office-gobmx/chart2/source/tools/InternalDataProvider.cxx
Rüdiger Timm b0207bb1bd INTEGRATION: CWS rptchart02 (1.4.4); FILE MERGED
2008/04/16 06:36:01 oj 1.4.4.3: RESYNC: (1.4-1.6); FILE MERGED
2008/04/15 12:50:19 oj 1.4.4.2: use comphelper copyProperties
2008/03/12 09:01:26 oj 1.4.4.1: register InternalDataProvider as service to use it as delegatee
2008-06-16 11:56:50 +00:00

1626 lines
57 KiB
C++

/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2008 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: InternalDataProvider.cxx,v $
* $Revision: 1.7 $
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_chart2.hxx"
#include <rtl/math.hxx>
#include <valarray>
#include "InternalDataProvider.hxx"
#include "LabeledDataSequence.hxx"
#include "DataSource.hxx"
#include "PropertyHelper.hxx"
#include "macros.hxx"
#include "XMLRangeHelper.hxx"
#include "ContainerHelper.hxx"
#include "CommonConverters.hxx"
#include "CommonFunctors.hxx"
#include "UncachedDataSequence.hxx"
#include "DataSourceHelper.hxx"
#include "ChartModelHelper.hxx"
#include "DiagramHelper.hxx"
#include "ResId.hxx"
#include "Strings.hrc"
#include <com/sun/star/chart2/XChartDocument.hpp>
#include <com/sun/star/chart2/data/XDataSequence.hpp>
#include <com/sun/star/chart/ChartDataRowSource.hpp>
#include <rtl/ustrbuf.hxx>
#include <unotools/charclass.hxx>
#include <comphelper/sequenceashashmap.hxx>
#include <vector>
#include <algorithm>
using namespace ::com::sun::star;
using namespace ::std;
using ::com::sun::star::uno::Reference;
using ::com::sun::star::uno::Sequence;
using ::rtl::OUString;
using ::rtl::OUStringBuffer;
namespace chart
{
namespace impl
{
struct OUStringBufferAppend : public unary_function< OUString, void >
{
OUStringBufferAppend( OUStringBuffer & rBuffer, const OUString & rSeparator ) :
m_rBuffer( rBuffer ),
m_aSep( rSeparator )
{}
void operator() ( const OUString & rStr )
{
m_rBuffer.append( m_aSep );
m_rBuffer.append( rStr );
}
private:
OUStringBuffer m_rBuffer;
OUString m_aSep;
};
OUString FlattenStringSequence( const Sequence< OUString > & aSeq )
{
if( aSeq.getLength() == 0 )
return OUString();
OUStringBuffer aBuf( aSeq[0] );
for_each( aSeq.getConstArray() + 1, aSeq.getConstArray() + aSeq.getLength(),
OUStringBufferAppend( aBuf, OUString(RTL_CONSTASCII_USTRINGPARAM(" "))));
return aBuf.makeStringAndClear();
}
class InternalData
{
public:
InternalData();
void createDefaultData();
void setData( const Sequence< Sequence< double > > & rNewData, bool bDataInColumns );
Sequence< Sequence< double > > getData( bool bDataInColumns ) const;
Sequence< double > getDataAt( sal_Int32 nIndex, bool bDataInColumns ) const;
void setDataAt( sal_Int32 nIndex, bool bDataInColumns, const ::std::vector< double > & rNewData );
void swapAllDataAtIndexWithNext( sal_Int32 nAtIndex, bool bDataInColumns );
/** resizes the data if at least one of the given dimensions is larger than
before. The data is never becoming smaller only larger.
