278000a28b
Some of them were commented out for documentation purpose. Change-Id: I29a6b2cbe774b527f0c3a0be5675160817a7f3ce
2937 lines
99 KiB
C++
2937 lines
99 KiB
C++
/*************************************************************************
|
|
*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* Copyright 2000, 2010 Oracle and/or its affiliates.
|
|
*
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
|
*
|
|
* This file is part of OpenOffice.org.
|
|
*
|
|
* OpenOffice.org is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 3
|
|
* only, as published by the Free Software Foundation.
|
|
*
|
|
* OpenOffice.org is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License version 3 for more details
|
|
* (a copy is included in the LICENSE file that accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* version 3 along with OpenOffice.org. If not, see
|
|
* <http://www.openoffice.org/license.html>
|
|
* for a copy of the LGPLv3 License.
|
|
*
|
|
************************************************************************/
|
|
|
|
/* Extended regular expression matching and search library,
|
|
version 0.12.
|
|
(Implements POSIX draft P1003.2/D11.2, except for some of the
|
|
internationalization features.)
|
|
Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/*
|
|
Modified for OpenOffice.org to use sal_Unicode and Transliteration service.
|
|
*/
|
|
|
|
#include <regexp/reclass.hxx>
|
|
|
|
#if 0
|
|
/* If for any reason (porting, debug) we can't use alloca() use malloc()
|
|
instead. Use alloca() if possible for performance reasons, this _is_
|
|
significant, with malloc() the re_match2() method makes heavy use of regexps
|
|
through the TextSearch interface up to three times slower. This is _the_
|
|
bottleneck in some spreadsheet documents. */
|
|
#define REGEX_MALLOC
|
|
#endif
|
|
|
|
/* AIX requires this to be the first thing in the file. */
|
|
#if defined _AIX && !defined REGEX_MALLOC
|
|
#pragma alloca
|
|
#endif
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include <rtl/ustring.hxx>
|
|
#include <com/sun/star/i18n/TransliterationModules.hpp>
|
|
|
|
/* Maximum number of duplicates an interval can allow. Some systems
|
|
(erroneously) define this in other header files, but we want our
|
|
value, so remove any previous define. */
|
|
#ifdef RE_DUP_MAX
|
|
# undef RE_DUP_MAX
|
|
#endif
|
|
/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows. */
|
|
#define RE_DUP_MAX (0x7fff)
|
|
|
|
|
|
/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
|
|
`re_match_2' returns information about at least this many registers
|
|
the first time a `regs' structure is passed. */
|
|
#ifndef RE_NREGS
|
|
# define RE_NREGS 30
|
|
#endif
|
|
|
|
|
|
// Macros
|
|
#define INIT_COMPILE_STACK_SIZE 32
|
|
#define INIT_BUF_SIZE ((1 << BYTEWIDTH)/BYTEWIDTH)
|
|
#define MAX_BUF_SIZE 65535L
|
|
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
|
|
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
|
|
|
|
/* Since we have one byte reserved for the register number argument to
|
|
{start,stop}_memory, the maximum number of groups we can report
|
|
things about is what fits in that byte. */
|
|
#define MAX_REGNUM 255
|
|
|
|
#define MIN(x, y) ( (x) < (y) ? (x) : (y) )
|
|
#define MAX(x, y) ( (x) > (y) ? (x) : (y) )
|
|
|
|
|
|
// Always. We're not in Emacs and don't use relocating allocators.
|
|
#define MATCH_MAY_ALLOCATE
|
|
|
|
/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
|
use `alloca' instead of `malloc'. This is because malloc is slower and
|
|
causes storage fragmentation. On the other hand, malloc is more portable,
|
|
and easier to debug.
|
|
|
|
Because we sometimes use alloca, some routines have to be macros,
|
|
not functions -- `alloca'-allocated space disappears at the end of the
|
|
function it is called in. */
|
|
|
|
#ifdef REGEX_MALLOC
|
|
|
|
# define REGEX_ALLOCATE malloc
|
|
# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
|
|
# define REGEX_FREE free
|
|
|
|
#else /* not REGEX_MALLOC */
|
|
|
|
/* Emacs already defines alloca, sometimes. So does MSDEV. */
|
|
# ifndef alloca
|
|
|
|
/* Make alloca work the best possible way. */
|
|
# ifdef __GNUC__
|
|
# define alloca __builtin_alloca
|
|
# else /* not __GNUC__ */
|
|
# include <sal/alloca.h>
|
|
# endif /* not __GNUC__ */
|
|
|
|
# endif /* not alloca */
|
|
|
|
# define REGEX_ALLOCATE alloca
|
|
|
|
/* Assumes a `char *destination' variable. */
|
|
# define REGEX_REALLOCATE(source, osize, nsize) \
|
|
(destination = (char *) alloca (nsize), \
|
|
memcpy (destination, source, osize))
|
|
|
|
/* No need to do anything to free, after alloca. */
|
|
# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
|
|
|
|
#endif /* not REGEX_MALLOC */
|
|
|
|
|
|
/* Define how to allocate the failure stack. */
|
|
|
|
#ifdef REGEX_MALLOC
|
|
|
|
# define REGEX_ALLOCATE_STACK malloc
|
|
# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
|
|
# define REGEX_FREE_STACK free
|
|
|
|
#else /* not REGEX_MALLOC */
|
|
|
|
# define REGEX_ALLOCATE_STACK alloca
|
|
|
|
# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
|
REGEX_REALLOCATE (source, osize, nsize)
|
|
/* No need to explicitly free anything. */
|
|
# define REGEX_FREE_STACK(arg)
|
|
|
|
#endif /* not REGEX_MALLOC */
|
|
|
|
|
|
/* (Re)Allocate N items of type T using malloc, or fail. */
|
|
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
|
|
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
|
|
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
|
|
|
|
#define BYTEWIDTH 16 /* In bits (assuming sizeof(sal_Unicode)*8) */
|
|
|
|
|
|
#define CHAR_CLASS_MAX_LENGTH 256
|
|
|
|
/* Fetch the next character in the uncompiled pattern, with no
|
|
translation. */
|
|
#define PATFETCH_RAW(c) \
|
|
do { \
|
|
if (p == pend) return REG_EEND; \
|
|
c = (sal_Unicode) *p++; \
|
|
} while (0)
|
|
|
|
/* Go backwards one character in the pattern. */
|
|
#define PATUNFETCH p--
|
|
|
|
#define FREE_STACK_RETURN(value) \
|
|
return(free(compile_stack.stack), value)
|
|
|
|
#define GET_BUFFER_SPACE(n) \
|
|
while ((sal_uInt32)(b - bufp->buffer + (n)) > bufp->allocated) \
|
|
EXTEND_BUFFER()
|
|
|
|
/* Extend the buffer by twice its current size via realloc and
|
|
reset the pointers that pointed into the old block to point to the
|
|
correct places in the new one. If extending the buffer results in it
|
|
being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
|
#define EXTEND_BUFFER() \
|
|
do { \
|
|
sal_Unicode *old_buffer = bufp->buffer; \
|
|
if (bufp->allocated == MAX_BUF_SIZE) \
|
|
return REG_ESIZE; \
|
|
bufp->allocated <<= 1; \
|
|
if (bufp->allocated > MAX_BUF_SIZE) \
|
|
bufp->allocated = MAX_BUF_SIZE; \
|
|
bufp->buffer = (sal_Unicode *) realloc(bufp->buffer, \
|
|
bufp->allocated * \
|
|
sizeof(sal_Unicode)); \
|
|
if (bufp->buffer == NULL) \
|
|
return REG_ESPACE; \
|
|
/* If the buffer moved, move all the pointers into it. */ \
|
|
if (old_buffer != bufp->buffer) { \
|
|
b = (b - old_buffer) + bufp->buffer; \
|
|
begalt = (begalt - old_buffer) + bufp->buffer; \
|
|
if (fixup_alt_jump) \
|
|
fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
|
|
if (laststart) \
|
|
laststart = (laststart - old_buffer) + bufp->buffer; \
|
|
if (pending_exact) \
|
|
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define BUF_PUSH(c) \
|
|
do { \
|
|
GET_BUFFER_SPACE(1); \
|
|
*b++ = (sal_Unicode)(c); \
|
|
} while(0)
|
|
|
|
/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
|
|
#define BUF_PUSH_2(c1, c2) \
|
|
do { \
|
|
GET_BUFFER_SPACE(2); \
|
|
*b++ = (sal_Unicode) (c1); \
|
|
*b++ = (sal_Unicode) (c2); \
|
|
} while (0)
|
|
|
|
/* As with BUF_PUSH_2, except for three bytes. */
|
|
#define BUF_PUSH_3(c1, c2, c3) \
|
|
do { \
|
|
GET_BUFFER_SPACE(3); \
|
|
*b++ = (sal_Unicode) (c1); \
|
|
*b++ = (sal_Unicode) (c2); \
|
|
*b++ = (sal_Unicode) (c3); \
|
|
} while (0)
|
|
|
|
/* Store a jump with opcode OP at LOC to location TO. We store a
|
|
relative address offset by the three bytes the jump itself occupies. */
|
|
#define STORE_JUMP(op, loc, to) \
|
|
store_op1(op, loc, (int) ((to) - (loc) - 3))
|
|
|
|
/* Likewise, for a two-argument jump. */
|
|
#define STORE_JUMP2(op, loc, to, arg) \
|
|
store_op2(op, loc, (int) ((to) - (loc) - 3), arg)
|
|
|
|
/* Store NUMBER in two contiguous sal_Unicode starting at DESTINATION. */
|
|
|
|
inline
|
|
void
|
|
Regexpr::store_number( sal_Unicode * destination, sal_Int32 number )
|
|
{
|
|
(destination)[0] = sal_Unicode((number) & 0xffff);
|
|
(destination)[1] = sal_Unicode((number) >> 16);
|
|
}
|
|
|
|
/* Same as STORE_NUMBER, except increment DESTINATION to
|
|
the byte after where the number is stored. Therefore, DESTINATION
|
|
must be an lvalue. */
|
|
|
|
inline
|
|
void
|
|
Regexpr::store_number_and_incr( sal_Unicode *& destination, sal_Int32 number )
|
|
{
|
|
store_number( destination, number );
|
|
(destination) += 2;
|
|
}
|
|
|
|
/* Put into DESTINATION a number stored in two contiguous sal_Unicode starting
|
|
at SOURCE. */
|
|
|
|
inline void Regexpr::extract_number( sal_Int32 & dest, sal_Unicode *source )
|
|
{
|
|
dest = (((sal_Int32) source[1]) << 16) | (source[0] & 0xffff);
|
|
}
|
|
|
|
/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
|
|
#define INSERT_JUMP(op, loc, to) \
|
|
insert_op1(op, loc, (sal_Int32) ((to) - (loc) - 3), b)
|
|
|
|
/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
|
|
#define INSERT_JUMP2(op, loc, to, arg) \
|
|
insert_op2(op, loc, (sal_Int32) ((to) - (loc) - 3), arg, b)
|
|
|
|
#define STREQ(s1, s2) (rtl_ustr_compare((s1), (s2)) ? (0) : (1))
|
|
|
|
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
|
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
|
|
|
/* The next available element. */
|
|
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
|
|
|
/* Get the next unsigned number in the uncompiled pattern. */
|
|
#define GET_UNSIGNED_NUMBER(num) { \
|
|
if (p != pend) { \
|
|
PATFETCH_RAW(c); \
|
|
while (c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9') { \
|
|
if (num < 0) \
|
|
num = 0; \
|
|
num = num * 10 + c - (sal_Unicode)'0'; \
|
|
if (p == pend) \
|
|
break; \
|
|
PATFETCH_RAW(c); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
/* Get the next hex number in the uncompiled pattern. */
|
|
#define GET_HEX_NUMBER(num) { \
|
|
if (p != pend) { \
|
|
sal_Bool stop = false; \
|
|
sal_Int16 hexcnt = 1; \
|
|
PATFETCH_RAW(c); \
|
|
while ( (c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9') || (c >= (sal_Unicode)'a' && c <= (sal_Unicode)'f') || (c >= (sal_Unicode)'A' && c <= (sal_Unicode)'F') ) { \
|
|
if (num < 0) \
|
|
num = 0; \
|
|
if ( c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9' ) \
|
|
num = num * 16 + c - (sal_Unicode)'0'; \
|
|
else if ( c >= (sal_Unicode)'a' && c <= (sal_Unicode)'f' ) \
|
|
num = num * 16 + (10 + c - (sal_Unicode)'a'); \
|
|
else \
|
|
num = num * 16 + (10 + c - (sal_Unicode)'A'); \
|
|
if (p == pend || hexcnt == 4) { \
|
|
stop = true; \
|
|
break; \
|
|
} \
|
|
PATFETCH_RAW(c); \
|
|
hexcnt++; \
|
|
} \
|
|
\
|
|
if ( ! stop ) { \
|
|
PATUNFETCH; \
|
|
hexcnt--; \
|
|
} \
|
|
if ( hexcnt > 4 || (num < 0 || num > 0xffff) ) num = -1;\
|
|
} \
|
|
}
|
|
|
|
|
|
/* Number of failure points for which to initially allocate space
|
|
when matching. If this number is exceeded, we allocate more
|
|
space, so it is not a hard limit. */
|
|
#ifndef INIT_FAILURE_ALLOC
|
|
# define INIT_FAILURE_ALLOC 5
|
|
#endif
|
|
|
|
#define INIT_FAIL_STACK() \
|
|
do { \
|
|
fail_stack.stack = (fail_stack_elt_t *) \
|
|
REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
|
|
\
|
|
if (fail_stack.stack == NULL) \
|
|
return -2; \
|
|
\
|
|
fail_stack.size = INIT_FAILURE_ALLOC; \
|
|
fail_stack.avail = 0; \
|
|
} while (0)
|
|
|
|
#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
|
|
|
|
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
|
|
|
|
Return 1 if succeeds, and 0 if either ran out of memory
|
|
allocating space for it or it was already too large.
