d0a0851cd0
2008/04/01 15:01:12 thb 1.19.6.3: #i85898# Stripping all external header guards 2008/04/01 10:48:13 thb 1.19.6.2: #i85898# Stripping all external header guards 2008/03/28 16:05:49 rt 1.19.6.1: #i87441# Change license header to LPGL v3.
577 lines
18 KiB
C++
577 lines
18 KiB
C++
/*************************************************************************
|
|
*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* Copyright 2008 by Sun Microsystems, Inc.
|
|
*
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
|
*
|
|
* $RCSfile: b2dhommatrix.cxx,v $
|
|
* $Revision: 1.20 $
|
|
*
|
|
* This file is part of OpenOffice.org.
|
|
*
|
|
* OpenOffice.org is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 3
|
|
* only, as published by the Free Software Foundation.
|
|
*
|
|
* OpenOffice.org is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License version 3 for more details
|
|
* (a copy is included in the LICENSE file that accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* version 3 along with OpenOffice.org. If not, see
|
|
* <http://www.openoffice.org/license.html>
|
|
* for a copy of the LGPLv3 License.
|
|
*
|
|
************************************************************************/
|
|
|
|
// MARKER(update_precomp.py): autogen include statement, do not remove
|
|
#include "precompiled_basegfx.hxx"
|
|
#include <osl/diagnose.h>
|
|
#include <rtl/instance.hxx>
|
|
#include <basegfx/matrix/b2dhommatrix.hxx>
|
|
#include <hommatrixtemplate.hxx>
|
|
#include <basegfx/tuple/b2dtuple.hxx>
|
|
#include <basegfx/vector/b2dvector.hxx>
|
|
|
|
namespace basegfx
|
|
{
|
|
class Impl2DHomMatrix : public ::basegfx::internal::ImplHomMatrixTemplate< 3 >
|
|
{
|
|
};
|
|
|
|
namespace { struct IdentityMatrix : public rtl::Static< B2DHomMatrix::ImplType,
|
|
IdentityMatrix > {}; }
|
|
|
|
B2DHomMatrix::B2DHomMatrix() :
|
|
mpImpl( IdentityMatrix::get() ) // use common identity matrix
|
|
{
|
|
}
|
|
|
|
B2DHomMatrix::B2DHomMatrix(const B2DHomMatrix& rMat) :
|
|
mpImpl(rMat.mpImpl)
|
|
{
|
|
}
|
|
|
|
B2DHomMatrix::~B2DHomMatrix()
|
|
{
|
|
}
|
|
|
|
B2DHomMatrix& B2DHomMatrix::operator=(const B2DHomMatrix& rMat)
|
|
{
|
|
mpImpl = rMat.mpImpl;
|
|
return *this;
|
|
}
|
|
|
|
void B2DHomMatrix::makeUnique()
|
|
{
|
|
mpImpl.make_unique();
|
|
}
|
|
|
|
double B2DHomMatrix::get(sal_uInt16 nRow, sal_uInt16 nColumn) const
|
|
{
|
|
return mpImpl->get(nRow, nColumn);
|
|
}
|
|
|
|
void B2DHomMatrix::set(sal_uInt16 nRow, sal_uInt16 nColumn, double fValue)
|
|
{
|
|
mpImpl->set(nRow, nColumn, fValue);
|
|
}
|
|
|
|
bool B2DHomMatrix::isLastLineDefault() const
|
|
{
|
|
return mpImpl->isLastLineDefault();
|
|
}
|
|
|
|
bool B2DHomMatrix::isIdentity() const
|
|
{
|
|
if(mpImpl.same_object(IdentityMatrix::get()))
|
|
return true;
