
/** Fill linear or axial gradient
|
|
|
|
Since most of the code for linear and axial gradients are
|
|
the same, we've a unified method here
|
|
*/
|
|
void fillLinearGradient( OutputDevice& rOutDev,
|
|
const ::basegfx::B2DHomMatrix& rTextureTransform,
|
|
const ::tools::Rectangle& rBounds,
|
|
unsigned int nStepCount,
|
|
const ::canvas::ParametricPolyPolygon::Values& rValues,
|
|
const std::vector< ::Color >& rColors )
|
|
{
|
|
// determine general position of gradient in relation to
|
|
// the bound rect
|
|
// =====================================================
|
|
|
|
::basegfx::B2DPoint aLeftTop( 0.0, 0.0 );
|
|
::basegfx::B2DPoint aLeftBottom( 0.0, 1.0 );
|
|
::basegfx::B2DPoint aRightTop( 1.0, 0.0 );
|
|
::basegfx::B2DPoint aRightBottom( 1.0, 1.0 );
|
|
|
|
aLeftTop *= rTextureTransform;
|
|
aLeftBottom *= rTextureTransform;
|
|
aRightTop *= rTextureTransform;
|
|
aRightBottom*= rTextureTransform;
|
|
|
|
// calc length of bound rect diagonal
|
|
const ::basegfx::B2DVector aBoundRectDiagonal(
|
|
vcl::unotools::b2DPointFromPoint( rBounds.TopLeft() ) -
|
|
vcl::unotools::b2DPointFromPoint( rBounds.BottomRight() ) );
|
|
const double nDiagonalLength( aBoundRectDiagonal.getLength() );
|
|
|
|
// create direction of gradient:
|
|
// _______
|
|
// | | |
|
|
// -> | | | ...
|
|
// | | |
|
|
// -------
|
|
::basegfx::B2DVector aDirection( aRightTop - aLeftTop );
|
|
aDirection.normalize();
|
|
|
|
// now, we potentially have to enlarge our gradient area
|
|
// atop and below the transformed [0,1]x[0,1] unit rect,
|
|
// for the gradient to fill the complete bound rect.
|
|
::basegfx::utils::infiniteLineFromParallelogram( aLeftTop,
|
|
aLeftBottom,
|
|
aRightTop,
|
|
aRightBottom,
|
|
vcl::unotools::b2DRectangleFromRectangle(rBounds) );
|
|
|
|
|
|
// render gradient
|
|
// ===============
|
|
|
|
// First try to use directly VCL's DrawGradient(), as that one is generally
|
|
// a better choice than here decomposing to polygons. The VCL API allows
|
|
// only 2 colors, but that should generally do.
|
|
// Do not use nStepCount, it limits optimized implementations, and it's computed
|
|
// by vclcanvas based on number of colors, so it's practically irrelevant.
|
|
|
|
// 2 colors and 2 stops (at 0 and 1) is a linear gradient:
|
|
if( rColors.size() == 2 && rValues.maStops.size() == 2 && rValues.maStops[0] == 0 && rValues.maStops[1] == 1)
|
|
{
|
|
// tdf#144073 and tdf#147645: use bounds and angle for gradient
|
|
// Passing an expanded, rotated polygon noticeably modifies the
|
|
// drawing of the gradient in a slideshow due to moving of the
|
|
// starting and ending colors far off the edges of the drawing
|
|
// surface. So try another way and set the angle of the
|
|
// gradient and draw only the unadjusted bounds.
|
|
Gradient vclGradient( css::awt::GradientStyle_LINEAR, rColors[ 0 ], rColors[ 1 ] );
|
|
double fRotate = atan2( aDirection.getY(), aDirection.getX() );
|
|
const double nAngleInTenthOfDegrees = 3600.0 - basegfx::rad2deg<10>( fRotate ) + 900.0;
|
|
vclGradient.SetAngle( Degree10( ::basegfx::fround( nAngleInTenthOfDegrees ) ) );
|
|
rOutDev.DrawGradient( rBounds, vclGradient );
|
|
return;
|
|
}
|
|
// 3 colors with first and last being equal and 3 stops (at 0, 0.5 and 1) is an axial gradient:
|
|
if( rColors.size() == 3 && rColors[ 0 ] == rColors[ 2 ]
|
|
&& rValues.maStops.size() == 3 && rValues.maStops[0] == 0
|
|
&& rValues.maStops[1] == 0.5 && rValues.maStops[2] == 1)
|
|
{
|
|
// tdf#144073 and tdf#147645: use bounds and angle for gradient
|
|
// Passing an expanded, rotated polygon noticeably modifies the
|
|
// drawing of the gradient in a slideshow due to moving of the
|
|
// starting and ending colors far off the edges of the drawing
|
|
// surface. So try another way and set the angle of the
|
|
// gradient and draw only the unadjusted bounds.
|
|
Gradient vclGradient( css::awt::GradientStyle_AXIAL, rColors[ 1 ], rColors[ 0 ] );
|
|
double fRotate = atan2( aDirection.getY(), aDirection.getX() );
|
|
const double nAngleInTenthOfDegrees = 3600.0 - basegfx::rad2deg<10>( fRotate ) + 900.0;
|
|
vclGradient.SetAngle( Degree10( ::basegfx::fround( nAngleInTenthOfDegrees ) ) );
|
|
rOutDev.DrawGradient( rBounds, vclGradient );
|
|
return;
|
|
}
|
|
|
|
// for linear gradients, it's easy to render
|
|
// non-overlapping polygons: just split the gradient into
|
|
// nStepCount small strips. Prepare the strip now.