|
|
|
|
REGEX_REALLOCATE_STACK requires `destination' be declared. */
|
|
|
|
#define DOUBLE_FAIL_STACK(fail_stack) \
|
|
((fail_stack).size > (sal_uInt32) (re_max_failures * MAX_FAILURE_ITEMS) \
|
|
? 0 \
|
|
: ((fail_stack).stack = (fail_stack_elt_t *) \
|
|
REGEX_REALLOCATE_STACK ((fail_stack).stack, \
|
|
(fail_stack).size * sizeof (fail_stack_elt_t), \
|
|
((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
|
|
\
|
|
(fail_stack).stack == NULL \
|
|
? 0 \
|
|
: ((fail_stack).size <<= 1, \
|
|
1)))
|
|
|
|
|
|
#define REG_UNSET_VALUE (®_unset_dummy)
|
|
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
|
|
|
#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
|
|
#define IS_ACTIVE(R) ((R).bits.is_active)
|
|
#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
|
#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
|
|
|
|
/* Call this when have matched a real character; it sets `matched' flags
|
|
for the subexpressions which we are currently inside. Also records
|
|
that those subexprs have matched. */
|
|
#define SET_REGS_MATCHED() \
|
|
do { \
|
|
if (!set_regs_matched_done) { \
|
|
sal_uInt32 r; \
|
|
set_regs_matched_done = 1; \
|
|
for (r = lowest_active_reg; r <= highest_active_reg; r++) { \
|
|
MATCHED_SOMETHING(reg_info[r]) \
|
|
= EVER_MATCHED_SOMETHING(reg_info[r]) \
|
|
= 1; \
|
|
} \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
|
|
|
|
/* This converts PTR, a pointer into the search string `string2' into an offset from the beginning of that string. */
|
|
#define POINTER_TO_OFFSET(ptr) ((sal_Int32) ((ptr) - string2))
|
|
|
|
/* This is the number of items that are pushed and popped on the stack
|
|
for each register. */
|
|
#define NUM_REG_ITEMS 3
|
|
|
|
/* Individual items aside from the registers. */
|
|
# define NUM_NONREG_ITEMS 4
|
|
|
|
/* We push at most this many items on the stack. */
|
|
/* We used to use (num_regs - 1), which is the number of registers
|
|
this regexp will save; but that was changed to 5
|
|
to avoid stack overflow for a regexp with lots of parens. */
|
|
#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
|
|
|
/* We actually push this many items. */
|
|
#define NUM_FAILURE_ITEMS \
|
|
(((0 \
|
|
? 0 : highest_active_reg - lowest_active_reg + 1) \
|
|
* NUM_REG_ITEMS) \
|
|
+ NUM_NONREG_ITEMS)
|
|
|
|
/* How many items can still be added to the stack without overflowing it. */
|
|
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
|
|
|
|
/* Push a pointer value onto the failure stack.
|
|
Assumes the variable `fail_stack'. Probably should only
|
|
be called from within `PUSH_FAILURE_POINT'. */
|
|
#define PUSH_FAILURE_POINTER(item) \
|
|
fail_stack.stack[fail_stack.avail++].pointer = (sal_Unicode *) (item)
|
|
|
|
/* This pushes an integer-valued item onto the failure stack.
|
|
Assumes the variable `fail_stack'. Probably should only
|
|
be called from within `PUSH_FAILURE_POINT'. */
|
|
#define PUSH_FAILURE_INT(item) \
|
|
fail_stack.stack[fail_stack.avail++].integer = (item)
|
|
|
|
/* Push a fail_stack_elt_t value onto the failure stack.
|
|
Assumes the variable `fail_stack'. Probably should only
|
|
be called from within `PUSH_FAILURE_POINT'. */
|
|
#define PUSH_FAILURE_ELT(item) \
|
|
fail_stack.stack[fail_stack.avail++] = (item)
|
|
|
|
/* These three POP... operations complement the three PUSH... operations.
|
|
All assume that `fail_stack' is nonempty. */
|
|
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
|
|
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
|
|
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
|
|
|
|
/* Test if at very beginning or at very end of `string2'. */
|
|
#define AT_STRINGS_BEG(d) ((d) == string2 || !size2)
|
|
#define AT_STRINGS_END(d) ((d) == end2)
|
|
|
|
/* Checking for end of string */
|
|
#define PREFETCH() \
|
|
do { \
|
|
if ( d == end2 ) { \
|
|
goto fail; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
sal_Bool
|
|
Regexpr::iswordbegin(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize)
|
|
{
|
|
if ( d == string || ! ssize ) return true;
|
|
|
|
if ( !unicode::isAlphaDigit(d[-1]) && unicode::isAlphaDigit(d[0])) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
sal_Bool
|
|
Regexpr::iswordend(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize)
|
|
{
|
|
if ( d == (string+ssize) ) return true;
|
|
|
|
if ( !unicode::isAlphaDigit(d[0]) && unicode::isAlphaDigit(d[-1])) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Push the information about the state we will need
|
|
if we ever fail back to it.
|
|
|
|
Requires variables fail_stack, regstart, regend, and reg_info
|
|
be declared. DOUBLE_FAIL_STACK requires `destination'
|
|
be declared.
|
|
|
|
Does `return FAILURE_CODE' if runs out of memory. */
|
|
|
|
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
|
|
do { \
|
|
char *destination; \
|
|
/* Must be int, so when we don't save any registers, the arithmetic \
|
|
of 0 + -1 isn't done as unsigned. */ \
|
|
/* Can't be int, since there is not a shred of a guarantee that int \
|
|
is wide enough to hold a value of something to which pointer can \
|
|
be assigned */ \
|
|
sal_uInt32 this_reg; \
|
|
\
|
|
/* Ensure we have enough space allocated for what we will push. */ \
|
|
while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) { \
|
|
if (!DOUBLE_FAIL_STACK(fail_stack)) \
|
|
return failure_code; \
|
|
} \
|
|
\
|
|
/* Push the info, starting with the registers. */ \
|
|
if (1) \
|
|
for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
|
|
this_reg++) { \
|
|
PUSH_FAILURE_POINTER(regstart[this_reg]); \
|
|
\
|
|
PUSH_FAILURE_POINTER (regend[this_reg]); \
|
|
\
|
|
PUSH_FAILURE_ELT(reg_info[this_reg].word); \
|
|
} \
|
|
\
|
|
PUSH_FAILURE_INT(lowest_active_reg); \
|
|
\
|
|
PUSH_FAILURE_INT(highest_active_reg); \
|
|
\
|
|
PUSH_FAILURE_POINTER(pattern_place); \
|
|
\
|
|
PUSH_FAILURE_POINTER(string_place); \
|
|
\
|
|
} while (0)
|
|
|
|
/* Pops what PUSH_FAIL_STACK pushes.
|
|
|
|
We restore into the parameters, all of which should be lvalues:
|
|
STR -- the saved data position.
|
|
PAT -- the saved pattern position.
|
|
LOW_REG, HIGH_REG -- the highest and lowest active registers.
|
|
REGSTART, REGEND -- arrays of string positions.
|
|
REG_INFO -- array of information about each subexpression.
|
|
|
|
Also assumes the variables `fail_stack' and (if debugging), `bufp',
|
|
`pend', `string2', and `size2'. */
|
|
|
|
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info) {\
|
|
sal_uInt32 this_reg; \
|
|
sal_Unicode *string_temp; \
|
|
\
|
|
assert(!FAIL_STACK_EMPTY()); \
|
|
\
|
|
/* Remove failure points and point to how many regs pushed. */ \
|
|
assert(fail_stack.avail >= NUM_NONREG_ITEMS); \
|
|
\
|
|
/* If the saved string location is NULL, it came from an \
|
|
on_failure_keep_string_jump opcode, and we want to throw away the \
|
|
saved NULL, thus retaining our current position in the string. */ \
|
|
string_temp = POP_FAILURE_POINTER(); \
|
|
if (string_temp != NULL) \
|
|
str = (const sal_Unicode *) string_temp; \
|
|
\
|
|
pat = (sal_Unicode *) POP_FAILURE_POINTER(); \
|
|
\
|
|
/* Restore register info. */ \
|
|
high_reg = (sal_uInt32) POP_FAILURE_INT(); \
|
|
\
|
|
low_reg = (sal_uInt32) POP_FAILURE_INT(); \
|
|
\
|
|
if (1) \
|
|
for (this_reg = high_reg; this_reg >= low_reg; this_reg--) { \
|
|
\
|
|
reg_info[this_reg].word = POP_FAILURE_ELT(); \
|
|
\
|
|
regend[this_reg] = (const sal_Unicode *) POP_FAILURE_POINTER(); \
|
|
\
|
|
regstart[this_reg] = (const sal_Unicode *) POP_FAILURE_POINTER(); \
|
|
} else { \
|
|
for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) {\
|
|
reg_info[this_reg].word.integer = 0; \
|
|
regend[this_reg] = 0; \
|
|
regstart[this_reg] = 0; \
|
|
} \
|
|
highest_active_reg = high_reg; \
|
|
} \
|
|
\
|
|
set_regs_matched_done = 0; \
|
|
} /* POP_FAILURE_POINT */
|
|
|
|
inline
|
|
void
|
|
Regexpr::extract_number_and_incr( sal_Int32 & destination, sal_Unicode *& source )
|
|
{
|
|
extract_number(destination, source);
|
|
source += 2;
|
|
}
|
|
|
|
|
|
inline
|
|
void
|
|
Regexpr::store_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg)
|
|
{
|
|
*loc = (sal_Unicode) op;
|
|
store_number(loc + 1, arg);
|
|
}
|
|
|
|
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
|
|
inline
|
|
void
|
|
Regexpr::store_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2)
|
|
{
|
|
*loc = (sal_Unicode) op;
|
|
store_number(loc + 1, arg1);
|
|
store_number(loc + 3, arg2);
|
|
}
|
|
|
|
void
|
|
Regexpr::insert_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg, sal_Unicode *end)
|
|
{
|
|
register sal_Unicode *pfrom = end;
|
|
register sal_Unicode *pto = end + 3;
|
|
|
|
while (pfrom != loc) {
|
|
*--pto = *--pfrom;
|
|
}
|
|
|
|
store_op1(op, loc, arg);
|
|
}
|
|
|
|
|
|
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
|
|
void
|
|
Regexpr::insert_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2, sal_Unicode *end)
|
|
{
|
|
register sal_Unicode *pfrom = end;
|
|
register sal_Unicode *pto = end + 5;
|
|
|
|
while (pfrom != loc)
|
|
*--pto = *--pfrom;
|
|
|
|
store_op2 (op, loc, arg1, arg2);
|
|
}
|
|
|
|
/* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
|
after an alternative or a begin-subexpression. We assume there is at
|
|
least one character before the ^. */
|
|
|
|
sal_Bool
|
|
Regexpr::at_begline_loc_p(const sal_Unicode *local_pattern, const sal_Unicode *p)
|
|
{
|
|
const sal_Unicode *prev = p - 2;
|
|
sal_Bool prev_prev_backslash = prev > local_pattern && prev[-1] == '\\';
|
|
|
|
return(
|
|
/* After a subexpression? */
|
|
(*prev == (sal_Unicode)'(' && prev_prev_backslash)
|
|
/* After an alternative? */
|
|
|| (*prev == (sal_Unicode)'|' && prev_prev_backslash));
|
|
}
|
|
|
|
/* The dual of at_begline_loc_p. This one is for $. We assume there is
|
|
at least one character after the $, i.e., `P < PEND'. */
|
|
|
|
sal_Bool
|
|
Regexpr::at_endline_loc_p(const sal_Unicode *p)
|
|
{
|
|
const sal_Unicode *next = p;
|
|
//sal_Bool next_backslash = *next == (sal_Unicode)'\\';
|
|
//const sal_Unicode *next_next = p + 1 < pend ? p + 1 : 0;
|
|
|
|
return(
|
|
/* Before a subexpression? */
|
|
*next == (sal_Unicode)')'
|
|
// (next_backslash && next_next && *next_next == (sal_Unicode)')')