@return </TRUE>, if the data was enlarged
*/
bool enlargeData( sal_Int32 nColumnCount, sal_Int32 nRowCount );
void insertColumn( sal_Int32 nAfterIndex );
void insertRow( sal_Int32 nAfterIndex );
void deleteColumn( sal_Int32 nAtIndex );
void deleteRow( sal_Int32 nAtIndex );
/// @return the index of the newly appended column
sal_Int32 appendColumn();
/// @return the index of the newly appended row
sal_Int32 appendRow();
sal_Int32 getRowCount() const;
sal_Int32 getColumnCount() const;
void setRowLabels( const ::std::vector< OUString > & rNewRowLabels );
::std::vector< OUString > getRowLabels() const;
void setColumnLabels( const ::std::vector< OUString > & rNewColumnLabels );
::std::vector< OUString > getColumnLabels() const;
/** returns whether the data source was created by putting sequence contents
into columns (true) or rows (false)
*/
bool setDataByDataSource(
const Reference< chart2::data::XDataSource > & xDataSource,
const Sequence< beans::PropertyValue > & rArgs );
#if OSL_DEBUG_LEVEL > 2
void traceData() const;
#endif
private:
sal_Int32 m_nColumnCount;
sal_Int32 m_nRowCount;
typedef ::std::valarray< double > tDataType;
typedef ::std::vector< OUString > tLabelType;
tDataType m_aData;
tLabelType m_aRowLabels;
tLabelType m_aColumnLabels;
};
// ----------------------------------------
namespace
{
struct lcl_NumberedStringGenerator
{
lcl_NumberedStringGenerator( const OUString & rStub, const OUString & rWildcard ) :
m_aStub( rStub ),
m_nCounter( 0 ),
m_nStubStartIndex( rStub.indexOf( rWildcard )),
m_nWildcardLength( rWildcard.getLength())
{
}
OUString operator()() {
return m_aStub.replaceAt( m_nStubStartIndex, m_nWildcardLength, OUString::valueOf( ++m_nCounter ));
}
private:
OUString m_aStub;
sal_Int32 m_nCounter;
const sal_Int32 m_nStubStartIndex;
const sal_Int32 m_nWildcardLength;
};
template< typename T >
Sequence< T > lcl_ValarrayToSequence( const ::std::valarray< T > & rValarray )
{
// is there a more elegant way of conversion?
Sequence< T > aResult( rValarray.size());
for( size_t i = 0; i < rValarray.size(); ++i )
aResult[i] = rValarray[i];
return aResult;
}
struct lcl_ValuesOfLabeledSequence :
public unary_function< Reference< chart2::data::XLabeledDataSequence >, Sequence< double > >
{
Sequence< double > operator() ( const Reference< chart2::data::XLabeledDataSequence > & xLSeq )
{
if( ! xLSeq.is())
return Sequence< double >();
return DataSequenceToDoubleSequence( xLSeq->getValues());
}
};
struct lcl_LabelsOfLabeledSequence :
public unary_function< Reference< chart2::data::XLabeledDataSequence >, Sequence< OUString > >
{
Sequence< OUString > operator() ( const Reference< chart2::data::XLabeledDataSequence > & xLSeq )
{
if( ! xLSeq.is())
return Sequence< OUString >();
return DataSequenceToStringSequence( xLSeq->getLabel());
}
};
struct lcl_LabelOfLabeledSequence :
public unary_function< Reference< chart2::data::XLabeledDataSequence >, OUString >
{
OUString operator() ( const Reference< chart2::data::XLabeledDataSequence > & xLSeq )
{
if( ! xLSeq.is())
return OUString();
return FlattenStringSequence( DataSequenceToStringSequence( xLSeq->getLabel()));
}
};
} // anonymous namespace
// ----------------------------------------
InternalData::InternalData() :
m_nColumnCount( 0 ),
m_nRowCount( 0 )
{}
void InternalData::createDefaultData()
{
const sal_Int32 nNumRows = 4;
const sal_Int32 nNumColumns = 3;
const sal_Int32 nSize = nNumColumns * nNumRows;
// @todo: localize this!