|
|
|
|
// For performance reasons, we create a temporary VCL
|
|
// polygon here, keep it all the way and only change the
|
|
// vertex values in the loop below (as ::Polygon is a
|
|
// pimpl class, creating one every loop turn would really
|
|
// stress the mem allocator)
|
|
::tools::Polygon aTempPoly( static_cast<sal_uInt16>(5) );
|
|
|
|
OSL_ENSURE( nStepCount >= 3,
|
|
"fillLinearGradient(): stepcount smaller than 3" );
|
|
|
|
|
|
// fill initial strip (extending two times the bound rect's
|
|
// diagonal to the 'left'
|
|
|
|
|
|
// calculate left edge, by moving left edge of the
|
|
// gradient rect two times the bound rect's diagonal to
|
|
// the 'left'. Since we postpone actual rendering into the
|
|
// loop below, we set the _right_ edge here, which will be
|
|
// readily copied into the left edge in the loop below
|
|
const ::basegfx::B2DPoint aPoint1( aLeftTop - 2.0*nDiagonalLength*aDirection );
|
|
aTempPoly[1] = ::Point( ::basegfx::fround<::tools::Long>( aPoint1.getX() ),
|
|
::basegfx::fround<::tools::Long>( aPoint1.getY() ) );
|
|
|
|
const ::basegfx::B2DPoint aPoint2( aLeftBottom - 2.0*nDiagonalLength*aDirection );
|
|
aTempPoly[2] = ::Point( ::basegfx::fround<::tools::Long>( aPoint2.getX() ),
|
|
::basegfx::fround<::tools::Long>( aPoint2.getY() ) );
|
|
|
|
|
|
// iteratively render all other strips
|
|
|
|
|
|
// ensure that nStepCount matches color stop parity, to
|
|
// have a well-defined middle color e.g. for axial
|
|
// gradients.
|
|
if( (rColors.size() % 2) != (nStepCount % 2) )
|
|
++nStepCount;
|
|
|
|
rOutDev.SetLineColor();
|
|
|
|
basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
|
|
|
|
// only iterate nStepCount-1 steps, as the last strip is
|
|
// explicitly painted below
|
|
for( unsigned int i=0; i<nStepCount-1; ++i )
|
|
{
|
|
std::ptrdiff_t nIndex;
|
|
double fAlpha;
|
|
std::tie(nIndex,fAlpha)=aLerper.lerp(double(i)/nStepCount);
|
|
|
|
rOutDev.SetFillColor(
|
|
Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
|
|
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
|
|
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
|
|
|
|
// copy right edge of polygon to left edge (and also
|
|
// copy the closing point)
|
|
aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
|
|
aTempPoly[3] = aTempPoly[2];
|
|
|
|
// calculate new right edge, from interpolating
|
|
// between start and end line. Note that i is
|
|
// increased by one, to account for the fact that we
|
|
// calculate the right border here (whereas the fill
|
|
// color is governed by the left edge)
|
|
const ::basegfx::B2DPoint aPoint3(
|
|
(nStepCount - i-1)/double(nStepCount)*aLeftTop +
|
|
(i+1)/double(nStepCount)*aRightTop );
|
|
aTempPoly[1] = ::Point( ::basegfx::fround<::tools::Long>( aPoint3.getX() ),
|
|
::basegfx::fround<::tools::Long>( aPoint3.getY() ) );
|
|
|
|
const ::basegfx::B2DPoint aPoint4(
|
|
(nStepCount - i-1)/double(nStepCount)*aLeftBottom +
|
|
(i+1)/double(nStepCount)*aRightBottom );
|
|
aTempPoly[2] = ::Point( ::basegfx::fround<::tools::Long>( aPoint4.getX() ),
|
|
::basegfx::fround<::tools::Long>( aPoint4.getY() ) );
|
|
|
|
rOutDev.DrawPolygon( aTempPoly );
|
|
}
|
|
|
|
// fill final strip (extending two times the bound rect's
|
|
// diagonal to the 'right'
|
|
|
|
|
|
// copy right edge of polygon to left edge (and also
|
|
// copy the closing point)
|
|
aTempPoly[0] = aTempPoly[4] = aTempPoly[1];
|
|
aTempPoly[3] = aTempPoly[2];
|
|
|
|
// calculate new right edge, by moving right edge of the
|
|
// gradient rect two times the bound rect's diagonal to
|
|
// the 'right'.
|
|
const ::basegfx::B2DPoint aPoint3( aRightTop + 2.0*nDiagonalLength*aDirection );
|
|
aTempPoly[0] = aTempPoly[4] = ::Point( ::basegfx::fround<::tools::Long>( aPoint3.getX() ),
|
|
::basegfx::fround<::tools::Long>( aPoint3.getY() ) );
|
|
|
|
const ::basegfx::B2DPoint aPoint4( aRightBottom + 2.0*nDiagonalLength*aDirection );
|
|
aTempPoly[3] = ::Point( ::basegfx::fround<::tools::Long>( aPoint4.getX() ),
|
|
::basegfx::fround<::tools::Long>( aPoint4.getY() ) );
|
|
|
|
rOutDev.SetFillColor( rColors.back() );
|
|
|
|
rOutDev.DrawPolygon( aTempPoly );
|
|
}
|
|
|
|
void fillPolygonalGradient( OutputDevice& rOutDev,
|
|
const ::basegfx::B2DHomMatrix& rTextureTransform,
|
|
const ::tools::Rectangle& rBounds,
|
|
unsigned int nStepCount,
|
|
const ::canvas::ParametricPolyPolygon::Values& rValues,
|
|
const std::vector< ::Color >& rColors )
|
|
{
|
|
const ::basegfx::B2DPolygon& rGradientPoly( rValues.maGradientPoly );
|
|
|
|
ENSURE_OR_THROW( rGradientPoly.count() > 2,
|
|
"fillPolygonalGradient(): polygon without area given" );
|
|
|
|
// For performance reasons, we create a temporary VCL polygon
|
|
// here, keep it all the way and only change the vertex values
|
|
// in the loop below (as ::Polygon is a pimpl class, creating
|
|
// one every loop turn would really stress the mem allocator)
|
|
::basegfx::B2DPolygon aOuterPoly( rGradientPoly );
|
|
::basegfx::B2DPolygon aInnerPoly;
|
|
|
|
// subdivide polygon _before_ rendering, would otherwise have
|
|
// to be performed on every loop turn.