|
|
/* Before an alternative? */
|
|
|| *next == (sal_Unicode)'|' );
|
|
// || (next_backslash && next_next && *next_next == (sal_Unicode)'|'));
|
|
}
|
|
|
|
reg_errcode_t
|
|
Regexpr::compile_range(sal_Unicode range_start, sal_Unicode range_end, sal_Unicode *b)
|
|
{
|
|
sal_uInt32 this_char;
|
|
|
|
/* If the start is after the end, the range is empty. */
|
|
if (range_start > range_end)
|
|
return REG_NOERROR;
|
|
|
|
/* Here we see why `this_char' has to be larger than an `sal_Unicode'
|
|
-- the range is inclusive, so if `range_end' == 0xffff
|
|
(assuming 16-bit characters), we would otherwise go into an infinite
|
|
loop, since all characters <= 0xffff. */
|
|
for (this_char = range_start; this_char <= range_end; this_char++) {
|
|
set_list_bit( sal_Unicode(this_char), b);
|
|
}
|
|
|
|
return REG_NOERROR;
|
|
}
|
|
|
|
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
|
false if it's not. */
|
|
|
|
sal_Bool
|
|
Regexpr::group_in_compile_stack(compile_stack_type compile_stack, sal_uInt32 regnum)
|
|
{
|
|
sal_Int32 this_element;
|
|
|
|
for (this_element = compile_stack.avail - 1;
|
|
this_element >= 0;
|
|
this_element--) {
|
|
if (compile_stack.stack[this_element].regnum == regnum) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
Regexpr::Regexpr( const ::com::sun::star::util::SearchOptions & rOptions,
|
|
::com::sun::star::uno::Reference<
|
|
::com::sun::star::i18n::XExtendedTransliteration > XTrans)
|
|
{
|
|
bufp = NULL;
|
|
pattern = NULL;
|
|
|
|
if ( rOptions.algorithmType != ::com::sun::star::util::SearchAlgorithms_REGEXP ) {
|
|
return;
|
|
}
|
|
|
|
if ( rOptions.searchString == NULL ||
|
|
rOptions.searchString.isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
pattern = (sal_Unicode *)rOptions.searchString.getStr();
|
|
patsize = rOptions.searchString.getLength();
|
|
|
|
re_max_failures = 2000;
|
|
|
|
translit = XTrans;
|
|
translate = translit.is() ? 1 : 0;
|
|
|
|
bufp = NULL;
|
|
|
|
isIgnoreCase = ((rOptions.transliterateFlags &
|
|
::com::sun::star::i18n::TransliterationModules_IGNORE_CASE) != 0);
|
|
|
|
// Compile Regular expression pattern
|
|
if ( regcomp() != REG_NOERROR )
|
|
{
|
|
if ( bufp )
|
|
{
|
|
if ( bufp->buffer )
|
|
free(bufp->buffer);
|
|
if( bufp->fastmap )
|
|
free(bufp->fastmap);
|
|
|
|
free(bufp);
|
|
bufp = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
Regexpr::~Regexpr()
|
|
{
|
|
// translit->remove();
|
|
if( bufp )
|
|
{
|
|
if( bufp->buffer )
|
|
free(bufp->buffer);
|
|
if( bufp->fastmap )
|
|
free(bufp->fastmap);
|
|
|
|
free(bufp);
|
|
bufp = NULL;
|
|
}
|
|
|
|
}
|
|
|
|
// sets a new line to search in (restore start/end_ptr)
|
|
void
|
|
Regexpr::set_line(const sal_Unicode *new_line, sal_Int32 len)
|
|
{
|
|
line = new_line;
|
|
linelen = len;
|
|
}
|
|
|
|
// main function for searching the pattern
|
|
// returns negative or startpos and sets regs
|
|
sal_Int32
|
|
Regexpr::re_search(struct re_registers *regs, sal_Int32 pOffset)
|
|
{
|
|
// Check if pattern buffer is NULL
|
|
if ( bufp == NULL ) {
|
|
return(-3);
|
|
}
|
|
|
|
sal_Int32 range;
|
|
sal_Int32 startpos;
|
|
sal_Int32 stoppos;
|
|
|
|
startpos = pOffset;
|
|
if ( linelen < 0 ) {
|
|
range = linelen + 1;
|
|
linelen = -(linelen);
|
|
stoppos = pOffset + 1;
|
|
} else {
|
|
range = linelen - 1;
|
|
stoppos = linelen;
|
|
}
|
|
for ( ; ; ) {
|
|
sal_Int32 val = re_match2(regs, startpos, stoppos);
|
|
|
|
#ifndef REGEX_MALLOC
|
|
# ifdef C_ALLOCA
|
|
alloca (0);
|
|
# endif
|
|
#endif
|
|
|
|
// Return success if match found
|
|
if (val == 0) {
|
|
break;
|
|
}
|
|
|
|
if (val == -2) {
|
|
return(-2);
|
|
}
|
|
|
|
// If match only beginning of string (startpos)
|
|
if (!range) {
|
|
break;
|
|
}
|
|
|
|
// If search match from startpos to startpos+range
|
|
else if (range > 0) { // Forward string search
|
|
range--;
|
|
startpos++;
|
|
} else { // Reverse string search
|
|
range++;
|
|
startpos--;
|
|
}
|
|
}
|
|
|
|
if ( regs->num_of_match > 0 )
|
|
return(0);
|
|
else
|
|
return(-1);
|
|
}
|
|
|
|
sal_Int32
|
|
Regexpr::regcomp()
|
|
{
|
|
bufp = (struct re_pattern_buffer *)malloc(sizeof(struct re_pattern_buffer));
|
|
if ( bufp == NULL ) {
|
|
return(-1);
|
|
}
|
|
|
|
bufp->buffer = 0;
|
|
bufp->allocated = 0;
|
|
bufp->used = 0;
|
|
|
|
//bufp->fastmap = (sal_Unicode*) malloc((1 << BYTEWIDTH) * sizeof(sal_Unicode));
|
|
// No fastmap with Unicode
|
|
bufp->fastmap = NULL;
|
|
|
|
return(regex_compile());
|
|
}
|
|
|
|
sal_Int32
|
|
Regexpr::regex_compile()
|
|
{
|
|
register sal_Unicode c, c1;
|
|
const sal_Unicode *p1;
|
|
register sal_Unicode *b;
|
|
|
|
/* Keeps track of unclosed groups. */
|
|
compile_stack_type compile_stack;
|
|
|
|
/* Points to the current (ending) position in the pattern. */
|
|
const sal_Unicode *p = pattern;
|
|
const sal_Unicode *pend = pattern + patsize;
|
|
|
|
/* Address of the count-byte of the most recently inserted `exactn'
|
|
command. This makes it possible to tell if a new exact-match
|
|
character can be added to that command or if the character requires
|
|
a new `exactn' command. */
|
|
sal_Unicode *pending_exact = 0;
|
|
|
|
/* Address of start of the most recently finished expression.
|
|
This tells, e.g., postfix * where to find the start of its
|
|
operand. Reset at the beginning of groups and alternatives. */
|
|
sal_Unicode *laststart = 0;
|
|
|
|
/* Address of beginning of regexp, or inside of last group. */
|
|
sal_Unicode *begalt;
|
|
|
|
/* Place in the uncompiled pattern (i.e., the {) to
|
|
which to go back if the interval is invalid. */
|
|
const sal_Unicode *beg_interval;
|
|
|
|
/* Address of the place where a forward jump should go to the end of
|
|
the containing expression. Each alternative of an `or' -- except the
|
|
last -- ends with a forward jump of this sort. */
|
|
sal_Unicode *fixup_alt_jump = 0;
|
|
|
|
/* Counts open-groups as they are encountered. Remembered for the
|
|
matching close-group on the compile stack, so the same register
|
|
number is put in the stop_memory as the start_memory. */
|
|
sal_Int32 regnum = 0;
|
|
|
|
/* Initialize the compile stack. */
|
|
compile_stack.stack = (compile_stack_elt_t *)malloc(INIT_COMPILE_STACK_SIZE * sizeof(compile_stack_elt_t));
|
|
if (compile_stack.stack == NULL)
|
|
return(REG_ESPACE);
|
|
|
|
compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
|
compile_stack.avail = 0;
|
|
|
|
/* Initialize the pattern buffer. */
|
|
bufp->fastmap_accurate = 0;
|
|
bufp->not_bol = 0;
|
|
bufp->not_eol = 0;
|
|
bufp->newline_anchor = 1;
|
|
|
|
/* Set `used' to zero, so that if we return an error, the pattern
|
|
printer (for debugging) will think there's no pattern. We reset it
|
|
at the end. */
|
|
bufp->used = 0;
|
|
|
|
/* Always count groups. */
|
|
bufp->re_nsub = 0;
|
|
|
|
if (bufp->allocated == 0) {
|
|
if (bufp->buffer) {
|
|
/* If zero allocated, but buffer is non-null, try to realloc
|
|
enough space. This loses if buffer's address is bogus, but
|
|
that is the user's responsibility. */
|
|
bufp->buffer = (sal_Unicode *)realloc(bufp->buffer, INIT_BUF_SIZE * sizeof(sal_Unicode));
|
|
} else { /* Caller did not allocate a buffer. Do it for them. */
|
|
bufp->buffer = (sal_Unicode *)malloc(INIT_BUF_SIZE * sizeof(sal_Unicode));
|
|
}
|
|
if (!bufp->buffer) FREE_STACK_RETURN(REG_ESPACE);
|
|
|
|
bufp->allocated = INIT_BUF_SIZE;
|
|
}
|
|
|
|
begalt = b = bufp->buffer;
|
|
|
|
/* Loop through the uncompiled pattern until we're at the end. */
|
|
while (p != pend) {
|
|
PATFETCH_RAW(c);
|
|
|
|
switch (c) {
|
|
case (sal_Unicode)'^': {
|
|
if ( /* If at start of pattern, it's an operator. */
|
|
p == pattern + 1
|
|
/* Otherwise, depends on what's come before. */
|
|
|| at_begline_loc_p(pattern, p))
|
|
BUF_PUSH(begline);
|
|
else
|
|
goto normal_char;
|
|
}
|
|
break;
|
|
|
|
case (sal_Unicode)'$': {
|
|
if ( /* If at end of pattern, it's an operator. */
|
|
p == pend
|
|
/* Otherwise, depends on what's next. */
|
|
|| at_endline_loc_p(p)) {
|
|
BUF_PUSH(endline);
|
|
} else {
|
|
goto normal_char;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case (sal_Unicode)'+':
|
|
case (sal_Unicode)'?':
|
|
case (sal_Unicode)'*':
|
|
/* If there is no previous pattern... */
|
|
if (!laststart) {
|
|
goto normal_char;
|
|
}
|
|
|
|
{
|
|
/* Are we optimizing this jump? */
|
|
sal_Bool keep_string_p = false;
|
|
|
|
/* 1 means zero (many) matches is allowed. */
|
|
sal_Unicode zero_times_ok = 0, many_times_ok = 0;
|
|
|
|
/* If there is a sequence of repetition chars, collapse it
|
|
down to just one (the right one). We can't combine
|
|
interval operators with these because of, e.g., `a{2}*',
|
|
which should only match an even number of `a's. */
|
|
|
|
for (;;) {
|
|
zero_times_ok |= c != (sal_Unicode)'+';
|
|
many_times_ok |= c != (sal_Unicode)'?';
|
|
|
|
if (p == pend)
|
|
break;
|
|
|
|
PATFETCH_RAW(c);
|
|
|
|
if (c == (sal_Unicode)'*' || (c == (sal_Unicode)'+'
|
|
|| c == (sal_Unicode)'?')) {
|
|
} else {
|
|
PATUNFETCH;
|
|
break;
|
|
}
|
|
|
|
/* If we get here, we found another repeat character. */
|
|
}
|
|
|
|
/* Star, etc. applied to an empty pattern is equivalent
|
|
to an empty pattern. */
|
|
if (!laststart) {
|
|
break;
|
|
}
|
|
|
|
/* Now we know whether or not zero matches is allowed
|
|
and also whether or not two or more matches is allowed. */
|
|
if (many_times_ok) {
|
|
/* More than one repetition is allowed, so put in at the
|
|
end a backward relative jump from `b' to before the next
|
|
jump we're going to put in below (which jumps from
|
|
laststart to after this jump).
|
|
|
|
But if we are at the `*' in the exact sequence `.*\n',
|
|
insert an unconditional jump backwards to the .,
|
|
instead of the beginning of the loop. This way we only
|
|
push a failure point once, instead of every time
|
|
through the loop. */
|
|
assert(p - 1 > pattern);
|
|
|
|
/* Allocate the space for the jump. */
|
|
GET_BUFFER_SPACE(3);
|
|
|
|
/* We know we are not at the first character of the pattern,
|
|
because laststart was nonzero. And we've already
|
|
incremented `p', by the way, to be the character after
|
|
the `*'. Do we have to do something analogous here
|
|
for null bytes, because of RE_DOT_NOT_NULL? */
|
|
if (*(p - 2) == (sal_Unicode)'.'