const OUString aRowName( ::chart::SchResId::getResString( STR_ROW_LABEL ));
const OUString aColName( ::chart::SchResId::getResString( STR_COLUMN_LABEL ));
const double fDefaultData[ nSize ] =
{ 9.10, 3.20, 4.54,
2.40, 8.80, 9.65,
3.10, 1.50, 3.70,
4.30, 9.02, 6.20 };
m_aData.resize( nSize );
for( sal_Int32 i=0; i<nSize; ++i )
m_aData[i] = fDefaultData[i];
m_nRowCount = nNumRows;
m_nColumnCount = nNumColumns;
vector< OUString > aRowLabels;
aRowLabels.reserve( nNumRows );
generate_n( back_inserter( aRowLabels ), nNumRows,
lcl_NumberedStringGenerator( aRowName, C2U("%ROWNUMBER") ));
setRowLabels( aRowLabels );
vector< OUString > aColumnLabels;
aColumnLabels.reserve( nNumColumns );
generate_n( back_inserter( aColumnLabels ), nNumColumns,
lcl_NumberedStringGenerator( aColName, C2U("%COLUMNNUMBER") ));
setColumnLabels( aColumnLabels );
}
void InternalData::setData( const Sequence< Sequence< double > > & rNewData, bool bDataInColumns )
{
sal_Int32 nOuterSize = rNewData.getLength();
sal_Int32 nInnerSize = (nOuterSize ? rNewData[0].getLength() : 0);
m_nRowCount = (bDataInColumns ? nInnerSize : nOuterSize);
m_nColumnCount = (bDataInColumns ? nOuterSize : nInnerSize);
if( m_aRowLabels.size() != static_cast< sal_uInt32 >( m_nRowCount ))
m_aRowLabels.resize( m_nRowCount );
if( m_aColumnLabels.size() != static_cast< sal_uInt32 >( m_nColumnCount ))
m_aColumnLabels.resize( m_nColumnCount );
m_aData.resize( m_nRowCount * m_nColumnCount );
double fNan;
::rtl::math::setNan( & fNan );
// set all values to Nan
m_aData = fNan;
for( sal_Int32 nOuterIdx=0; nOuterIdx<nOuterSize; ++nOuterIdx )
{
int nDataIdx = (bDataInColumns ? nOuterIdx : nOuterIdx*nInnerSize);
const sal_Int32 nMax = ::std::min( rNewData[nOuterIdx].getLength(), nInnerSize );
sal_Int32 nInnerIdx=0;
for( ; nInnerIdx < nMax; ++nInnerIdx )
{
m_aData[nDataIdx] = rNewData[nOuterIdx][nInnerIdx];
nDataIdx += (bDataInColumns ? m_nColumnCount : 1);
}
}
}
Sequence< Sequence< double > > InternalData::getData( bool bDataInColumns ) const
{
Sequence< Sequence< double > > aResult( bDataInColumns ? m_nColumnCount : m_nRowCount );
if( bDataInColumns )
{
for( sal_Int32 i=0; i<m_nColumnCount; ++i )
aResult[i] = lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ ::std::slice( i, m_nRowCount, m_nColumnCount ) ] );
}
else
{
for( sal_Int32 i=0; i<m_nRowCount; ++i )
aResult[i] = lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ ::std::slice( i*m_nColumnCount, m_nColumnCount, 1 ) ] );
}
return aResult;
}
Sequence< double > InternalData::getDataAt( sal_Int32 nIndex, bool bDataInColumns ) const
{
Sequence< double > aResult( bDataInColumns ? m_nRowCount : m_nColumnCount );
if( bDataInColumns )
{
if( nIndex < m_nColumnCount )
return lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ ::std::slice( nIndex, m_nRowCount, m_nColumnCount ) ] );
}
else
{
if( nIndex < m_nRowCount )
return lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ ::std::slice( nIndex*m_nColumnCount, m_nColumnCount, 1 ) ] );
}
return Sequence< double >();
}
void InternalData::setDataAt( sal_Int32 nIndex, bool bDataInColumns, const ::std::vector< double > & rNewData )