|
|
if( aOuterPoly.areControlPointsUsed() )
|
|
aOuterPoly = ::basegfx::utils::adaptiveSubdivideByAngle(aOuterPoly);
|
|
|
|
aInnerPoly = aOuterPoly;
|
|
|
|
// only transform outer polygon _after_ copying it into
|
|
// aInnerPoly, because inner polygon has to be scaled before
|
|
// the actual texture transformation takes place
|
|
aOuterPoly.transform( rTextureTransform );
|
|
|
|
// determine overall transformation for inner polygon (might
|
|
// have to be prefixed by anisotrophic scaling)
|
|
::basegfx::B2DHomMatrix aInnerPolygonTransformMatrix;
|
|
|
|
|
|
// apply scaling (possibly anisotrophic) to inner polygon
|
|
|
|
|
|
// scale inner polygon according to aspect ratio: for
|
|
// wider-than-tall bounds (nAspectRatio > 1.0), the inner
|
|
// polygon, representing the gradient focus, must have
|
|
// non-zero width. Specifically, a bound rect twice as wide as
|
|
// tall has a focus polygon of half its width.
|
|
const double nAspectRatio( rValues.mnAspectRatio );
|
|
if( nAspectRatio > 1.0 )
|
|
{
|
|
// width > height case
|
|
aInnerPolygonTransformMatrix.scale( 1.0 - 1.0/nAspectRatio,
|
|
0.0 );
|
|
}
|
|
else if( nAspectRatio < 1.0 )
|
|
{
|
|
// width < height case
|
|
aInnerPolygonTransformMatrix.scale( 0.0,
|
|
1.0 - nAspectRatio );
|
|
}
|
|
else
|
|
{
|
|
// isotrophic case
|
|
aInnerPolygonTransformMatrix.scale( 0.0, 0.0 );
|
|
}
|
|
|
|
// and finally, add texture transform to it.
|
|
aInnerPolygonTransformMatrix *= rTextureTransform;
|
|
|
|
// apply final matrix to polygon
|
|
aInnerPoly.transform( aInnerPolygonTransformMatrix );
|
|
|
|
|
|
const sal_uInt32 nNumPoints( aOuterPoly.count() );
|
|
::tools::Polygon aTempPoly( static_cast<sal_uInt16>(nNumPoints+1) );
|
|
|
|
// increase number of steps by one: polygonal gradients have
|
|
// the outermost polygon rendered in rColor2, and the
|
|
// innermost in rColor1. The innermost polygon will never
|
|
// have zero area, thus, we must divide the interval into
|
|
// nStepCount+1 steps. For example, to create 3 steps:
|
|
|
|
// | |
|
|
// |-------|-------|-------|
|
|
// | |
|
|
// 3 2 1 0
|
|
|
|
// This yields 4 tick marks, where 0 is never attained (since
|
|
// zero-area polygons typically don't display perceivable
|
|
// color).
|
|
++nStepCount;
|
|
|
|
rOutDev.SetLineColor();
|
|
|
|
basegfx::utils::KeyStopLerp aLerper(rValues.maStops);
|
|
|
|
// fill background
|
|
rOutDev.SetFillColor( rColors.front() );
|
|
rOutDev.DrawRect( rBounds );
|
|
|
|
// render polygon
|
|
// ==============
|
|
|
|
for( unsigned int i=1,p; i<nStepCount; ++i )
|
|
{
|
|
const double fT( i/double(nStepCount) );
|
|
|
|
std::ptrdiff_t nIndex;
|
|
double fAlpha;
|
|
std::tie(nIndex,fAlpha)=aLerper.lerp(fT);
|
|
|
|
// lerp color
|
|
rOutDev.SetFillColor(
|
|
Color( static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetRed(),rColors[nIndex+1].GetRed(),fAlpha)),
|
|
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetGreen(),rColors[nIndex+1].GetGreen(),fAlpha)),
|
|
static_cast<sal_uInt8>(basegfx::utils::lerp(rColors[nIndex].GetBlue(),rColors[nIndex+1].GetBlue(),fAlpha)) ));
|
|
|
|
// scale and render polygon, by interpolating between
|
|
// outer and inner polygon.
|
|
|
|
for( p=0; p<nNumPoints; ++p )
|
|
{
|
|
const ::basegfx::B2DPoint& rOuterPoint( aOuterPoly.getB2DPoint(p) );
|
|
const ::basegfx::B2DPoint& rInnerPoint( aInnerPoly.getB2DPoint(p) );
|
|
|
|
aTempPoly[static_cast<sal_uInt16>(p)] = ::Point(
|
|
basegfx::fround<::tools::Long>( fT*rInnerPoint.getX() + (1-fT)*rOuterPoint.getX() ),
|
|
basegfx::fround<::tools::Long>( fT*rInnerPoint.getY() + (1-fT)*rOuterPoint.getY() ) );
|
|
}
|
|
|
|
// close polygon explicitly
|
|
aTempPoly[static_cast<sal_uInt16>(p)] = aTempPoly[0];
|
|
|
|
// TODO(P1): compare with vcl/source/gdi/outdev4.cxx,
|
|
// OutputDevice::ImplDrawComplexGradient(), there's a note
|
|
// that on some VDev's, rendering disjunct poly-polygons
|
|
// is faster!