|
|
&& zero_times_ok
|
|
&& p < pend && *p == (sal_Unicode)'\n') {
|
|
/* We have .*\n. */
|
|
STORE_JUMP(jump, b, laststart);
|
|
keep_string_p = true;
|
|
} else {
|
|
/* Anything else. */
|
|
STORE_JUMP(maybe_pop_jump, b, laststart - 3);
|
|
}
|
|
|
|
/* We've added more stuff to the buffer. */
|
|
b += 3;
|
|
}
|
|
|
|
/* On failure, jump from laststart to b + 3, which will be the
|
|
end of the buffer after this jump is inserted. */
|
|
GET_BUFFER_SPACE(3);
|
|
INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
|
|
: on_failure_jump,
|
|
laststart, b + 3);
|
|
pending_exact = 0;
|
|
b += 3;
|
|
|
|
if (!zero_times_ok) {
|
|
/* At least one repetition is required, so insert a
|
|
`dummy_failure_jump' before the initial
|
|
`on_failure_jump' instruction of the loop. This
|
|
effects a skip over that instruction the first time
|
|
we hit that loop. */
|
|
GET_BUFFER_SPACE(3);
|
|
INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
|
|
b += 3;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case (sal_Unicode)'.':
|
|
laststart = b;
|
|
BUF_PUSH(anychar);
|
|
break;
|
|
|
|
|
|
case (sal_Unicode)'[': {
|
|
sal_Bool have_range = false;
|
|
sal_Unicode last_char = 0xffff;
|
|
sal_Unicode first_range = 0xffff;
|
|
sal_Unicode second_range = 0xffff;
|
|
sal_Int16 bsiz;
|
|
|
|
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
|
|
|
|
/* Ensure that we have enough space to push a charset: the
|
|
opcode, the length count, and the bitset;
|
|
1 + 1 + (1 << BYTEWIDTH) / BYTEWIDTH "bytes" in all. */
|
|
bsiz = 2 + ((1 << BYTEWIDTH) / BYTEWIDTH);
|
|
GET_BUFFER_SPACE(bsiz);
|
|
|
|
laststart = b;
|
|
|
|
/* We test `*p == '^' twice, instead of using an if
|
|
statement, so we only need one BUF_PUSH. */
|
|
BUF_PUSH (*p == (sal_Unicode)'^' ? charset_not : charset);
|
|
if (*p == (sal_Unicode)'^')
|
|
p++;
|
|
|
|
/* Remember the first position in the bracket expression. */
|
|
p1 = p;
|
|
|
|
/* Push the number of "bytes" in the bitmap. */
|
|
BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
|
|
|
|
/* Clear the whole map. */
|
|
memset(b, 0, ((1 << BYTEWIDTH) / BYTEWIDTH) * sizeof(sal_Unicode));
|
|
|
|
/* Read in characters and ranges, setting map bits. */
|
|
for (;;) {
|
|
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
|
|
|
|
PATFETCH_RAW(c);
|
|
|
|
if ( c == (sal_Unicode)'\\' ) {
|
|
|
|
PATFETCH_RAW(c);
|
|
|
|
if ( c == (sal_Unicode)'x' ) {
|
|
sal_Int32 UniChar = -1;
|
|
|
|
GET_HEX_NUMBER(UniChar);
|
|
if (UniChar < 0 || UniChar > 0xffff) FREE_STACK_RETURN(REG_BADPAT);
|
|
c = (sal_Unicode) UniChar;
|
|
last_char = c;
|
|
set_list_bit(last_char, b);
|
|
} else {
|
|
last_char = c;
|
|
set_list_bit(last_char, b);
|
|
}
|
|
} else if (c == (sal_Unicode)']') {
|
|
/* Could be the end of the bracket expression. If it's
|
|
not (i.e., when the bracket expression is `[]' so
|
|
far), the ']' character bit gets set way below. */
|
|
break;
|
|
} else if ( c == (sal_Unicode)'-' ) {
|
|
if ( !have_range ) {
|
|
if ( last_char != 0xffff ) {
|
|
first_range = last_char;
|
|
have_range = true;
|
|
continue;
|
|
} else {
|
|
last_char = (sal_Unicode)'-';
|
|
set_list_bit(last_char, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See if we're at the beginning of a possible character
|
|
class. */
|
|
else if (c == (sal_Unicode)':' && p[-2] == (sal_Unicode)'[') {
|
|
/* Leave room for the null. */
|
|
sal_Unicode str[CHAR_CLASS_MAX_LENGTH + 1];
|
|
|
|
PATFETCH_RAW(c);
|
|
c1 = 0;
|
|
|
|
/* If pattern is `[[:'. */
|
|
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
|
|
|
|
str[c1++] = c;
|
|
for (;;) {
|
|
PATFETCH_RAW(c);
|
|
if ((c == (sal_Unicode)':' && *p == (sal_Unicode)']') || p == pend)
|
|
break;
|
|
if (c1 < CHAR_CLASS_MAX_LENGTH)
|
|
str[c1++] = c;
|
|
else
|
|
/* This is in any case an invalid class name. */
|
|
str[0] = (sal_Unicode)'\0';
|
|
}
|
|
str[c1] = (sal_Unicode)'\0';
|
|
|
|
/* If isn't a word bracketed by `[:' and `:]':
|
|
undo the ending character, the letters, and leave
|
|
the leading `:' and `[' (but set bits for them). */
|
|
if (c == (sal_Unicode)':' && *p == (sal_Unicode)']') {
|
|
sal_Int32 ch;
|
|
// no support for GRAPH, PUNCT, or XDIGIT yet
|
|
sal_Bool is_alnum = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("alnum")).getStr());
|
|
sal_Bool is_alpha = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("alpha")).getStr());
|
|
sal_Bool is_cntrl = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("cntrl")).getStr());
|
|
sal_Bool is_digit = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("digit")).getStr());
|
|
sal_Bool is_lower = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("lower")).getStr());
|
|
sal_Bool is_print = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("print")).getStr());
|
|
sal_Bool is_space = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("space")).getStr());
|
|
sal_Bool is_upper = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("upper")).getStr());
|
|
|
|
if (!(is_alnum || is_alpha || is_cntrl ||
|
|
is_digit || is_lower || is_print || is_space || is_upper) )
|
|
FREE_STACK_RETURN(REG_ECTYPE);
|
|
|
|
/* Throw away the ] at the end of the character
|
|
class. */
|
|
PATFETCH_RAW(c);
|
|
|
|
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
|
|
|
|
for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
|
|
/* This was split into 3 if's to
|
|
avoid an arbitrary limit in some compiler. */
|
|
if ( (is_alnum && unicode::isAlphaDigit(sal_Unicode(ch))) ||
|
|
(is_alpha && unicode::isAlpha(sal_Unicode(ch))) ||
|
|
(is_cntrl && unicode::isControl(sal_Unicode(ch))))
|
|
set_list_bit(sal_Unicode(ch), b);
|
|
if ( (is_digit && unicode::isDigit(sal_Unicode(ch))) ||
|
|
(is_lower && unicode::isLower(sal_Unicode(ch))) ||
|
|
(is_print && unicode::isPrint(sal_Unicode(ch))))
|
|
set_list_bit(sal_Unicode(ch), b);
|
|
if ( (is_space && unicode::isSpace(sal_Unicode(ch))) ||
|
|
(is_upper && unicode::isUpper(sal_Unicode(ch))) )
|
|
set_list_bit(sal_Unicode(ch), b);
|
|
if ( isIgnoreCase && (is_upper || is_lower) &&
|
|
(unicode::isUpper(sal_Unicode(ch)) || unicode::isLower(sal_Unicode(ch))))
|
|
set_list_bit(sal_Unicode(ch), b);
|
|
}
|
|
break;
|
|
} else {
|
|
p = p1+1;
|
|
p1++;
|
|
last_char = (sal_Unicode)':';
|
|
set_list_bit(last_char, b);
|
|
}
|
|
} else {
|
|
last_char = c;
|
|
set_list_bit(last_char, b);
|
|
}
|
|
if ( have_range ) {
|
|
if ( last_char != 0xffff ) {
|
|
second_range = last_char;
|
|
have_range = false;
|
|
compile_range(first_range, second_range, b);
|
|
} else FREE_STACK_RETURN(REG_EBRACK);
|
|
} else {
|
|
if ( last_char != 0xffff ) {
|
|
set_list_bit(last_char, b);
|
|
} else FREE_STACK_RETURN(REG_EBRACK);
|
|
}
|
|
}
|
|
|
|
/* Discard any (non)matching list bytes that are all 0 at the
|
|
end of the map. Decrease the map-length byte too. */
|
|
bsiz = b[-1];
|
|
while ((sal_Int16) bsiz > 0 && b[bsiz - 1] == 0)
|
|
bsiz--;
|
|
b[-1] = (sal_Unicode)bsiz;
|
|
b += bsiz;
|
|
}
|
|
break;
|
|
|
|
case (sal_Unicode)'(':
|
|
goto handle_open;
|
|
|
|
case (sal_Unicode)')':
|
|
goto handle_close;
|
|
|
|
case (sal_Unicode)'\n':
|
|
goto normal_char;
|
|
|
|
case (sal_Unicode)'|':
|
|
goto handle_alt;
|
|
|
|
case (sal_Unicode)'{':
|
|
goto handle_interval;
|
|
|
|
case (sal_Unicode)'\\':
|
|
if (p == pend) FREE_STACK_RETURN(REG_EESCAPE);
|
|
|
|
/* Do not translate the character after the \, so that we can
|
|
distinguish, e.g., \B from \b, even if we normally would
|
|
translate, e.g., B to b. */
|
|
PATFETCH_RAW(c);
|
|
|
|
switch (c) {
|
|
case (sal_Unicode)'(':
|
|
goto normal_backslash;
|
|
|
|
handle_open:
|
|
bufp->re_nsub++;
|
|
regnum++;
|
|
|
|
if (COMPILE_STACK_FULL) {
|
|
compile_stack.stack = (compile_stack_elt_t *)realloc(compile_stack.stack, (compile_stack.size << 1) * sizeof(compile_stack_elt_t));
|
|
if (compile_stack.stack == NULL) return(REG_ESPACE);
|
|
|
|
compile_stack.size <<= 1;
|
|
}
|
|
|
|
/* These are the values to restore when we hit end of this
|
|
group. They are all relative offsets, so that if the
|
|
whole pattern moves because of realloc, they will still
|
|
be valid. */
|
|
COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
|
|
COMPILE_STACK_TOP.fixup_alt_jump
|
|
= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
|
COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
|
|
COMPILE_STACK_TOP.regnum = regnum;
|
|
|
|
/* We will eventually replace the 0 with the number of
|
|
groups inner to this one. But do not push a
|
|
start_memory for groups beyond the last one we can
|
|
represent in the compiled pattern. */
|
|
if (regnum <= MAX_REGNUM) {
|
|
COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
|
|
BUF_PUSH_3 (start_memory, regnum, 0);
|
|
}
|
|
|
|
compile_stack.avail++;
|
|
|
|
fixup_alt_jump = 0;
|
|
laststart = 0;
|
|
begalt = b;
|
|
/* If we've reached MAX_REGNUM groups, then this open
|
|
won't actually generate any code, so we'll have to
|
|
clear pending_exact explicitly. */
|
|
pending_exact = 0;
|
|
break;
|
|
|
|
|
|
case (sal_Unicode)')':
|
|
goto normal_backslash;
|
|
|
|
handle_close:
|
|
if (fixup_alt_jump) {
|
|
/* Push a dummy failure point at the end of the
|
|
alternative for a possible future
|
|
`pop_failure_jump' to pop. See comments at
|
|
`push_dummy_failure' in `re_match2'. */
|
|
BUF_PUSH(push_dummy_failure);
|
|
|
|
/* We allocated space for this jump when we assigned
|
|
to `fixup_alt_jump', in the `handle_alt' case below. */
|
|
STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
|
|
}
|
|
|
|
/* See similar code for backslashed left paren above. */
|
|
if (COMPILE_STACK_EMPTY) {
|
|
FREE_STACK_RETURN(REG_ERPAREN);
|
|
}
|
|
|
|
/* Since we just checked for an empty stack above, this
|
|
``can't happen''. */
|
|
assert (compile_stack.avail != 0);
|
|
|
|
{
|
|
/* We don't just want to restore into `regnum', because
|
|
later groups should continue to be numbered higher,
|
|
as in `(ab)c(de)' -- the second group is #2. */
|
|
sal_Int32 this_group_regnum;
|
|
|
|
compile_stack.avail--;
|
|
begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
|
|
fixup_alt_jump
|
|
= COMPILE_STACK_TOP.fixup_alt_jump
|
|
? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
|
: 0;
|
|
laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
|
|
this_group_regnum = COMPILE_STACK_TOP.regnum;
|
|
/* If we've reached MAX_REGNUM groups, then this open
|
|
won't actually generate any code, so we'll have to
|
|
clear pending_exact explicitly. */
|
|
pending_exact = 0;
|
|
|
|
/* We're at the end of the group, so now we know how many
|
|
groups were inside this one. */
|
|
if (this_group_regnum <= MAX_REGNUM) {
|
|
sal_Unicode *inner_group_loc
|
|
= bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
|
|
|
|
*inner_group_loc = sal::static_int_cast<sal_Unicode>( regnum - this_group_regnum );
|
|
BUF_PUSH_3 (stop_memory, this_group_regnum,
|
|
regnum - this_group_regnum);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case (sal_Unicode)'|': /* `\|'.