|
|
|
|
return mpImpl->isIdentity();
|
|
}
|
|
|
|
void B2DHomMatrix::identity()
|
|
{
|
|
mpImpl = IdentityMatrix::get();
|
|
}
|
|
|
|
bool B2DHomMatrix::isInvertible() const
|
|
{
|
|
return mpImpl->isInvertible();
|
|
}
|
|
|
|
bool B2DHomMatrix::invert()
|
|
{
|
|
Impl2DHomMatrix aWork(*mpImpl);
|
|
sal_uInt16* pIndex = new sal_uInt16[mpImpl->getEdgeLength()];
|
|
sal_Int16 nParity;
|
|
|
|
if(aWork.ludcmp(pIndex, nParity))
|
|
{
|
|
mpImpl->doInvert(aWork, pIndex);
|
|
delete[] pIndex;
|
|
|
|
return true;
|
|
}
|
|
|
|
delete[] pIndex;
|
|
return false;
|
|
}
|
|
|
|
bool B2DHomMatrix::isNormalized() const
|
|
{
|
|
return mpImpl->isNormalized();
|
|
}
|
|
|
|
void B2DHomMatrix::normalize()
|
|
{
|
|
if(!const_cast<const B2DHomMatrix*>(this)->mpImpl->isNormalized())
|
|
mpImpl->doNormalize();
|
|
}
|
|
|
|
double B2DHomMatrix::determinant() const
|
|
{
|
|
return mpImpl->doDeterminant();
|
|
}
|
|
|
|
double B2DHomMatrix::trace() const
|
|
{
|
|
return mpImpl->doTrace();
|
|
}
|
|
|
|
void B2DHomMatrix::transpose()
|
|
{
|
|
mpImpl->doTranspose();
|
|
}
|
|
|
|
B2DHomMatrix& B2DHomMatrix::operator+=(const B2DHomMatrix& rMat)
|
|
{
|
|
mpImpl->doAddMatrix(*rMat.mpImpl);
|
|
return *this;
|
|
}
|
|
|
|
B2DHomMatrix& B2DHomMatrix::operator-=(const B2DHomMatrix& rMat)
|
|
{
|
|
mpImpl->doSubMatrix(*rMat.mpImpl);
|
|
return *this;
|
|
}
|
|
|
|
B2DHomMatrix& B2DHomMatrix::operator*=(double fValue)
|
|
{
|
|
const double fOne(1.0);
|
|
|
|
if(!fTools::equal(fOne, fValue))
|
|
mpImpl->doMulMatrix(fValue);
|
|
|
|
return *this;
|
|
}
|
|
|
|
B2DHomMatrix& B2DHomMatrix::operator/=(double fValue)
|
|
{
|
|
const double fOne(1.0);
|
|
|
|
if(!fTools::equal(fOne, fValue))
|
|
mpImpl->doMulMatrix(1.0 / fValue);
|
|
|
|
return *this;
|
|
}
|
|
|
|
B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat)
|
|
{
|
|
if(!rMat.isIdentity())
|
|
mpImpl->doMulMatrix(*rMat.mpImpl);
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const
|
|
{
|
|
if(mpImpl.same_object(rMat.mpImpl))
|
|
return true;
|
|
|
|
return mpImpl->isEqual(*rMat.mpImpl);
|
|
}
|
|
|
|
bool B2DHomMatrix::operator!=(const B2DHomMatrix& rMat) const
|
|
{
|
|
return !(*this == rMat);
|
|
}
|
|
|
|
void B2DHomMatrix::rotate(double fRadiant)
|
|
{
|
|
if(!fTools::equalZero(fRadiant))
|
|
{
|
|
double fSin(0.0);
|
|
double fCos(0.0);
|
|
|
|
// is the rotation angle an approximate multiple of pi/2?
|
|
// If yes, force fSin/fCos to -1/0/1, to maintain
|
|
// orthogonality (which might also be advantageous for the
|
|
// other cases, but: for multiples of pi/2, the exact
|
|
// values _can_ be attained. It would be largely
|
|
// unintuitive, if a 180 degrees rotation would introduce
|
|
// slight roundoff errors, instead of exactly mirroring
|
|
// the coordinate system).