|
|
rOutDev.DrawPolygon( aTempPoly );
|
|
}
|
|
}
|
|
|
|
void doGradientFill( OutputDevice& rOutDev,
|
|
const ::canvas::ParametricPolyPolygon::Values& rValues,
|
|
const std::vector< ::Color >& rColors,
|
|
const ::basegfx::B2DHomMatrix& rTextureTransform,
|
|
const ::tools::Rectangle& rBounds,
|
|
unsigned int nStepCount )
|
|
{
|
|
switch( rValues.meType )
|
|
{
|
|
case ::canvas::ParametricPolyPolygon::GradientType::Linear:
|
|
fillLinearGradient( rOutDev,
|
|
rTextureTransform,
|
|
rBounds,
|
|
nStepCount,
|
|
rValues,
|
|
rColors );
|
|
break;
|
|
|
|
case ::canvas::ParametricPolyPolygon::GradientType::Elliptical:
|
|
case ::canvas::ParametricPolyPolygon::GradientType::Rectangular:
|
|
fillPolygonalGradient( rOutDev,
|
|
rTextureTransform,
|
|
rBounds,
|
|
nStepCount,
|
|
rValues,
|
|
rColors );
|
|
break;
|
|
|
|
default:
|
|
ENSURE_OR_THROW( false,
|
|
"CanvasHelper::doGradientFill(): Unexpected case" );
|
|
}
|
|
}
|
|
|
|
int numColorSteps( const ::Color& rColor1, const ::Color& rColor2 )
|
|
{
|
|
return std::max(
|
|
std::abs( rColor1.GetRed() - rColor2.GetRed() ),
|
|
std::max(
|
|
std::abs( rColor1.GetGreen() - rColor2.GetGreen() ),
|
|
std::abs( rColor1.GetBlue() - rColor2.GetBlue() ) ) );
|
|
}
|
|
|
|
bool gradientFill( OutputDevice& rOutDev,
|
|
OutputDevice* p2ndOutDev,
|
|
const ::canvas::ParametricPolyPolygon::Values& rValues,
|
|
const std::vector< ::Color >& rColors,
|
|
const ::tools::PolyPolygon& rPoly,
|
|
const rendering::ViewState& viewState,
|
|
const rendering::RenderState& renderState,
|
|
const rendering::Texture& texture,
|
|
int nTransparency )
|
|
{
|
|
// TODO(T2): It is maybe necessary to lock here, should
|
|
// maGradientPoly someday cease to be const. But then, beware of
|
|
// deadlocks, canvashelper calls this method with locked own
|
|
// mutex.
|
|
|
|
// calc step size
|
|
|
|
int nColorSteps = 0;
|
|
for( size_t i=0; i<rColors.size()-1; ++i )
|
|
nColorSteps += numColorSteps(rColors[i],rColors[i+1]);
|
|
|
|
::basegfx::B2DHomMatrix aTotalTransform;
|
|
const int nStepCount=
|
|
::canvas::tools::calcGradientStepCount(aTotalTransform,
|
|
viewState,
|
|
renderState,
|
|
texture,
|
|
nColorSteps);
|
|
|
|
rOutDev.SetLineColor();
|
|
|
|
// determine maximal bound rect of texture-filled
|
|
// polygon
|
|
const ::tools::Rectangle aPolygonDeviceRectOrig(
|
|
rPoly.GetBoundRect() );
|
|
|
|
if( tools::isRectangle( rPoly ) )
|
|
{
|
|
// use optimized output path
|
|
|
|
|
|
// this distinction really looks like a
|
|
// micro-optimization, but in fact greatly speeds up
|
|
// especially complex gradients. That's because when using
|
|
// clipping, we can output polygons instead of
|
|
// poly-polygons, and don't have to output the gradient
|
|
// twice for XOR
|
|
|
|
rOutDev.Push( vcl::PushFlags::CLIPREGION );
|
|
rOutDev.IntersectClipRegion( aPolygonDeviceRectOrig );
|
|
doGradientFill( rOutDev,
|
|
rValues,
|
|
rColors,
|
|
aTotalTransform,
|
|
aPolygonDeviceRectOrig,
|
|
nStepCount );
|
|
rOutDev.Pop();
|
|
|
|
if( p2ndOutDev && nTransparency < 253 )
|
|
{
|
|
// HACK. Normally, CanvasHelper does not care about
|
|
// actually what mp2ndOutDev is... well, here we do &
|
|
// assume a 1bpp target - everything beyond 97%
|
|
// transparency is fully transparent
|
|
p2ndOutDev->SetFillColor( COL_BLACK );
|
|
p2ndOutDev->DrawRect( aPolygonDeviceRectOrig );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const vcl::Region aPolyClipRegion( rPoly );
|
|
|
|
rOutDev.Push( vcl::PushFlags::CLIPREGION );
|
|
rOutDev.IntersectClipRegion( aPolyClipRegion );
|
|
|
|
doGradientFill( rOutDev,
|
|
rValues,
|
|
rColors,
|
|
aTotalTransform,
|
|
aPolygonDeviceRectOrig,
|
|
nStepCount );
|
|
rOutDev.Pop();
|
|
|
|
if( p2ndOutDev && nTransparency < 253 )
|
|
{
|
|
// HACK. Normally, CanvasHelper does not care about
|
|
// actually what mp2ndOutDev is... well, here we do &
|
|
// assume a 1bpp target - everything beyond 97%
|
|
// transparency is fully transparent
|
|
p2ndOutDev->SetFillColor( COL_BLACK );