|
|
* */
|
|
goto normal_backslash;
|
|
handle_alt:
|
|
|
|
/* Insert before the previous alternative a jump which
|
|
jumps to this alternative if the former fails. */
|
|
GET_BUFFER_SPACE (3);
|
|
INSERT_JUMP (on_failure_jump, begalt, b + 6);
|
|
pending_exact = 0;
|
|
b += 3;
|
|
|
|
/* The alternative before this one has a jump after it
|
|
which gets executed if it gets matched. Adjust that
|
|
jump so it will jump to this alternative's analogous
|
|
jump (put in below, which in turn will jump to the next
|
|
(if any) alternative's such jump, etc.). The last such
|
|
jump jumps to the correct final destination. A picture:
|
|
_____ _____
|
|
| | | |
|
|
| v | v
|
|
a | b | c
|
|
|
|
If we are at `b', then fixup_alt_jump right now points to a
|
|
three-byte space after `a'. We'll put in the jump, set
|
|
fixup_alt_jump to right after `b', and leave behind three
|
|
bytes which we'll fill in when we get to after `c'. */
|
|
|
|
if (fixup_alt_jump)
|
|
STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
|
|
|
|
/* Mark and leave space for a jump after this alternative,
|
|
to be filled in later either by next alternative or
|
|
when know we're at the end of a series of alternatives. */
|
|
fixup_alt_jump = b;
|
|
GET_BUFFER_SPACE (3);
|
|
b += 3;
|
|
|
|
laststart = 0;
|
|
begalt = b;
|
|
break;
|
|
|
|
|
|
case (sal_Unicode)'{':
|
|
goto normal_backslash;
|
|
|
|
handle_interval:
|
|
{
|
|
/* allows intervals. */
|
|
/* At least (most) this many matches must be made. */
|
|
sal_Int32 lower_bound = -1, upper_bound = -1;
|
|
|
|
beg_interval = p - 1;
|
|
|
|
if (p == pend) {
|
|
goto unfetch_interval;
|
|
}
|
|
|
|
GET_UNSIGNED_NUMBER(lower_bound);
|
|
|
|
if (c == (sal_Unicode)',') {
|
|
GET_UNSIGNED_NUMBER(upper_bound);
|
|
if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
|
} else
|
|
/* Interval such as `{1}' => match exactly once. */
|
|
upper_bound = lower_bound;
|
|
|
|
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
|
|| lower_bound > upper_bound) {
|
|
goto unfetch_interval;
|
|
}
|
|
|
|
if (c != (sal_Unicode)'}') {
|
|
goto unfetch_interval;
|
|
}
|
|
|
|
/* We just parsed a valid interval. */
|
|
|
|
/* If it's invalid to have no preceding re. */
|
|
if (!laststart) {
|
|
goto unfetch_interval;
|
|
}
|
|
|
|
/* If the upper bound is zero, don't want to succeed at
|
|
all; jump from `laststart' to `b + 3', which will be
|
|
the end of the buffer after we insert the jump. */
|
|
if (upper_bound == 0) {
|
|
GET_BUFFER_SPACE(3);
|
|
INSERT_JUMP(jump, laststart, b + 3);
|
|
b += 3;
|
|
}
|
|
|
|
/* Otherwise, we have a nontrivial interval. When
|
|
we're all done, the pattern will look like:
|
|
set_number_at <jump count> <upper bound>
|
|
set_number_at <succeed_n count> <lower bound>
|
|
succeed_n <after jump addr> <succeed_n count>
|
|
<body of loop>
|
|
jump_n <succeed_n addr> <jump count>
|
|
(The upper bound and `jump_n' are omitted if
|
|
`upper_bound' is 1, though.) */
|
|
else {
|
|
/* If the upper bound is > 1, we need to insert
|
|
more at the end of the loop. */
|
|
unsigned nbytes = 10 + (upper_bound > 1) * 10;
|
|
|
|
GET_BUFFER_SPACE(nbytes);
|
|
|
|
/* Initialize lower bound of the `succeed_n', even
|
|
though it will be set during matching by its
|
|
attendant `set_number_at' (inserted next),
|
|
because `re_compile_fastmap' needs to know.
|
|
Jump to the `jump_n' we might insert below. */
|
|
INSERT_JUMP2(succeed_n, laststart,
|
|
b + 5 + (upper_bound > 1) * 5,
|
|
lower_bound);
|
|
b += 5;
|
|
|
|
/* Code to initialize the lower bound. Insert
|
|
before the `succeed_n'. The `5' is the last two
|
|
bytes of this `set_number_at', plus 3 bytes of
|
|
the following `succeed_n'. */
|
|
insert_op2(set_number_at, laststart, 5, lower_bound, b);
|
|
b += 5;
|
|
|
|
if (upper_bound > 1) {
|
|
/* More than one repetition is allowed, so
|
|
append a backward jump to the `succeed_n'
|
|
that starts this interval.
|
|
|
|
When we've reached this during matching,
|
|
we'll have matched the interval once, so
|
|
jump back only `upper_bound - 1' times. */
|
|
STORE_JUMP2(jump_n, b, laststart + 5,
|
|
upper_bound - 1);
|
|
b += 5;
|
|
|
|
/* The location we want to set is the second
|
|
parameter of the `jump_n'; that is `b-2' as
|
|
an absolute address. `laststart' will be
|
|
the `set_number_at' we're about to insert;
|
|
`laststart+3' the number to set, the source
|
|
for the relative address. But we are
|
|
inserting into the middle of the pattern --
|
|
so everything is getting moved up by 5.
|
|
Conclusion: (b - 2) - (laststart + 3) + 5,
|
|
i.e., b - laststart.
|
|
|
|
We insert this at the beginning of the loop
|
|
so that if we fail during matching, we'll
|
|
reinitialize the bounds. */
|
|
insert_op2(set_number_at, laststart, b - laststart,
|
|
upper_bound - 1, b);
|
|
b += 5;
|
|
}
|
|
}
|
|
pending_exact = 0;
|
|
beg_interval = NULL;
|
|
}
|
|
break;
|
|
|
|
unfetch_interval:
|
|
/* If an invalid interval, match the characters as literals. */
|
|
assert (beg_interval);
|
|
p = beg_interval;
|
|
beg_interval = NULL;
|
|
|
|
/* normal_char and normal_backslash need `c'. */
|
|
PATFETCH_RAW(c);
|
|
|
|
goto normal_char;
|
|
|
|
case (sal_Unicode)'`':
|
|
BUF_PUSH(begbuf);
|
|
break;
|
|
|
|
case (sal_Unicode)'\'':
|
|
BUF_PUSH(endbuf);
|
|
break;
|
|
|
|
case (sal_Unicode)'1': case (sal_Unicode)'2':
|
|
case (sal_Unicode)'3': case (sal_Unicode)'4':
|
|
case (sal_Unicode)'5': case (sal_Unicode)'6':
|
|
case (sal_Unicode)'7': case (sal_Unicode)'8':
|
|
case (sal_Unicode)'9':
|
|
c1 = c - (sal_Unicode)'0';
|
|
|
|
if (c1 > regnum)
|
|
FREE_STACK_RETURN(REG_ESUBREG);
|
|
|
|
/* Can't back reference to a subexpression if inside of it. */
|
|
if (group_in_compile_stack(compile_stack, (sal_uInt32) c1)) {
|
|
goto normal_char;
|
|
}
|
|
|
|
laststart = b;
|
|
BUF_PUSH_2(duplicate, c1);
|
|
break;
|
|
|
|
|
|
case (sal_Unicode)'+':
|
|
case (sal_Unicode)'?':
|
|
goto normal_backslash;
|
|
|
|
case (sal_Unicode)'x': // Unicode char
|
|
{
|
|
sal_Int32 UniChar = -1;
|
|
|
|
GET_HEX_NUMBER(UniChar);
|
|
if (UniChar < 0 || UniChar > 0xffff) FREE_STACK_RETURN(REG_BADPAT);
|
|
c = (sal_Unicode) UniChar;
|
|
goto normal_char;
|
|
}
|
|
// break; // unreachable - see goto above
|
|
|
|
case (sal_Unicode)'<': // begin Word boundary
|
|
BUF_PUSH(wordbeg);
|
|
break;
|
|
|
|
case (sal_Unicode)'>': // end Word boundary
|
|
BUF_PUSH(wordend);
|
|
break;
|
|
|
|
case (sal_Unicode)'n':
|
|
c = 0x0a;
|
|
goto normal_char;
|
|
|
|
case (sal_Unicode)'t':
|
|
c = 0x09;
|
|
goto normal_char;
|
|
|
|
default:
|
|
normal_backslash:
|
|
goto normal_char;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Expects the character in `c'. */
|
|
normal_char:
|
|
/* If no exactn currently being built. */
|
|
if ( pending_exact == NULL
|
|
|
|
/* If last exactn not at current position. */
|
|
|| pending_exact + *pending_exact + 1 != b
|
|
|
|
/* We have only one sal_Unicode char following the
|
|
exactn for the count. */
|
|
|| *pending_exact == (1 << BYTEWIDTH) - 1
|
|
|
|
/* If followed by a repetition operator. */
|
|
|| *p == (sal_Unicode)'*' || *p == (sal_Unicode)'^'
|
|
|| *p == (sal_Unicode)'+' || *p == (sal_Unicode)'?'
|
|
|| *p == (sal_Unicode) '{' ) {
|
|
/* Start building a new exactn. */
|
|
laststart = b;
|
|
BUF_PUSH_2(exactn, 0);
|
|
pending_exact = b - 1;
|
|
}
|
|
|
|
if ( translate ) {
|
|
try {
|
|
sal_Unicode tmp = translit->transliterateChar2Char(c);
|
|
BUF_PUSH(tmp);
|
|
(*pending_exact)++;
|
|
} catch (const ::com::sun::star::i18n::MultipleCharsOutputException&) {
|
|
::rtl::OUString o2( translit->transliterateChar2String( c));
|
|
sal_Int32 len2 = o2.getLength();
|
|
const sal_Unicode * k2 = o2.getStr();
|
|
for (sal_Int32 nmatch = 0; nmatch < len2; nmatch++) {
|
|
BUF_PUSH(k2[nmatch]);
|
|
(*pending_exact)++;
|
|
}
|
|
}
|
|
} else {
|
|
BUF_PUSH(c);
|
|
(*pending_exact)++;
|
|
}
|
|
break;
|
|
} /* switch (c) */
|
|
} /* while p != pend */
|
|
|
|
/* Through the pattern now. */
|
|
|
|
if (fixup_alt_jump)
|
|
STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
|
|
|
|
if (!COMPILE_STACK_EMPTY)
|
|
FREE_STACK_RETURN(REG_EPAREN);
|
|
|
|
// Assumes no backtracking
|
|
BUF_PUSH(succeed);
|
|
|
|
if ( compile_stack.stack )
|
|
free(compile_stack.stack);
|
|
compile_stack.stack = NULL;
|
|
|
|
/* We have succeeded; set the length of the buffer. */
|
|
bufp->used = b - bufp->buffer;
|
|
|
|
return REG_NOERROR;
|
|
} /* regex_compile */
|
|
|
|
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
|
bytes; nonzero otherwise. */
|
|
|
|
sal_Int32
|
|
Regexpr::bcmp_translate(const sal_Unicode *s1, const sal_Unicode *s2, sal_Int32 len)
|
|
{
|
|
for (sal_Int32 nmatch = 0; nmatch < len; nmatch++) {
|
|
if (*s1++ != *s2++) {
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/* We are passed P pointing to a register number after a start_memory.
|
|
|
|
Return true if the pattern up to the corresponding stop_memory can
|
|
match the empty string, and false otherwise.
|
|
|
|
If we find the matching stop_memory, sets P to point to one past its number.
|
|
Otherwise, sets P to an undefined byte less than or equal to END.
|
|
|
|
We don't handle duplicates properly (yet). */
|
|
|
|
sal_Bool
|
|
Regexpr::group_match_null_string_p(sal_Unicode **p, sal_Unicode *end, register_info_type *reg_info)
|
|
{
|
|
sal_Int32 mcnt;
|
|
/* Point to after the args to the start_memory. */
|
|
sal_Unicode *p1 = *p + 2;
|
|
|
|
while (p1 < end) {
|
|
/* Skip over opcodes that can match nothing, and return true or
|
|
false, as appropriate, when we get to one that can't, or to the
|
|
matching stop_memory. */
|
|
|
|
switch ((re_opcode_t) *p1) {
|
|
/* Could be either a loop or a series of alternatives. */
|
|
case on_failure_jump:
|
|
p1++;
|
|
extract_number_and_incr(mcnt, p1);
|
|
|
|
/* If the next operation is not a jump backwards in the
|
|
pattern. */
|
|
|
|
if (mcnt >= 0) {
|
|
/* Go through the on_failure_jumps of the alternatives,
|
|
seeing if any of the alternatives cannot match nothing.
|
|
The last alternative starts with only a jump,
|
|
whereas the rest start with on_failure_jump and end
|
|
with a jump, e.g., here is the pattern for `a|b|c':
|
|
|
|
/on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
|
|
/on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
|
|
/exactn/1/c
|
|
|
|
So, we have to first go through the first (n-1)
|
|
alternatives and then deal with the last one separately. */
|
|
|
|
|
|
/* Deal with the first (n-1) alternatives, which start
|
|
with an on_failure_jump (see above) that jumps to right
|
|
past a jump_past_alt. */
|
|
|
|
while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) {
|
|
/* `mcnt' holds how many bytes long the alternative
|
|
is, including the ending `jump_past_alt' and
|
|
its number. */
|
|
|
|
if (!alt_match_null_string_p(p1, p1 + mcnt - 3, reg_info))
|
|
return false;
|
|
|
|
/* Move to right after this alternative, including the
|
|
jump_past_alt. */
|
|
p1 += mcnt;
|
|
|
|
/* Break if it's the beginning of an n-th alternative
|
|
that doesn't begin with an on_failure_jump. */
|
|
if ((re_opcode_t) *p1 != on_failure_jump)
|
|
break;
|
|
|
|
/* Still have to check that it's not an n-th
|
|
alternative that starts with an on_failure_jump. */
|
|
p1++;
|
|
extract_number_and_incr(mcnt, p1);
|
|
if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) {
|
|
/* Get to the beginning of the n-th alternative. */
|
|
p1 -= 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Deal with the last alternative: go back and get number
|
|
of the `jump_past_alt' just before it. `mcnt' contains
|
|
the length of the alternative. */
|
|
extract_number(mcnt, p1 - 2);
|
|
|
|
if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
|
|
return false;
|
|
|
|
p1 += mcnt; /* Get past the n-th alternative. */
|
|
} /* if mcnt > 0 */
|
|
break;
|
|
|
|
|
|
case stop_memory:
|
|
assert (p1[1] == **p);
|
|
*p = p1 + 2;
|
|
return true;
|
|
|
|
|
|
default:
|
|
if (!common_op_match_null_string_p(&p1, end, reg_info))
|
|
return false;
|
|
}
|
|
} /* while p1 < end */
|
|
|
|
return false;
|
|
} /* group_match_null_string_p */
|
|
|
|
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
|
|
It expects P to be the first byte of a single alternative and END one
|
|
byte past the last. The alternative can contain groups. */
|
|
|
|
sal_Bool
|
|
Regexpr::alt_match_null_string_p(sal_Unicode *p, sal_Unicode *end, register_info_type *reg_info)
|
|
{
|
|
sal_Int32 mcnt;
|
|
sal_Unicode *p1 = p;
|
|
|
|
while (p1 < end) {
|
|
/* Skip over opcodes that can match nothing, and break when we get
|
|
to one that can't. */
|
|
|
|
switch ((re_opcode_t) *p1) {
|
|
/* It's a loop. */
|
|
case on_failure_jump:
|
|
p1++;
|
|
extract_number_and_incr(mcnt, p1);
|
|
p1 += mcnt;
|
|
break;
|
|
|
|
default:
|
|
if (!common_op_match_null_string_p(&p1, end, reg_info))
|
|
return false;
|
|
}
|
|
} /* while p1 < end */
|
|
|
|
return true;
|
|
} /* alt_match_null_string_p */
|
|
|
|
|
|
/* Deals with the ops common to group_match_null_string_p and
|
|
alt_match_null_string_p.