{
if( bDataInColumns )
{
if( nIndex < m_nColumnCount )
{
tDataType aSlice = m_aData[ ::std::slice( nIndex, m_nRowCount, m_nColumnCount ) ];
for( ::std::vector< double >::size_type i = 0; i < rNewData.size(); ++i )
aSlice[i] = rNewData[i];
m_aData[ ::std::slice( nIndex, m_nRowCount, m_nColumnCount ) ] = aSlice;
}
}
else
{
if( nIndex < m_nRowCount )
{
tDataType aSlice = m_aData[ ::std::slice( nIndex*m_nColumnCount, m_nColumnCount, 1 ) ];
for( ::std::vector< double >::size_type i = 0; i < rNewData.size(); ++i )
aSlice[i] = rNewData[i];
m_aData[ ::std::slice( nIndex*m_nColumnCount, m_nColumnCount, 1 ) ]= aSlice;
}
}
}
void InternalData::swapAllDataAtIndexWithNext( sal_Int32 nAtIndex, bool bDataInColumns )
{
if( bDataInColumns && nAtIndex < m_nRowCount - 1 )
{
const sal_Int32 nMax = m_nColumnCount;
for( sal_Int32 nColIdx=0; nColIdx<nMax; ++nColIdx )
{
size_t nIndex1 = nColIdx + nAtIndex*m_nColumnCount;
size_t nIndex2 = nIndex1 + m_nColumnCount;
double fTemp = m_aData[nIndex1];
m_aData[nIndex1] = m_aData[nIndex2];
m_aData[nIndex2] = fTemp;
}
OUString sTemp( m_aRowLabels[nAtIndex] );
m_aRowLabels[nAtIndex] = m_aRowLabels[nAtIndex + 1];
m_aRowLabels[nAtIndex + 1] = sTemp;
}
else if( nAtIndex < m_nColumnCount - 1 )
{
const sal_Int32 nMax = m_nRowCount;
for( sal_Int32 nRowIdx=0; nRowIdx<nMax; ++nRowIdx )
{
size_t nIndex1 = nAtIndex + nRowIdx*m_nColumnCount;
size_t nIndex2 = nIndex1 + 1;
double fTemp = m_aData[nIndex1];
m_aData[nIndex1] = m_aData[nIndex2];
m_aData[nIndex2] = fTemp;
}
OUString sTemp( m_aColumnLabels[nAtIndex] );
m_aColumnLabels[nAtIndex] = m_aColumnLabels[nAtIndex + 1];
m_aColumnLabels[nAtIndex + 1] = sTemp;
}
}
bool InternalData::enlargeData( sal_Int32 nColumnCount, sal_Int32 nRowCount )
{
sal_Int32 nNewColumnCount( ::std::max<sal_Int32>(1, ::std::max<sal_Int32>( m_nColumnCount, nColumnCount )));
sal_Int32 nNewRowCount( ::std::max<sal_Int32>(1, ::std::max<sal_Int32>( m_nRowCount, nRowCount )));
sal_Int32 nNewSize( nNewColumnCount*nNewRowCount );
bool bGrow = (nNewSize > m_nColumnCount*m_nRowCount);
if( bGrow )
{
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
for( int nCol=0; nCol<m_nColumnCount; ++nCol )
static_cast< tDataType >(
aNewData[ ::std::slice( nCol, m_nRowCount, nNewColumnCount ) ] ) =
m_aData[ ::std::slice( nCol, m_nRowCount, m_nColumnCount ) ];
m_aData.resize( nNewSize );
m_aData = aNewData;
m_nColumnCount = nNewColumnCount;
m_nRowCount = nNewRowCount;
}
return bGrow;
}
void InternalData::insertColumn( sal_Int32 nAfterIndex )
{
// note: -1 is allowed, as we insert after the given index
OSL_ASSERT( nAfterIndex < m_nColumnCount && nAfterIndex >= -1 );
if( nAfterIndex >= m_nColumnCount || nAfterIndex < -1 )
return;
sal_Int32 nNewColumnCount = m_nColumnCount + 1;
sal_Int32 nNewSize( nNewColumnCount * m_nRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
int nCol=0;
for( ; nCol<=nAfterIndex; ++nCol )
aNewData[ ::std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( nCol, m_nRowCount, m_nColumnCount ) ] );
for( ++nCol; nCol<nNewColumnCount; ++nCol )