|
|
p2ndOutDev->DrawPolyPolygon( rPoly );
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_CANVAS_CANVASHELPER_TEXTUREFILL
|
|
// extra-verbosity
|
|
{
|
|
::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
|
|
::basegfx::B2DHomMatrix aTextureTransform;
|
|
::basegfx::B2DRectangle aTextureDeviceRect = ::canvas::tools::calcTransformedRectBounds(
|
|
aRect,
|
|
aTextureTransform );
|
|
rOutDev.SetLineColor( COL_RED );
|
|
rOutDev.SetFillColor();
|
|
rOutDev.DrawRect( vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
|
|
|
|
rOutDev.SetLineColor( COL_BLUE );
|
|
::tools::Polygon aPoly1(
|
|
vcl::unotools::rectangleFromB2DRectangle( aRect ));
|
|
::basegfx::B2DPolygon aPoly2( aPoly1.getB2DPolygon() );
|
|
aPoly2.transform( aTextureTransform );
|
|
::tools::Polygon aPoly3( aPoly2 );
|
|
rOutDev.DrawPolygon( aPoly3 );
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
uno::Reference< rendering::XCachedPrimitive > CanvasHelper::fillTexturedPolyPolygon( const rendering::XCanvas* pCanvas,
|
|
const uno::Reference< rendering::XPolyPolygon2D >& xPolyPolygon,
|
|
const rendering::ViewState& viewState,
|
|
const rendering::RenderState& renderState,
|
|
const uno::Sequence< rendering::Texture >& textures )
|
|
{
|
|
ENSURE_ARG_OR_THROW( xPolyPolygon.is(),
|
|
"CanvasHelper::fillPolyPolygon(): polygon is NULL");
|
|
ENSURE_ARG_OR_THROW( textures.hasElements(),
|
|
"CanvasHelper::fillTexturedPolyPolygon: empty texture sequence");
|
|
|
|
if( mpOutDevProvider )
|
|
{
|
|
tools::OutDevStateKeeper aStateKeeper( mpProtectedOutDevProvider );
|
|
|
|
const int nTransparency( setupOutDevState( viewState, renderState, IGNORE_COLOR ) );
|
|
::tools::PolyPolygon aPolyPoly( tools::mapPolyPolygon(
|
|
::basegfx::unotools::b2DPolyPolygonFromXPolyPolygon2D(xPolyPolygon),
|
|
viewState, renderState ) );
|
|
|
|
// TODO(F1): Multi-texturing
|
|
if( textures[0].Gradient.is() )
|
|
{
|
|
// try to cast XParametricPolyPolygon2D reference to
|
|
// our implementation class.
|
|
::canvas::ParametricPolyPolygon* pGradient =
|
|
dynamic_cast< ::canvas::ParametricPolyPolygon* >( textures[0].Gradient.get() );
|
|
|
|
if( pGradient && pGradient->getValues().maColors.hasElements() )
|
|
{
|
|
// copy state from Gradient polypoly locally
|
|
// (given object might change!)
|
|
const ::canvas::ParametricPolyPolygon::Values aValues(
|
|
pGradient->getValues() );
|
|
|
|
if( aValues.maColors.getLength() < 2 )
|
|
{
|
|
rendering::RenderState aTempState=renderState;
|
|
aTempState.DeviceColor = aValues.maColors[0];
|
|
fillPolyPolygon(pCanvas, xPolyPolygon, viewState, aTempState);
|
|
}
|
|
else
|
|
{
|
|
std::vector< ::Color > aColors(aValues.maColors.getLength());
|
|
std::transform(&aValues.maColors[0],
|
|
&aValues.maColors[0]+aValues.maColors.getLength(),
|
|
aColors.begin(),
|
|
[](const uno::Sequence< double >& aColor) {
|
|
return vcl::unotools::stdColorSpaceSequenceToColor( aColor );
|
|
} );
|
|
|
|
// TODO(E1): Return value
|
|
// TODO(F1): FillRule
|
|
gradientFill( mpOutDevProvider->getOutDev(),
|
|
mp2ndOutDevProvider ? &mp2ndOutDevProvider->getOutDev() : nullptr,
|
|
aValues,
|
|
aColors,
|
|
aPolyPoly,
|
|
viewState,
|
|
renderState,
|
|
textures[0],
|
|
nTransparency );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// TODO(F1): The generic case is missing here
|
|
ENSURE_OR_THROW( false,
|
|
"CanvasHelper::fillTexturedPolyPolygon(): unknown parametric polygon encountered" );
|
|
}
|
|
}
|
|
else if( textures[0].Bitmap.is() )
|
|
{
|
|
geometry::IntegerSize2D aBmpSize( textures[0].Bitmap->getSize() );
|
|
|
|
ENSURE_ARG_OR_THROW( aBmpSize.Width != 0 &&
|
|
aBmpSize.Height != 0,
|
|
"CanvasHelper::fillTexturedPolyPolygon(): zero-sized texture bitmap" );
|
|
|
|
// determine maximal bound rect of texture-filled
|
|
// polygon
|
|
const ::tools::Rectangle aPolygonDeviceRect(
|
|
aPolyPoly.GetBoundRect() );
|
|
|
|
|
|
// first of all, determine whether we have a
|
|
// drawBitmap() in disguise
|
|
// =========================================