|
|
|
|
Sets P to one after the op and its arguments, if any. */
|
|
|
|
sal_Bool
|
|
Regexpr::common_op_match_null_string_p(sal_Unicode **p, sal_Unicode *end, register_info_type *reg_info)
|
|
{
|
|
sal_Int32 mcnt;
|
|
sal_Bool ret;
|
|
sal_Int32 reg_no;
|
|
sal_Unicode *p1 = *p;
|
|
|
|
switch ((re_opcode_t) *p1++) {
|
|
case no_op:
|
|
case begline:
|
|
case endline:
|
|
case begbuf:
|
|
case endbuf:
|
|
break;
|
|
|
|
case start_memory:
|
|
reg_no = *p1;
|
|
assert (reg_no > 0 && reg_no <= MAX_REGNUM);
|
|
ret = group_match_null_string_p(&p1, end, reg_info);
|
|
/* Have to set this here in case we're checking a group which
|
|
contains a group and a back reference to it. */
|
|
|
|
if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
|
|
REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
|
|
|
|
if (!ret)
|
|
return false;
|
|
break;
|
|
|
|
/* If this is an optimized succeed_n for zero times, make the jump. */
|
|
case jump:
|
|
extract_number_and_incr(mcnt, p1);
|
|
if (mcnt >= 0)
|
|
p1 += mcnt;
|
|
else
|
|
return false;
|
|
break;
|
|
|
|
case succeed_n:
|
|
/* Get to the number of times to succeed. */
|
|
p1 += 2;
|
|
extract_number_and_incr(mcnt, p1);
|
|
|
|
if (mcnt == 0)
|
|
{
|
|
p1 -= 4;
|
|
extract_number_and_incr(mcnt, p1);
|
|
p1 += mcnt;
|
|
}
|
|
else
|
|
return false;
|
|
break;
|
|
|
|
case duplicate:
|
|
if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
|
|
return false;
|
|
break;
|
|
|
|
case set_number_at:
|
|
p1 += 4;
|
|
|
|
default:
|
|
/* All other opcodes mean we cannot match the empty string. */
|
|
return false;
|
|
}
|
|
|
|
*p = p1;
|
|
return true;
|
|
} /* common_op_match_null_string_p */
|
|
|
|
|
|
|
|
/* Free everything we malloc. */
|
|
#ifdef MATCH_MAY_ALLOCATE
|
|
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
|
|
# define FREE_VARIABLES() \
|
|
do { \
|
|
REGEX_FREE_STACK (fail_stack.stack); \
|
|
FREE_VAR (regstart); \
|
|
FREE_VAR (regend); \
|
|
FREE_VAR (old_regstart); \
|
|
FREE_VAR (old_regend); \
|
|
FREE_VAR (best_regstart); \
|
|
FREE_VAR (best_regend); \
|
|
FREE_VAR (reg_info); \
|
|
FREE_VAR (reg_dummy); \
|
|
FREE_VAR (reg_info_dummy); \
|
|
} while (0)
|
|
#else
|
|
# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
|
|
#endif /* not MATCH_MAY_ALLOCATE */
|
|
|
|
/* This is a separate function so that we can force an alloca cleanup
|
|
afterwards. */
|
|
sal_Int32
|
|
Regexpr::re_match2(struct re_registers *regs, sal_Int32 pos, sal_Int32 range)
|
|
{
|
|
/* General temporaries. */
|
|
sal_Int32 mcnt;
|
|
sal_Unicode *p1;
|
|
|
|
/* Just past the end of the corresponding string. */
|
|
sal_Unicode *end2;
|
|
|
|
/* Pointers into string2, just past the last characters in
|
|
each to consider matching. */
|
|
sal_Unicode *end_match_2;
|
|
|
|
/* Where we are in the data, and the end of the current string. */
|
|
const sal_Unicode *d, *dend;
|
|
|
|
/* Where we are in the compiled pattern, and the end of the compiled
|
|
pattern. */
|
|
sal_Unicode *p = bufp->buffer;
|
|
register sal_Unicode *pend = p + bufp->used;
|
|
|
|
/* Mark the opcode just after a start_memory, so we can test for an
|
|
empty subpattern when we get to the stop_memory. */
|
|
sal_Unicode *just_past_start_mem = 0;
|
|
|
|
/* Failure point stack. Each place that can handle a failure further
|
|
down the line pushes a failure point on this stack. It consists of
|
|
restart, regend, and reg_info for all registers corresponding to
|
|
the subexpressions we're currently inside, plus the number of such
|
|
registers, and, finally, two sal_Unicode *'s. The first
|
|
sal_Unicode * is where to resume scanning the pattern; the second
|
|
one is where to resume scanning the strings. If the latter is
|
|
zero, the failure point is a ``dummy''; if a failure happens and
|
|
the failure point is a dummy, it gets discarded and the next next
|
|
one is tried. */
|
|
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
fail_stack_type fail_stack;
|
|
#endif
|
|
|
|
/* We fill all the registers internally, independent of what we
|
|
return, for use in backreferences. The number here includes
|
|
an element for register zero. */
|
|
size_t num_regs = bufp->re_nsub + 1;
|
|
|
|
/* The currently active registers. */
|
|
sal_uInt32 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
sal_uInt32 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
|
|
/* Information on the contents of registers. These are pointers into
|
|
the input strings; they record just what was matched (on this
|
|
attempt) by a subexpression part of the pattern, that is, the
|
|
regnum-th regstart pointer points to where in the pattern we began
|
|
matching and the regnum-th regend points to right after where we
|
|
stopped matching the regnum-th subexpression. (The zeroth register
|
|
keeps track of what the whole pattern matches.) */
|
|
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
const sal_Unicode **regstart, **regend;
|
|
#endif
|
|
|
|
/* If a group that's operated upon by a repetition operator fails to
|
|
match anything, then the register for its start will need to be
|
|
restored because it will have been set to wherever in the string we
|
|
are when we last see its open-group operator. Similarly for a
|
|
register's end. */
|
|
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
const sal_Unicode **old_regstart, **old_regend;
|
|
#endif
|
|
|
|
/* The is_active field of reg_info helps us keep track of which (possibly
|
|
nested) subexpressions we are currently in. The matched_something
|
|
field of reg_info[reg_num] helps us tell whether or not we have
|
|
matched any of the pattern so far this time through the reg_num-th
|
|
subexpression. These two fields get reset each time through any
|
|
loop their register is in. */
|
|
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
register_info_type *reg_info;
|
|
#endif
|
|
|
|
/* The following record the register info as found in the above
|
|
variables when we find a match better than any we've seen before.
|
|
This happens as we backtrack through the failure points, which in
|
|
turn happens only if we have not yet matched the entire string. */
|
|
//unsigned best_regs_set = false;
|
|
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
const sal_Unicode **best_regstart, **best_regend;
|
|
#endif
|
|
|
|
/* Logically, this is `best_regend[0]'. But we don't want to have to
|
|
allocate space for that if we're not allocating space for anything
|
|
else (see below). Also, we never need info about register 0 for
|
|
any of the other register vectors, and it seems rather a kludge to
|
|
treat `best_regend' differently than the rest. So we keep track of
|
|
the end of the best match so far in a separate variable. We
|
|
initialize this to NULL so that when we backtrack the first time
|
|
and need to test it, it's not garbage. */
|
|
//const sal_Unicode *match_end = NULL;
|
|
|
|
/* This helps SET_REGS_MATCHED avoid doing redundant work. */
|
|
sal_Int32 set_regs_matched_done = 0;
|
|
|
|
/* Used when we pop values we don't care about. */
|
|
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
const sal_Unicode **reg_dummy;
|
|
register_info_type *reg_info_dummy;
|
|
#endif
|
|
|
|
INIT_FAIL_STACK();
|
|
|
|
#ifdef MATCH_MAY_ALLOCATE
|
|
/* Do not bother to initialize all the register variables if there are
|
|
no groups in the pattern, as it takes a fair amount of time. If
|
|
there are groups, we include space for register 0 (the whole
|
|
pattern), even though we never use it, since it simplifies the
|
|
array indexing. We should fix this. */
|
|
if (bufp->re_nsub)
|
|
{
|
|
regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
old_regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
old_regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
best_regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
best_regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
reg_info = REGEX_TALLOC (num_regs, register_info_type);
|
|
reg_dummy = REGEX_TALLOC (num_regs, const sal_Unicode *);
|
|
reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
|
|
|
|
if (!(regstart && regend && old_regstart && old_regend && reg_info
|
|
&& best_regstart && best_regend && reg_dummy && reg_info_dummy))
|
|
{
|
|
FREE_VARIABLES ();
|
|
return -2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We must initialize all our variables to NULL, so that
|
|
`FREE_VARIABLES' doesn't try to free them. */
|
|
regstart = regend = old_regstart = old_regend = best_regstart
|
|
= best_regend = reg_dummy = NULL;
|
|
reg_info = reg_info_dummy = (register_info_type *) NULL;
|
|
}
|
|
#endif /* MATCH_MAY_ALLOCATE */
|
|
|
|
sal_Unicode *string2 = (sal_Unicode *)line;
|
|
sal_Int32 size2 = linelen;
|
|
sal_Int32 stop = range;
|
|
|
|
/* The starting position is bogus. */
|
|
if (pos < 0 || pos >= size2 || linelen <= 0 ) {
|
|
FREE_VARIABLES ();
|
|
return(-1);
|
|
}
|
|
|
|
/* Initialize subexpression text positions to -1 to mark ones that no
|
|
start_memory/stop_memory has been seen for. Also initialize the
|
|
register information struct. */
|
|
for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
|
|
regstart[mcnt] = regend[mcnt]
|
|
= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
|
|
|
|
REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
|
|
IS_ACTIVE (reg_info[mcnt]) = 0;
|
|
MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
}
|
|
|
|
end2 = (sal_Unicode *)(string2 + size2);
|
|
|
|
end_match_2 = (sal_Unicode *)(string2 + stop);
|
|
|
|
/* `p' scans through the pattern as `d' scans through the data.