|
|
if( fTools::equalZero( fmod( fRadiant, F_PI2 ) ) )
|
|
{
|
|
// determine quadrant
|
|
const sal_Int32 nQuad(
|
|
(4 + fround( 4/F_2PI*fmod( fRadiant, F_2PI ) )) % 4 );
|
|
switch( nQuad )
|
|
{
|
|
case 0: // -2pi,0,2pi
|
|
fSin = 0.0;
|
|
fCos = 1.0;
|
|
break;
|
|
|
|
case 1: // -3/2pi,1/2pi
|
|
fSin = 1.0;
|
|
fCos = 0.0;
|
|
break;
|
|
|
|
case 2: // -pi,pi
|
|
fSin = 0.0;
|
|
fCos = -1.0;
|
|
break;
|
|
|
|
case 3: // -1/2pi,3/2pi
|
|
fSin = -1.0;
|
|
fCos = 0.0;
|
|
break;
|
|
|
|
default:
|
|
OSL_ENSURE( false,
|
|
"B2DHomMatrix::rotate(): Impossible case reached" );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// TODO(P1): Maybe use glibc's sincos here (though
|
|
// that's kinda non-portable...)
|
|
fSin = sin(fRadiant);
|
|
fCos = cos(fRadiant);
|
|
}
|
|
|
|
Impl2DHomMatrix aRotMat;
|
|
|
|
aRotMat.set(0, 0, fCos);
|
|
aRotMat.set(1, 1, fCos);
|
|
aRotMat.set(1, 0, fSin);
|
|
aRotMat.set(0, 1, -fSin);
|
|
|
|
mpImpl->doMulMatrix(aRotMat);
|
|
}
|
|
}
|
|
|
|
void B2DHomMatrix::translate(double fX, double fY)
|
|
{
|
|
if(!fTools::equalZero(fX) || !fTools::equalZero(fY))
|
|
{
|
|
Impl2DHomMatrix aTransMat;
|
|
|
|
aTransMat.set(0, 2, fX);
|
|
aTransMat.set(1, 2, fY);
|
|
|
|
mpImpl->doMulMatrix(aTransMat);
|
|
}
|
|
}
|
|
|
|
void B2DHomMatrix::scale(double fX, double fY)
|
|
{
|
|
const double fOne(1.0);
|
|
|
|
if(!fTools::equal(fOne, fX) || !fTools::equal(fOne, fY))
|
|
{
|
|
Impl2DHomMatrix aScaleMat;
|
|
|
|
aScaleMat.set(0, 0, fX);
|
|
aScaleMat.set(1, 1, fY);
|
|
|
|
mpImpl->doMulMatrix(aScaleMat);
|
|
}
|
|
}
|
|
|
|
void B2DHomMatrix::shearX(double fSx)
|
|
{
|
|
// #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
|
|
if(!fTools::equalZero(fSx))
|
|
{
|
|
Impl2DHomMatrix aShearXMat;
|
|
|
|
aShearXMat.set(0, 1, fSx);
|
|
|
|
mpImpl->doMulMatrix(aShearXMat);
|
|
}
|
|
}
|
|
|
|
void B2DHomMatrix::shearY(double fSy)
|
|
{
|
|
// #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
|
|
if(!fTools::equalZero(fSy))
|
|
{
|
|
Impl2DHomMatrix aShearYMat;
|
|
|
|
aShearYMat.set(1, 0, fSy);
|
|
|
|
mpImpl->doMulMatrix(aShearYMat);
|
|
}
|
|
}
|
|
|
|
/** Decomposition
|
|
|
|
New, optimized version with local shearX detection. Old version (keeping
|
|
below, is working well, too) used the 3D matrix decomposition when
|
|
shear was used. Keeping old version as comment below since it may get
|
|
necessary to add the determinant() test from there here, too.
|
|
*/
|
|
bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const
|
|
{
|
|
// when perspective is used, decompose is not made here
|
|
if(!mpImpl->isLastLineDefault())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// reset rotate and shear and copy translation values in every case
|
|
rRotate = rShearX = 0.0;
|
|
rTranslate.setX(get(0, 2));
|
|
rTranslate.setY(get(1, 2));
|
|
|
|
// test for rotation and shear
|
|
if(fTools::equalZero(get(0, 1)) && fTools::equalZero(get(1, 0)))
|
|
{
|
|
// no rotation and shear, copy scale values
|
|
rScale.setX(get(0, 0));
|
|
rScale.setY(get(1, 1));
|
|
}
|
|
else
|
|
{
|
|
// get the unit vectors of the transformation -> the perpendicular vectors
|
|
B2DVector aUnitVecX(get(0, 0), get(1, 0));
|
|
B2DVector aUnitVecY(get(0, 1), get(1, 1));
|
|
const double fScalarXY(aUnitVecX.scalar(aUnitVecY));
|
|
|
|
// Test if shear is zero. That's the case if the unit vectors in the matrix
|
|
// are perpendicular -> scalar is zero. This is also the case when one of
|
|
// the unit vectors is zero.