|
|
|
|
const bool bRectangularPolygon( tools::isRectangle( aPolyPoly ) );
|
|
|
|
::basegfx::B2DHomMatrix aTotalTransform;
|
|
::canvas::tools::mergeViewAndRenderTransform(aTotalTransform,
|
|
viewState,
|
|
renderState);
|
|
::basegfx::B2DHomMatrix aTextureTransform;
|
|
::basegfx::unotools::homMatrixFromAffineMatrix( aTextureTransform,
|
|
textures[0].AffineTransform );
|
|
|
|
aTotalTransform *= aTextureTransform;
|
|
|
|
const ::basegfx::B2DRectangle aRect(0.0, 0.0, 1.0, 1.0);
|
|
::basegfx::B2DRectangle aTextureDeviceRect = ::canvas::tools::calcTransformedRectBounds(
|
|
aRect,
|
|
aTotalTransform );
|
|
|
|
const ::tools::Rectangle aIntegerTextureDeviceRect(
|
|
vcl::unotools::rectangleFromB2DRectangle( aTextureDeviceRect ) );
|
|
|
|
if( bRectangularPolygon &&
|
|
aIntegerTextureDeviceRect == aPolygonDeviceRect )
|
|
{
|
|
rendering::RenderState aLocalState( renderState );
|
|
::canvas::tools::appendToRenderState(aLocalState,
|
|
aTextureTransform);
|
|
::basegfx::B2DHomMatrix aScaleCorrection;
|
|
aScaleCorrection.scale( 1.0/aBmpSize.Width,
|
|
1.0/aBmpSize.Height );
|
|
::canvas::tools::appendToRenderState(aLocalState,
|
|
aScaleCorrection);
|
|
|
|
// need alpha modulation?
|
|
if( !::rtl::math::approxEqual( textures[0].Alpha,
|
|
1.0 ) )
|
|
{
|
|
// setup alpha modulation values
|
|
aLocalState.DeviceColor.realloc(4);
|
|
double* pColor = aLocalState.DeviceColor.getArray();
|
|
pColor[0] =
|
|
pColor[1] =
|
|
pColor[2] = 0.0;
|
|
pColor[3] = textures[0].Alpha;
|
|
|
|
return drawBitmapModulated( pCanvas,
|
|
textures[0].Bitmap,
|
|
viewState,
|
|
aLocalState );
|
|
}
|
|
else
|
|
{
|
|
return drawBitmap( pCanvas,
|
|
textures[0].Bitmap,
|
|
viewState,
|
|
aLocalState );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// No easy mapping to drawBitmap() - calculate
|
|
// texturing parameters
|
|
// ===========================================
|
|
|
|
BitmapEx aBmpEx( tools::bitmapExFromXBitmap( textures[0].Bitmap ) );
|
|
|
|
// scale down bitmap to [0,1]x[0,1] rect, as required
|
|
// from the XCanvas interface.
|
|
::basegfx::B2DHomMatrix aScaling;
|
|
::basegfx::B2DHomMatrix aPureTotalTransform; // pure view*render*texture transform
|
|
aScaling.scale( 1.0/aBmpSize.Width,
|
|
1.0/aBmpSize.Height );
|
|
|
|
aTotalTransform = aTextureTransform * aScaling;
|
|
aPureTotalTransform = aTextureTransform;
|
|
|
|
// combine with view and render transform
|
|
::basegfx::B2DHomMatrix aMatrix;
|
|
::canvas::tools::mergeViewAndRenderTransform(aMatrix, viewState, renderState);
|
|
|
|
// combine all three transformations into one
|
|
// global texture-to-device-space transformation
|
|
aTotalTransform *= aMatrix;
|
|
aPureTotalTransform *= aMatrix;
|
|
|
|
// analyze transformation, and setup an
|
|
// appropriate GraphicObject
|
|
::basegfx::B2DVector aScale;
|
|
::basegfx::B2DPoint aOutputPos;
|
|
double nRotate;
|
|
double nShearX;
|
|
aTotalTransform.decompose( aScale, aOutputPos, nRotate, nShearX );
|
|
|
|
GraphicAttr aGrfAttr;
|
|
GraphicObjectSharedPtr pGrfObj;
|
|
|
|
if( ::basegfx::fTools::equalZero( nShearX ) )
|
|
{
|
|
// no shear, GraphicObject is enough (the
|
|
// GraphicObject only supports scaling, rotation
|
|
// and translation)
|
|
|
|
// #i75339# don't apply mirror flags, having
|
|
// negative size values is enough to make
|
|
// GraphicObject flip the bitmap
|
|
|
|
// The angle has to be mapped from radian to tenths of
|
|
// degrees with the orientation reversed: [0,2Pi) ->
|
|
// (3600,0]. Note that the original angle may have
|
|
// values outside the [0,2Pi) interval.
|
|
const double nAngleInTenthOfDegrees (3600.0 - basegfx::rad2deg<10>(nRotate));
|
|
aGrfAttr.SetRotation( Degree10(::basegfx::fround(nAngleInTenthOfDegrees)) );
|
|
|
|
pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
|
|
}
|
|
else
|
|
{
|
|
// modify output position, to account for the fact
|
|
// that transformBitmap() always normalizes its output
|
|
// bitmap into the smallest enclosing box.