|
|
`dend' is the end of the input string that `d' points within. `d'
|
|
is advanced into the following input string whenever necessary, but
|
|
this happens before fetching; therefore, at the beginning of the
|
|
loop, `d' can be pointing at the end of a string, but it cannot
|
|
equal `string2'. */
|
|
d = string2 + pos;
|
|
dend = end_match_2;
|
|
|
|
/* This loops over pattern commands. It exits by returning from the
|
|
function if the match is complete, or it drops through if the match
|
|
fails at this starting point in the input data. */
|
|
for (;;) {
|
|
if (p == pend) {
|
|
/* End of pattern means we might have succeeded. */
|
|
|
|
/* If we haven't matched the entire string, and we want the
|
|
longest match, try backtracking. */
|
|
if (d != end_match_2) {
|
|
if (!FAIL_STACK_EMPTY()) {
|
|
goto fail;
|
|
}
|
|
} /* d != end_match_2 */
|
|
|
|
succeed_label:
|
|
|
|
/* If caller wants register contents data back, do it. */
|
|
if (regs) {
|
|
/* Have the register data arrays been allocated? */
|
|
if (regs->num_regs == 0) {
|
|
/* No. So allocate them with malloc. We need one
|
|
extra element beyond `num_regs' for the `-1' marker
|
|
GNU code uses. */
|
|
regs->num_of_match = 0;
|
|
regs->num_regs = MAX(RE_NREGS, num_regs + 1);
|
|
regs->start = (sal_Int32 *) malloc(regs->num_regs * sizeof(sal_Int32));
|
|
regs->end = (sal_Int32 *) malloc(regs->num_regs * sizeof(sal_Int32));
|
|
if (regs->start == NULL || regs->end == NULL) {
|
|
FREE_VARIABLES ();
|
|
return(-2);
|
|
}
|
|
} else if ( regs->num_regs > 0 ) {
|
|
/* Yes. If we need more elements than were already
|
|
allocated, reallocate them. If we need fewer, just
|
|
leave it alone. */
|
|
if (regs->num_regs < num_regs + 1) {
|
|
regs->num_regs = num_regs + 1;
|
|
regs->start = (sal_Int32 *) realloc(regs->start, regs->num_regs * sizeof(sal_Int32));
|
|
regs->end = (sal_Int32 *) realloc(regs->end, regs->num_regs * sizeof(sal_Int32));
|
|
if (regs->start == NULL || regs->end == NULL) {
|
|
FREE_VARIABLES ();
|
|
return(-2);
|
|
}
|
|
}
|
|
} else { // num_regs is negative
|
|
FREE_VARIABLES ();
|
|
return(-2);
|
|
}
|
|
|
|
/* Convert the pointer data in `regstart' and `regend' to
|
|
indices. Register zero has to be set differently,
|
|
since we haven't kept track of any info for it. */
|
|
if (regs->num_regs > 0) {
|
|
// Make sure a valid location
|
|
sal_Int32 dpos = d - string2;
|
|
if (pos == dpos || (d - 1) >= dend ) {
|
|
FREE_VARIABLES ();
|
|
return(-1);
|
|
}
|
|
regs->start[regs->num_of_match] = pos;
|
|
regs->end[regs->num_of_match] = ((sal_Int32) (d - string2));
|
|
regs->num_of_match++;
|
|
}
|
|
|
|
/* Go through the first `min (num_regs, regs->num_regs)'
|
|
registers, since that is all we initialized. */
|
|
for (mcnt = regs->num_of_match; (unsigned) mcnt < MIN(num_regs, regs->num_regs);
|
|
mcnt++) {
|
|
regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
if( !(REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt])) ) {
|
|
regs->start[regs->num_of_match] = (sal_Int32) POINTER_TO_OFFSET(regstart[mcnt]);
|
|
regs->end[regs->num_of_match] = (sal_Int32) POINTER_TO_OFFSET(regend[mcnt]);
|
|
regs->num_of_match++;
|
|
}
|
|
}
|
|
|
|
/* If the regs structure we return has more elements than
|
|
were in the pattern, set the extra elements to -1. If
|
|
we (re)allocated the registers, this is the case,
|
|
because we always allocate enough to have at least one
|
|
-1 at the end. */
|
|
for (mcnt = regs->num_of_match; (unsigned) mcnt < regs->num_regs; mcnt++)
|
|
regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
} /* regs */
|
|
|
|
mcnt = d - pos - string2;
|
|
|
|
FREE_VARIABLES ();
|
|
return(0);
|
|
}
|
|
/* Otherwise match next pattern command. */
|
|
switch ((re_opcode_t) *p++) {
|
|
/* Ignore these. Used to ignore the n of succeed_n's which
|
|
currently have n == 0. */
|
|
case no_op:
|
|
break;
|
|
|
|
case succeed:
|
|
goto succeed_label;
|
|
|
|
/* Match the next n pattern characters exactly. The following
|
|
byte in the pattern defines n, and the n bytes after that
|
|
are the characters to match. */
|
|
case exactn:
|
|
mcnt = *p++;
|
|
|
|
do {
|
|
PREFETCH();
|
|
if ((sal_Unicode)*d++ != (sal_Unicode) *p++) goto fail;
|
|
} while (--mcnt);
|
|
SET_REGS_MATCHED();
|
|
break;
|
|
|
|
/* Match any character except possibly a newline or a null. */
|
|
case anychar:
|
|
|
|
PREFETCH();
|
|
if ( *d == (sal_Unicode)'\n' ||
|
|
*d == (sal_Unicode)'\000' )
|
|
goto fail;
|
|
|
|
SET_REGS_MATCHED();
|
|
d++;
|
|
break;
|
|
|
|
case charset:
|
|
case charset_not: {
|
|
register sal_Unicode c;
|
|
sal_Bool knot = (re_opcode_t) *(p - 1) == charset_not;
|
|
|
|
PREFETCH();
|
|
c = *d; /* The character to match. */
|
|
/* Cast to `sal_uInt32' instead of `sal_Unicode' in case the
|
|
bit list is a full 32 bytes long. */
|
|
if ((c < (sal_uInt32) (*p * BYTEWIDTH)) && (p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))))
|
|
knot = !knot;
|
|
|
|
p += 1 + *p;
|
|
|
|
if (!knot) {
|
|
goto fail;
|
|
}
|
|
|
|
SET_REGS_MATCHED();
|
|
d++;
|
|
break;
|
|
}
|
|
|
|
/* The beginning of a group is represented by start_memory.
|
|
The arguments are the register number in the next byte, and the
|
|
number of groups inner to this one in the next. The text
|
|
matched within the group is recorded (in the internal
|
|
registers data structure) under the register number. */
|
|
case start_memory:
|
|
|
|
/* Find out if this group can match the empty string. */
|
|
p1 = p; /* To send to group_match_null_string_p. */
|
|
|
|
if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
|
|
REG_MATCH_NULL_STRING_P(reg_info[*p]) = group_match_null_string_p(&p1, pend, reg_info);
|
|
|
|
/* Save the position in the string where we were the last time
|
|
we were at this open-group operator in case the group is
|
|
operated upon by a repetition operator, e.g., with `(a*)*b'
|
|
against `ab'; then we want to ignore where we are now in
|
|
the string in case this attempt to match fails. */
|
|
old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
|
|
? REG_UNSET(regstart[*p]) ? d : regstart[*p]
|
|
: regstart[*p];
|
|
|
|
regstart[*p] = d;
|
|
|
|
IS_ACTIVE (reg_info[*p]) = 1;
|
|
MATCHED_SOMETHING(reg_info[*p]) = 0;
|
|
|
|
/* Clear this whenever we change the register activity status. */
|
|
set_regs_matched_done = 0;
|
|
|
|
/* This is the new highest active register. */
|
|
highest_active_reg = *p;
|
|
|
|
/* If nothing was active before, this is the new lowest active
|
|
register. */
|
|
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
lowest_active_reg = *p;
|
|
|
|
/* Move past the register number and inner group count. */
|
|
p += 2;
|
|
just_past_start_mem = p;
|
|
|
|
break;
|
|
|
|
/* The stop_memory opcode represents the end of a group. Its
|
|
arguments are the same as start_memory's: the register
|
|
number, and the number of inner groups. */
|
|
case stop_memory:
|
|
|
|
/* We need to save the string position the last time we were at
|
|
this close-group operator in case the group is operated
|
|
upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
|
|
against `aba'; then we want to ignore where we are now in
|
|
the string in case this attempt to match fails. */
|
|
old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
? REG_UNSET(regend[*p]) ? d : regend[*p]
|
|
: regend[*p];
|
|
|
|
regend[*p] = d;
|
|
|
|
/* This register isn't active anymore. */
|
|
IS_ACTIVE(reg_info[*p]) = 0;
|
|
|
|
/* Clear this whenever we change the register activity status. */
|
|
set_regs_matched_done = 0;
|
|
|
|
/* If this was the only register active, nothing is active
|
|
anymore. */
|
|
if (lowest_active_reg == highest_active_reg) {
|
|
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
} else { /* We must scan for the new highest active register, since
|
|
it isn't necessarily one less than now: consider
|
|
(a(b)c(d(e)f)g). When group 3 ends, after the f), the
|
|
new highest active register is 1. */
|
|
sal_Unicode r = *p - 1;
|
|
while (r > 0 && !IS_ACTIVE (reg_info[r]))
|
|
r--;
|
|
|
|
/* If we end up at register zero, that means that we saved
|
|
the registers as the result of an `on_failure_jump', not
|
|
a `start_memory', and we jumped to past the innermost
|
|
`stop_memory'. For example, in ((.)*) we save
|
|
registers 1 and 2 as a result of the *, but when we pop
|
|
back to the second ), we are at the stop_memory 1.
|
|
Thus, nothing is active. */
|
|
if (r == 0) {
|
|
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
} else
|
|
highest_active_reg = r;
|
|
}
|
|
|
|
/* If just failed to match something this time around with a
|
|
group that's operated on by a repetition operator, try to
|
|
force exit from the ``loop'', and restore the register
|
|
information for this group that we had before trying this
|
|
last match. */
|
|
if ((!MATCHED_SOMETHING (reg_info[*p])
|
|
|| just_past_start_mem == p - 1)
|
|
&& (p + 2) < pend) {
|
|
sal_Bool is_a_jump_n = false;
|
|
|
|
p1 = p + 2;
|
|
mcnt = 0;
|
|
switch ((re_opcode_t) *p1++) {
|
|
case jump_n:
|
|
is_a_jump_n = true;
|
|
case pop_failure_jump:
|
|
case maybe_pop_jump:
|
|
case jump:
|
|
case dummy_failure_jump:
|
|
extract_number_and_incr(mcnt, p1);
|
|
if (is_a_jump_n)
|
|
p1 += 2;
|
|
break;
|
|
|
|
default:
|
|
/* do nothing */ ;
|
|
}
|
|
p1 += mcnt;
|
|
|
|
/* If the next operation is a jump backwards in the pattern
|
|
to an on_failure_jump right before the start_memory
|
|
corresponding to this stop_memory, exit from the loop
|
|
by forcing a failure after pushing on the stack the
|
|
on_failure_jump's jump in the pattern, and d. */
|
|
if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
|
|
&& (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
|
|
/* If this group ever matched anything, then restore
|
|
what its registers were before trying this last
|
|
failed match, e.g., with `(a*)*b' against `ab' for
|
|
regstart[1], and, e.g., with `((a*)*(b*)*)*'
|
|
against `aba' for regend[3].
|
|
|
|
Also restore the registers for inner groups for,
|
|
e.g., `((a*)(b*))*' against `aba' (register 3 would
|
|
otherwise get trashed). */
|
|
|
|
if (EVER_MATCHED_SOMETHING (reg_info[*p])) {
|
|
unsigned r;
|
|
|
|
EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|
|
|
/* Restore this and inner groups' (if any) registers. */
|
|
for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
|
|
r++) {
|
|
regstart[r] = old_regstart[r];
|
|
|
|
/* xx why this test? */
|
|
if (old_regend[r] >= regstart[r])
|
|
regend[r] = old_regend[r];
|
|
}
|
|
}
|
|
p1++;
|
|
extract_number_and_incr(mcnt, p1);
|
|
PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
|
|
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Move past the register number and the inner group count. */
|
|
p += 2;
|
|
break;
|
|
|
|
|
|
/* \<digit> has been turned into a `duplicate' command which is
|
|
followed by the numeric value of <digit> as the register number. */
|
|
case duplicate:
|
|
{
|
|
register const sal_Unicode *d2, *dend2;
|
|
sal_Unicode regno = *p++; /* Get which register to match against. */
|
|
|
|
/* Can't back reference a group which we've never matched. */
|
|
if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno])) {
|
|
goto fail;
|
|
}
|
|
|
|
/* Where in input to try to start matching. */
|
|
d2 = regstart[regno];
|
|
|
|
/* Where to stop matching; if both the place to start and
|
|
the place to stop matching are in the same string, then
|
|
set to the place to stop, otherwise, for now have to use
|
|
the end of the first string. */
|
|
|
|
dend2 = regend[regno];
|
|
for (;;) {
|
|
/* If necessary, advance to next segment in register
|
|
contents. */
|
|
while (d2 == dend2) {
|
|
if (dend2 == end_match_2) break;
|
|
if (dend2 == regend[regno]) break;
|
|
}
|
|
/* At end of register contents => success */
|
|
if (d2 == dend2) break;
|
|
|
|
PREFETCH();
|
|
|
|
/* How many characters left in this segment to match. */
|
|
mcnt = dend - d;
|
|
|
|
/* Want how many consecutive characters we can match in
|
|
one shot, so, if necessary, adjust the count. */
|
|
if (mcnt > dend2 - d2)
|
|
mcnt = dend2 - d2;
|
|
|
|
/* Compare that many; failure if mismatch, else move
|
|
past them. */
|
|
if (translate
|
|
? bcmp_translate(d, d2, mcnt)
|
|
: memcmp(d, d2, mcnt * sizeof(sal_Unicode))) {
|
|
goto fail;
|
|
}
|
|
d += mcnt, d2 += mcnt;
|
|
/* Do this because we've match some characters. */
|
|
SET_REGS_MATCHED();
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* begline matches the empty string at the beginning of the string
|
|
(unless `not_bol' is set in `bufp'), and, if
|
|
`newline_anchor' is set, after newlines. */
|
|
case begline:
|
|
|
|
if (AT_STRINGS_BEG (d)) {
|
|
if (!bufp->not_bol) break;
|
|
} else if (d[-1] == '\n' && bufp->newline_anchor) {
|
|
break;
|
|
}
|
|
/* In all other cases, we fail. */
|
|
goto fail;
|
|
|
|
/* endline is the dual of begline. */
|
|
case endline:
|
|
|
|
if (AT_STRINGS_END(d)) {
|
|
if (!bufp->not_eol) break;
|
|
} else if (*d == '\n' && bufp->newline_anchor) {
|
|
break;
|
|
}
|
|
goto fail;
|
|
|
|
/* Match at the very beginning of the data. */
|
|
case begbuf:
|
|
if (AT_STRINGS_BEG (d))
|
|
break;
|
|
goto fail;
|
|
|
|
|
|
/* Match at the very end of the data. */
|
|
case endbuf:
|
|
if (AT_STRINGS_END (d))
|
|
break;
|
|
goto fail;
|
|
|
|
|
|
/* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
|
pushes NULL as the value for the string on the stack. Then
|
|
`pop_failure_point' will keep the current value for the
|
|
string, instead of restoring it. To see why, consider
|
|
matching `foo\nbar' against `.*\n'. The .* matches the foo;
|
|
then the . fails against the \n. But the next thing we want
|
|
to do is match the \n against the \n; if we restored the
|
|
string value, we would be back at the foo.
|
|
|
|
Because this is used only in specific cases, we don't need to
|
|
check all the things that `on_failure_jump' does, to make
|
|
sure the right things get saved on the stack. Hence we don't
|
|
share its code. The only reason to push anything on the
|
|
stack at all is that otherwise we would have to change
|
|
`anychar's code to do something besides goto fail in this
|
|
case; that seems worse than this. */
|
|
case on_failure_keep_string_jump:
|
|
|
|
extract_number_and_incr(mcnt, p);
|
|
|
|
PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
|
|
break;
|
|
|
|
|
|
/* Uses of on_failure_jump:
|
|
|
|
Each alternative starts with an on_failure_jump that points
|
|
to the beginning of the next alternative. Each alternative
|
|
except the last ends with a jump that in effect jumps past
|
|
the rest of the alternatives. (They really jump to the
|
|
ending jump of the following alternative, because tensioning
|
|
these jumps is a hassle.)