|
|
if(fTools::equalZero(fScalarXY))
|
|
{
|
|
// calculate unsigned scale values
|
|
rScale.setX(aUnitVecX.getLength());
|
|
rScale.setY(aUnitVecY.getLength());
|
|
|
|
// check unit vectors for zero lengths
|
|
const bool bXIsZero(fTools::equalZero(rScale.getX()));
|
|
const bool bYIsZero(fTools::equalZero(rScale.getY()));
|
|
|
|
if(bXIsZero || bYIsZero)
|
|
{
|
|
// still extract as much as possible. Scalings are already set
|
|
if(!bXIsZero)
|
|
{
|
|
// get rotation of X-Axis
|
|
rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());
|
|
}
|
|
else if(!bYIsZero)
|
|
{
|
|
// get rotation of X-Axis. When assuming X and Y perpendicular
|
|
// and correct rotation, it's the Y-Axis rotation minus 90 degrees
|
|
rRotate = atan2(aUnitVecY.getY(), aUnitVecY.getX()) - M_PI_2;
|
|
}
|
|
|
|
// one or both unit vectors do not extist, determinant is zero, no decomposition possible.
|
|
// Eventually used rotations or shears are lost
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// no shear
|
|
// calculate rotation of X unit vector relative to (1, 0)
|
|
rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());
|
|
|
|
// use orientation to evtl. correct sign of Y-Scale
|
|
const double fCrossXY(aUnitVecX.cross(aUnitVecY));
|
|
|
|
if(fCrossXY < 0.0)
|
|
{
|
|
rScale.setY(-rScale.getY());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// fScalarXY is not zero, thus both unit vectors exist. No need to handle that here
|
|
// shear, extract it
|
|
double fCrossXY(aUnitVecX.cross(aUnitVecY));
|
|
|
|
// get rotation by calculating angle of X unit vector relative to (1, 0).
|
|
// This is before the parallell test following the motto to extract
|
|
// as much as possible
|
|
rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());
|
|
|
|
// get unsigned scale value for X. It will not change and is useful
|
|
// for further corrections
|
|
rScale.setX(aUnitVecX.getLength());
|
|
|
|
if(fTools::equalZero(fCrossXY))
|
|
{
|
|
// extract as much as possible
|
|
rScale.setY(aUnitVecY.getLength());
|
|
|
|
// unit vectors are parallel, thus not linear independent. No
|
|
// useful decomposition possible. This should not happen since
|
|
// the only way to get the unit vectors nearly parallell is
|
|
// a very big shearing. Anyways, be prepared for hand-filled
|
|
// matrices
|
|
// Eventually used rotations or shears are lost
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// calculate the contained shear
|
|
rShearX = fScalarXY / fCrossXY;
|
|
|
|
if(!fTools::equalZero(rRotate))
|
|
{
|
|
// To be able to correct the shear for aUnitVecY, rotation needs to be
|
|
// removed first. Correction of aUnitVecX is easy, it will be rotated back to (1, 0).
|
|
aUnitVecX.setX(rScale.getX());
|
|
aUnitVecX.setY(0.0);
|
|
|
|
// for Y correction we rotate the UnitVecY back about -rRotate
|
|
const double fNegRotate(-rRotate);
|
|
const double fSin(sin(fNegRotate));
|
|
const double fCos(cos(fNegRotate));
|
|
|
|
const double fNewX(aUnitVecY.getX() * fCos - aUnitVecY.getY() * fSin);
|
|
const double fNewY(aUnitVecY.getX() * fSin + aUnitVecY.getY() * fCos);
|
|
|
|
aUnitVecY.setX(fNewX);
|
|
aUnitVecY.setY(fNewY);
|
|
}
|
|
|
|
// Correct aUnitVecY and fCrossXY to fShear=0. Rotation is already removed.