|
|
::basegfx::B2DRectangle aDestRect = ::canvas::tools::calcTransformedRectBounds(
|
|
::basegfx::B2DRectangle(0,
|
|
0,
|
|
aBmpSize.Width,
|
|
aBmpSize.Height),
|
|
aMatrix );
|
|
|
|
aOutputPos.setX( aDestRect.getMinX() );
|
|
aOutputPos.setY( aDestRect.getMinY() );
|
|
|
|
// complex transformation, use generic affine bitmap
|
|
// transformation
|
|
aBmpEx = tools::transformBitmap( aBmpEx,
|
|
aTotalTransform);
|
|
|
|
pGrfObj = std::make_shared<GraphicObject>( aBmpEx );
|
|
|
|
// clear scale values, generated bitmap already
|
|
// contains scaling
|
|
aScale.setX( 1.0 ); aScale.setY( 1.0 );
|
|
|
|
// update bitmap size, bitmap has changed above.
|
|
aBmpSize = vcl::unotools::integerSize2DFromSize(aBmpEx.GetSizePixel());
|
|
}
|
|
|
|
|
|
// render texture tiled into polygon
|
|
// =================================
|
|
|
|
// calc device space direction vectors. We employ
|
|
// the following approach for tiled output: the
|
|
// texture bitmap is output in texture space
|
|
// x-major order, i.e. tile neighbors in texture
|
|
// space x direction are rendered back-to-back in
|
|
// device coordinate space (after the full device
|
|
// transformation). Thus, the aNextTile* vectors
|
|
// denote the output position updates in device
|
|
// space, to get from one tile to the next.
|
|
::basegfx::B2DVector aNextTileX( 1.0, 0.0 );
|
|
::basegfx::B2DVector aNextTileY( 0.0, 1.0 );
|
|
aNextTileX *= aPureTotalTransform;
|
|
aNextTileY *= aPureTotalTransform;
|
|
|
|
::basegfx::B2DHomMatrix aInverseTextureTransform( aPureTotalTransform );
|
|
|
|
ENSURE_ARG_OR_THROW( aInverseTextureTransform.isInvertible(),
|
|
"CanvasHelper::fillTexturedPolyPolygon(): singular texture matrix" );
|
|
|
|
aInverseTextureTransform.invert();
|
|
|
|
// calc bound rect of extended texture area in
|
|
// device coordinates. Therefore, we first calc
|
|
// the area of the polygon bound rect in texture
|
|
// space. To maintain texture phase, this bound
|
|
// rect is then extended to integer coordinates
|
|
// (extended, because shrinking might leave some
|
|
// inner polygon areas unfilled).
|
|
// Finally, the bound rect is transformed back to
|
|
// device coordinate space, were we determine the
|
|
// start point from it.
|
|
::basegfx::B2DRectangle aTextureSpacePolygonRect = ::canvas::tools::calcTransformedRectBounds(
|
|
vcl::unotools::b2DRectangleFromRectangle(aPolygonDeviceRect),
|
|
aInverseTextureTransform );
|
|
|
|
// calc left, top of extended polygon rect in
|
|
// texture space, create one-texture instance rect
|
|
// from it (i.e. rect from start point extending
|
|
// 1.0 units to the right and 1.0 units to the
|
|
// bottom). Note that the rounding employed here
|
|
// is a bit subtle, since we need to round up/down
|
|
// as _soon_ as any fractional amount is
|
|
// encountered. This is to ensure that the full
|
|
// polygon area is filled with texture tiles.
|
|
const sal_Int32 nX1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinX() ) );
|
|
const sal_Int32 nY1( ::canvas::tools::roundDown( aTextureSpacePolygonRect.getMinY() ) );
|
|
const sal_Int32 nX2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxX() ) );
|
|
const sal_Int32 nY2( ::canvas::tools::roundUp( aTextureSpacePolygonRect.getMaxY() ) );
|
|
const ::basegfx::B2DRectangle aSingleTextureRect(
|
|
nX1, nY1,
|
|
nX1 + 1.0,
|
|
nY1 + 1.0 );
|
|
|
|
// and convert back to device space
|
|
::basegfx::B2DRectangle aSingleDeviceTextureRect = ::canvas::tools::calcTransformedRectBounds(
|
|
aSingleTextureRect,
|
|
aPureTotalTransform );
|
|
|
|
const ::Point aPtRepeat( vcl::unotools::pointFromB2DPoint(
|
|
aSingleDeviceTextureRect.getMinimum() ) );
|
|
const ::Size aSz( ::basegfx::fround<::tools::Long>( aScale.getX() * aBmpSize.Width ),
|
|
::basegfx::fround<::tools::Long>( aScale.getY() * aBmpSize.Height ) );
|
|
const ::Size aIntegerNextTileX( vcl::unotools::sizeFromB2DSize(aNextTileX) );
|
|
const ::Size aIntegerNextTileY( vcl::unotools::sizeFromB2DSize(aNextTileY) );
|
|
|
|
const ::Point aPt( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
|
|
::basegfx::fround<::tools::Long>( aOutputPos.getX() ) : aPtRepeat.X(),
|
|
textures[0].RepeatModeY == rendering::TexturingMode::NONE ?
|
|
::basegfx::fround<::tools::Long>( aOutputPos.getY() ) : aPtRepeat.Y() );
|
|
const sal_Int32 nTilesX( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
|
|
1 : nX2 - nX1 );
|
|
const sal_Int32 nTilesY( textures[0].RepeatModeX == rendering::TexturingMode::NONE ?