|
|
|
|
Repeats start with an on_failure_jump that points past both
|
|
the repetition text and either the following jump or
|
|
pop_failure_jump back to this on_failure_jump. */
|
|
case on_failure_jump:
|
|
on_failure:
|
|
|
|
extract_number_and_incr(mcnt, p);
|
|
|
|
/* If this on_failure_jump comes right before a group (i.e.,
|
|
the original * applied to a group), save the information
|
|
for that group and all inner ones, so that if we fail back
|
|
to this point, the group's information will be correct.
|
|
For example, in \(a*\)*\1, we need the preceding group,
|
|
and in \(zz\(a*\)b*\)\2, we need the inner group. */
|
|
|
|
/* We can't use `p' to check ahead because we push
|
|
a failure point to `p + mcnt' after we do this. */
|
|
p1 = p;
|
|
|
|
/* We need to skip no_op's before we look for the
|
|
start_memory in case this on_failure_jump is happening as
|
|
the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
|
|
against aba. */
|
|
while (p1 < pend && (re_opcode_t) *p1 == no_op)
|
|
p1++;
|
|
|
|
if (p1 < pend && (re_opcode_t) *p1 == start_memory) {
|
|
/* We have a new highest active register now. This will
|
|
get reset at the start_memory we are about to get to,
|
|
but we will have saved all the registers relevant to
|
|
this repetition op, as described above. */
|
|
highest_active_reg = *(p1 + 1) + *(p1 + 2);
|
|
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
lowest_active_reg = *(p1 + 1);
|
|
}
|
|
|
|
PUSH_FAILURE_POINT(p + mcnt, d, -2);
|
|
break;
|
|
|
|
/* A smart repeat ends with `maybe_pop_jump'.
|
|
We change it to either `pop_failure_jump' or `jump'. */
|
|
case maybe_pop_jump:
|
|
extract_number_and_incr(mcnt, p);
|
|
{
|
|
register sal_Unicode *p2 = p;
|
|
|
|
/* Compare the beginning of the repeat with what in the
|
|
pattern follows its end. If we can establish that there
|
|
is nothing that they would both match, i.e., that we
|
|
would have to backtrack because of (as in, e.g., `a*a')
|
|
then we can change to pop_failure_jump, because we'll
|
|
never have to backtrack.
|
|
|
|
This is not true in the case of alternatives: in
|
|
`(a|ab)*' we do need to backtrack to the `ab' alternative
|
|
(e.g., if the string was `ab'). But instead of trying to
|
|
detect that here, the alternative has put on a dummy
|
|
failure point which is what we will end up popping. */
|
|
|
|
/* Skip over open/close-group commands.
|
|
If what follows this loop is a ...+ construct,
|
|
look at what begins its body, since we will have to
|
|
match at least one of that. */
|
|
while (1) {
|
|
if (p2 + 2 < pend
|
|
&& ((re_opcode_t) *p2 == stop_memory
|
|
|| (re_opcode_t) *p2 == start_memory))
|
|
p2 += 3;
|
|
else if (p2 + 6 < pend
|
|
&& (re_opcode_t) *p2 == dummy_failure_jump)
|
|
p2 += 6;
|
|
else
|
|
break;
|
|
}
|
|
|
|
p1 = p + mcnt;
|
|
/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
|
|
to the `maybe_finalize_jump' of this case. Examine what
|
|
follows. */
|
|
|
|
/* If we're at the end of the pattern, we can change. */
|
|
if (p2 == pend) {
|
|
/* Consider what happens when matching ":\(.*\)"
|
|
against ":/". I don't really understand this code
|
|
yet. */
|
|
p[-3] = (sal_Unicode) pop_failure_jump;
|
|
} else if ((re_opcode_t) *p2 == exactn
|
|
|| (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) {
|
|
register sal_Unicode c = *p2 == (sal_Unicode) endline ? (sal_Unicode)'\n' : p2[2];
|
|
|
|
if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
|
|
p[-3] = (sal_Unicode) pop_failure_jump;
|
|
} else if ((re_opcode_t) p1[3] == charset
|
|
|| (re_opcode_t) p1[3] == charset_not) {
|
|
sal_Int32 knot = (re_opcode_t) p1[3] == charset_not;
|
|
|
|
if (c < (sal_Unicode) (p1[4] * BYTEWIDTH)
|
|
&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
|
knot = !knot;
|
|
|
|
/* `not' is equal to 1 if c would match, which means
|
|
that we can't change to pop_failure_jump. */
|
|
if (!knot) {
|
|
p[-3] = (unsigned char) pop_failure_jump;
|
|
}
|
|
}
|
|
} else if ((re_opcode_t) *p2 == charset) {
|
|
/* We win if the first character of the loop is not part
|
|
of the charset. */
|
|
if ((re_opcode_t) p1[3] == exactn
|
|
&& ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
|
|
&& (p2[2 + p1[5] / BYTEWIDTH]
|
|
& (1 << (p1[5] % BYTEWIDTH))))) {
|
|
p[-3] = (sal_Unicode) pop_failure_jump;
|
|
} else if ((re_opcode_t) p1[3] == charset_not) {
|
|
sal_Int32 idx;
|
|
/* We win if the charset_not inside the loop
|
|
lists every character listed in the charset after. */
|
|
for (idx = 0; idx < (int) p2[1]; idx++)
|
|
if (! (p2[2 + idx] == 0
|
|
|| (idx < (int) p1[4]
|
|
&& ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
|
|
break;
|
|
|
|
if (idx == p2[1]) {
|
|
p[-3] = (sal_Unicode) pop_failure_jump;
|
|
}
|
|
} else if ((re_opcode_t) p1[3] == charset) {
|
|
sal_Int32 idx;
|
|
/* We win if the charset inside the loop
|
|
has no overlap with the one after the loop. */
|
|
for (idx = 0;
|
|
idx < (sal_Int32) p2[1] && idx < (sal_Int32) p1[4];
|
|
idx++)
|
|
if ((p2[2 + idx] & p1[5 + idx]) != 0)
|
|
break;
|
|
|
|
if (idx == p2[1] || idx == p1[4]) {
|
|
p[-3] = (sal_Unicode) pop_failure_jump;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
p -= 2; /* Point at relative address again. */
|
|
if ((re_opcode_t) p[-1] != pop_failure_jump) {
|
|
p[-1] = (sal_Unicode) jump;
|
|
goto unconditional_jump;
|
|
}
|
|
/* Note fall through. */
|
|
|
|
|
|
/* The end of a simple repeat has a pop_failure_jump back to
|
|
its matching on_failure_jump, where the latter will push a
|
|
failure point. The pop_failure_jump takes off failure
|
|
points put on by this pop_failure_jump's matching
|
|
on_failure_jump; we got through the pattern to here from the
|
|
matching on_failure_jump, so didn't fail. */
|
|
case pop_failure_jump:
|
|
{
|
|
/* We need to pass separate storage for the lowest and
|
|
highest registers, even though we don't care about the
|
|
actual values. Otherwise, we will restore only one
|
|
register from the stack, since lowest will == highest in
|
|
`pop_failure_point'. */
|
|
sal_uInt32 dummy_low_reg, dummy_high_reg;
|
|
sal_Unicode *pdummy = NULL;
|
|
const sal_Unicode *sdummy = NULL;
|
|
|
|
POP_FAILURE_POINT(sdummy, pdummy,
|
|
dummy_low_reg, dummy_high_reg,
|
|
reg_dummy, reg_dummy, reg_info_dummy);
|
|
|
|
(void)sdummy;
|
|
(void)pdummy;
|
|
}
|
|
/* Note fall through. */
|
|
|
|
unconditional_jump:
|
|
/* Note fall through. */
|
|
|
|
/* Unconditionally jump (without popping any failure points). */
|
|
case jump:
|
|
extract_number_and_incr(mcnt, p); /* Get the amount to jump. */
|
|
p += mcnt; /* Do the jump. */
|
|
break;
|
|
|
|
/* We need this opcode so we can detect where alternatives end
|
|
in `group_match_null_string_p' et al. */
|
|
case jump_past_alt:
|
|
goto unconditional_jump;
|
|
|
|
|
|
/* Normally, the on_failure_jump pushes a failure point, which
|
|
then gets popped at pop_failure_jump. We will end up at
|
|
pop_failure_jump, also, and with a pattern of, say, `a+', we
|
|
are skipping over the on_failure_jump, so we have to push
|
|
something meaningless for pop_failure_jump to pop. */
|
|
case dummy_failure_jump:
|
|
/* It doesn't matter what we push for the string here. What
|
|
the code at `fail' tests is the value for the pattern. */
|
|
PUSH_FAILURE_POINT(NULL, NULL, -2);
|
|
goto unconditional_jump;
|
|
|
|
|
|
/* At the end of an alternative, we need to push a dummy failure
|
|
point in case we are followed by a `pop_failure_jump', because
|
|
we don't want the failure point for the alternative to be
|
|
popped. For example, matching `(a|ab)*' against `aab'
|
|
requires that we match the `ab' alternative. */
|
|
case push_dummy_failure:
|
|
/* See comments just above at `dummy_failure_jump' about the
|
|
two zeroes. */
|
|
PUSH_FAILURE_POINT(NULL, NULL, -2);
|
|
break;
|
|
|
|
/* Have to succeed matching what follows at least n times.
|
|
After that, handle like `on_failure_jump'. */
|
|
case succeed_n:
|
|
extract_number(mcnt, p + 2);
|
|
|
|
assert (mcnt >= 0);
|
|
/* Originally, this is how many times we HAVE to succeed. */
|
|
if (mcnt > 0) {
|
|
mcnt--;
|
|
p += 2;
|
|
store_number_and_incr (p, mcnt);
|
|
} else if (mcnt == 0) {
|
|
p[2] = (sal_Unicode) no_op;
|
|
p[3] = (sal_Unicode) no_op;
|
|
goto on_failure;
|
|
}
|
|
break;
|
|
|
|
case jump_n:
|
|
extract_number(mcnt, p + 2);
|
|
|
|
/* Originally, this is how many times we CAN jump. */
|
|
if (mcnt) {
|
|
mcnt--;
|
|
store_number (p + 2, mcnt);
|
|
goto unconditional_jump;
|
|
}
|
|
/* If don't have to jump any more, skip over the rest of command. */
|
|
else
|
|
p += 4;
|
|
break;
|
|
|
|
case set_number_at:
|
|
{
|
|
|
|
extract_number_and_incr(mcnt, p);
|
|
p1 = p + mcnt;
|
|
extract_number_and_incr(mcnt, p);
|
|
store_number (p1, mcnt);
|
|
break;
|
|
}
|
|
|
|
case wordbeg:
|
|
if (iswordbegin(d, string2, size2))
|
|
break;
|
|
goto fail;
|
|
|
|
case wordend:
|
|
if (iswordend(d, string2, size2))
|
|
break;
|
|
goto fail;
|
|
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
continue; /* Successfully executed one pattern command; keep going. */
|
|
|
|
/* We goto here if a matching operation fails. */
|
|
fail:
|
|
if (!FAIL_STACK_EMPTY()) {
|
|
/* A restart point is known. Restore to that state. */
|
|
POP_FAILURE_POINT(d, p,
|
|
lowest_active_reg, highest_active_reg,
|
|
regstart, regend, reg_info);
|
|
|
|
/* If this failure point is a dummy, try the next one. */
|
|
if (!p)
|
|
goto fail;
|
|
|
|
/* If we failed to the end of the pattern, don't examine *p. */
|
|
assert(p <= pend);
|
|
if (p < pend) {
|
|
sal_Bool is_a_jump_n = false;
|
|
|
|
/* If failed to a backwards jump that's part of a repetition
|
|
loop, need to pop this failure point and use the next
|
|
one. */
|
|
switch ((re_opcode_t) *p) {
|
|
case jump_n:
|
|
is_a_jump_n = true;
|
|
case maybe_pop_jump:
|
|
case pop_failure_jump:
|
|
case jump:
|
|
p1 = p + 1;
|
|
extract_number_and_incr(mcnt, p1);
|
|
p1 += mcnt;
|
|
|
|
if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|
|
|| (!is_a_jump_n
|
|
&& (re_opcode_t) *p1 == on_failure_jump)) {
|
|
goto fail;
|
|
}
|
|
break;
|
|
default:
|
|
/* do nothing */ ;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
break; /* Matching at this starting point really fails. */
|
|
}
|
|
} /* for (;;) */
|
|
|
|
FREE_VARIABLES ();
|
|
|
|
return(-1); /* Failure to match. */
|
|
} /* re_match2 */
|
|
|
|
/* Set the bit for character C in a list. */
|
|
void
|
|
Regexpr::set_list_bit(sal_Unicode c, sal_Unicode *b)
|
|
{
|
|
if ( translate ) {
|
|
try {
|
|
sal_Unicode tmp = translit->transliterateChar2Char(c);
|
|
b[tmp / BYTEWIDTH] |= 1 << (tmp % BYTEWIDTH);
|
|
} catch (const ::com::sun::star::i18n::MultipleCharsOutputException&) {
|
|
::rtl::OUString o2( translit->transliterateChar2String( c));
|
|
sal_Int32 len2 = o2.getLength();
|
|
const sal_Unicode * k2 = o2.getStr();
|
|
for (sal_Int32 nmatch = 0; nmatch < len2; nmatch++) {
|
|
b[k2[nmatch] / BYTEWIDTH] |= 1 << (k2[nmatch] % BYTEWIDTH);
|
|
}
|
|
}
|
|
} else {
|
|
b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH);
|
|
}
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|