|
|
// Shear correction can only work with removed rotation
|
|
aUnitVecY.setX(aUnitVecY.getX() - (aUnitVecY.getY() * rShearX));
|
|
fCrossXY = aUnitVecX.cross(aUnitVecY);
|
|
|
|
// calculate unsigned scale value for Y, after the corrections since
|
|
// the shear correction WILL change the length of aUnitVecY
|
|
rScale.setY(aUnitVecY.getLength());
|
|
|
|
// use orientation to set sign of Y-Scale
|
|
if(fCrossXY < 0.0)
|
|
{
|
|
rScale.setY(-rScale.getY());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Old version: Used 3D decompose when shaer was involved and also a determinant test
|
|
(but only in that case). Keeping as comment since it also worked and to allow a
|
|
fallback in case the new version makes trouble somehow. Definitely missing in the 2nd
|
|
case is the sign correction for Y-Scale, this would need to be added following the above
|
|
pattern
|
|
|
|
bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const
|
|
{
|
|
// when perspective is used, decompose is not made here
|
|
if(!mpImpl->isLastLineDefault())
|
|
return false;
|
|
|
|
// test for rotation and shear
|
|
if(fTools::equalZero(get(0, 1))
|
|
&& fTools::equalZero(get(1, 0)))
|
|
{
|
|
// no rotation and shear, direct value extraction
|
|
rRotate = rShearX = 0.0;
|
|
|
|
// copy scale values
|
|
rScale.setX(get(0, 0));
|
|
rScale.setY(get(1, 1));
|
|
|
|
// copy translation values
|
|
rTranslate.setX(get(0, 2));
|
|
rTranslate.setY(get(1, 2));
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// test if shear is zero. That's the case, if the unit vectors in the matrix
|
|
// are perpendicular -> scalar is zero
|
|
const ::basegfx::B2DVector aUnitVecX(get(0, 0), get(1, 0));
|
|
const ::basegfx::B2DVector aUnitVecY(get(0, 1), get(1, 1));
|
|
|
|
if(fTools::equalZero(aUnitVecX.scalar(aUnitVecY)))
|
|
{
|
|
// no shear, direct value extraction
|
|
rShearX = 0.0;
|
|
|
|
// calculate rotation
|
|
rShearX = 0.0;
|
|
rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());
|
|
|
|
// calculate scale values
|
|
rScale.setX(aUnitVecX.getLength());
|
|
rScale.setY(aUnitVecY.getLength());
|
|
|
|
// copy translation values
|
|
rTranslate.setX(get(0, 2));
|
|
rTranslate.setY(get(1, 2));
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// If determinant is zero, decomposition is not possible
|
|
if(0.0 == determinant())
|
|
return false;
|
|
|
|
// copy 2x2 matrix and translate vector to 3x3 matrix
|
|
::basegfx::B3DHomMatrix a3DHomMat;
|
|
|
|
a3DHomMat.set(0, 0, get(0, 0));
|
|
a3DHomMat.set(0, 1, get(0, 1));
|
|
a3DHomMat.set(1, 0, get(1, 0));
|
|
a3DHomMat.set(1, 1, get(1, 1));
|
|
a3DHomMat.set(0, 3, get(0, 2));
|
|
a3DHomMat.set(1, 3, get(1, 2));
|
|
|
|
::basegfx::B3DTuple r3DScale, r3DTranslate, r3DRotate, r3DShear;
|
|
|
|
if(a3DHomMat.decompose(r3DScale, r3DTranslate, r3DRotate, r3DShear))
|
|
{
|
|
// copy scale values
|
|
rScale.setX(r3DScale.getX());
|
|
rScale.setY(r3DScale.getY());
|
|
|
|
// copy shear
|
|
rShearX = r3DShear.getX();
|
|
|
|
// copy rotate
|
|
rRotate = r3DRotate.getZ();
|
|
|
|
// copy translate
|
|
rTranslate.setX(r3DTranslate.getX());
|
|
rTranslate.setY(r3DTranslate.getY());
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
} */
|
|
|
|
} // end of namespace basegfx
|
|
|
|
// eof
|