|
|
1 : nY2 - nY1 );
|
|
|
|
OutputDevice& rOutDev( mpOutDevProvider->getOutDev() );
|
|
|
|
if( bRectangularPolygon )
|
|
{
|
|
// use optimized output path
|
|
|
|
|
|
// this distinction really looks like a
|
|
// micro-optimization, but in fact greatly speeds up
|
|
// especially complex fills. That's because when using
|
|
// clipping, we can output polygons instead of
|
|
// poly-polygons, and don't have to output the gradient
|
|
// twice for XOR
|
|
|
|
// setup alpha modulation
|
|
if( !::rtl::math::approxEqual( textures[0].Alpha,
|
|
1.0 ) )
|
|
{
|
|
// TODO(F1): Note that the GraphicManager has
|
|
// a subtle difference in how it calculates
|
|
// the resulting alpha value: it's using the
|
|
// inverse alpha values (i.e. 'transparency'),
|
|
// and calculates transOrig + transModulate,
|
|
// instead of transOrig + transModulate -
|
|
// transOrig*transModulate (which would be
|
|
// equivalent to the origAlpha*modulateAlpha
|
|
// the DX canvas performs)
|
|
aGrfAttr.SetAlpha(
|
|
static_cast< sal_uInt8 >(
|
|
::basegfx::fround( 255.0 * textures[0].Alpha ) ) );
|
|
}
|
|
|
|
rOutDev.IntersectClipRegion( aPolygonDeviceRect );
|
|
textureFill( rOutDev,
|
|
*pGrfObj,
|
|
aPt,
|
|
aIntegerNextTileX,
|
|
aIntegerNextTileY,
|
|
nTilesX,
|
|
nTilesY,
|
|
aSz,
|
|
aGrfAttr );
|
|
|
|
if( mp2ndOutDevProvider )
|
|
{
|
|
OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
|
|
r2ndOutDev.IntersectClipRegion( aPolygonDeviceRect );
|
|
textureFill( r2ndOutDev,
|
|
*pGrfObj,
|
|
aPt,
|
|
aIntegerNextTileX,
|
|
aIntegerNextTileY,
|
|
nTilesX,
|
|
nTilesY,
|
|
aSz,
|
|
aGrfAttr );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// output texture the hard way: XORing out the
|
|
// polygon
|
|
// ===========================================
|
|
|
|
if( !::rtl::math::approxEqual( textures[0].Alpha,
|
|
1.0 ) )
|
|
{
|
|
// uh-oh. alpha blending is required,
|
|
// cannot do direct XOR, but have to
|
|
// prepare the filled polygon within a
|
|
// VDev
|
|
ScopedVclPtrInstance< VirtualDevice > pVDev( rOutDev );
|
|
pVDev->SetOutputSizePixel( aPolygonDeviceRect.GetSize() );
|
|
|
|
// shift output to origin of VDev
|
|
const ::Point aOutPos( aPt - aPolygonDeviceRect.TopLeft() );
|
|
aPolyPoly.Translate( ::Point( -aPolygonDeviceRect.Left(),
|
|
-aPolygonDeviceRect.Top() ) );
|
|
|
|
const vcl::Region aPolyClipRegion( aPolyPoly );
|
|
|
|
pVDev->SetClipRegion( aPolyClipRegion );
|
|
textureFill( *pVDev,
|
|
*pGrfObj,
|
|
aOutPos,
|
|
aIntegerNextTileX,
|
|
aIntegerNextTileY,
|
|
nTilesX,
|
|
nTilesY,
|
|
aSz,
|
|
aGrfAttr );
|
|
|
|
// output VDev content alpha-blended to
|
|
// target position.
|
|
const ::Point aEmptyPoint;
|
|
BitmapEx aContentBmp(
|
|
pVDev->GetBitmapEx( aEmptyPoint,
|
|
pVDev->GetOutputSizePixel() ) );
|
|
|
|
sal_uInt8 nCol( static_cast< sal_uInt8 >(
|
|
::basegfx::fround( 255.0*( 1.0 - textures[0].Alpha ) ) ) );
|
|
AlphaMask aAlpha( pVDev->GetOutputSizePixel(),
|
|
&nCol );
|
|
|
|
BitmapEx aOutputBmpEx( aContentBmp.GetBitmap(), aAlpha );
|
|
rOutDev.DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
|
|
aOutputBmpEx );
|
|
|
|
if( mp2ndOutDevProvider )
|
|
mp2ndOutDevProvider->getOutDev().DrawBitmapEx( aPolygonDeviceRect.TopLeft(),
|
|
aOutputBmpEx );
|
|
}
|
|
else
|
|
{
|
|
const vcl::Region aPolyClipRegion( aPolyPoly );
|
|
|
|
rOutDev.Push( vcl::PushFlags::CLIPREGION );
|
|
rOutDev.IntersectClipRegion( aPolyClipRegion );
|
|
|
|
textureFill( rOutDev,
|
|
*pGrfObj,
|
|
aPt,
|
|
aIntegerNextTileX,
|
|
aIntegerNextTileY,
|
|
nTilesX,
|
|
nTilesY,
|
|
aSz,
|
|
aGrfAttr );
|
|
rOutDev.Pop();
|
|
|
|
if( mp2ndOutDevProvider )
|
|
{
|
|
OutputDevice& r2ndOutDev( mp2ndOutDevProvider->getOutDev() );
|
|
r2ndOutDev.Push( vcl::PushFlags::CLIPREGION );
|
|
|
|
r2ndOutDev.IntersectClipRegion( aPolyClipRegion );
|
|
textureFill( r2ndOutDev,
|
|
*pGrfObj,
|
|
aPt,
|
|
aIntegerNextTileX,
|
|
aIntegerNextTileY,
|
|
nTilesX,
|
|
nTilesY,
|
|
aSz,
|
|
aGrfAttr );
|
|
r2ndOutDev.Pop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(P1): Provide caching here.
|
|
return uno::Reference< rendering::XCachedPrimitive >(nullptr);
|
|
}
|
|
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|