aNewData[ ::std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( nCol - 1, m_nRowCount, m_nColumnCount ) ] );
m_nColumnCount = nNewColumnCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAfterIndex < static_cast< sal_Int32 >( m_aColumnLabels.size()))
m_aColumnLabels.insert( m_aColumnLabels.begin() + (nAfterIndex + 1), OUString());
#if OSL_DEBUG_LEVEL > 2
traceData();
#endif
}
sal_Int32 InternalData::appendColumn()
{
insertColumn( getColumnCount() - 1 );
return getColumnCount() - 1;
}
sal_Int32 InternalData::appendRow()
{
insertRow( getRowCount() - 1 );
return getRowCount() - 1;
}
void InternalData::insertRow( sal_Int32 nAfterIndex )
{
// note: -1 is allowed, as we insert after the given index
OSL_ASSERT( nAfterIndex < m_nRowCount && nAfterIndex >= -1 );
if( nAfterIndex >= m_nRowCount || nAfterIndex < -1 )
return;
sal_Int32 nNewRowCount = m_nRowCount + 1;
sal_Int32 nNewSize( m_nColumnCount * nNewRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
sal_Int32 nIndex = nAfterIndex + 1;
aNewData[ ::std::slice( 0, nIndex * m_nColumnCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( 0, nIndex * m_nColumnCount, 1 ) ] );
if( nIndex < m_nRowCount )
{
sal_Int32 nRemainingCount = m_nColumnCount * (m_nRowCount - nIndex);
aNewData[ ::std::slice( (nIndex + 1) * m_nColumnCount, nRemainingCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( nIndex * m_nColumnCount, nRemainingCount, 1 ) ] );
}
m_nRowCount = nNewRowCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAfterIndex < static_cast< sal_Int32 >( m_aRowLabels.size()))
m_aRowLabels.insert( m_aRowLabels.begin() + nIndex, OUString());
#if OSL_DEBUG_LEVEL > 2
traceData();
#endif
}
void InternalData::deleteColumn( sal_Int32 nAtIndex )
{
OSL_ASSERT( nAtIndex < m_nColumnCount && nAtIndex >= 0 );
if( nAtIndex >= m_nColumnCount || m_nColumnCount < 1 || nAtIndex < 0 )
return;
sal_Int32 nNewColumnCount = m_nColumnCount - 1;
sal_Int32 nNewSize( nNewColumnCount * m_nRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
int nCol=0;
for( ; nCol<nAtIndex; ++nCol )
aNewData[ ::std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( nCol, m_nRowCount, m_nColumnCount ) ] );
for( ; nCol<nNewColumnCount; ++nCol )
aNewData[ ::std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( nCol + 1, m_nRowCount, m_nColumnCount ) ] );
m_nColumnCount = nNewColumnCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAtIndex < static_cast< sal_Int32 >( m_aColumnLabels.size()))
m_aColumnLabels.erase( m_aColumnLabels.begin() + nAtIndex );
#if OSL_DEBUG_LEVEL > 2
traceData();
#endif
}
void InternalData::deleteRow( sal_Int32 nAtIndex )
{
OSL_ASSERT( nAtIndex < m_nRowCount && nAtIndex >= 0 );
if( nAtIndex >= m_nRowCount || m_nRowCount < 1 || nAtIndex < 0 )
return;
sal_Int32 nNewRowCount = m_nRowCount - 1;
sal_Int32 nNewSize( m_nColumnCount * nNewRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
sal_Int32 nIndex = nAtIndex;
if( nIndex )
aNewData[ ::std::slice( 0, nIndex * m_nColumnCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( 0, nIndex * m_nColumnCount, 1 ) ] );
if( nIndex < nNewRowCount )
{
sal_Int32 nRemainingCount = m_nColumnCount * (nNewRowCount - nIndex);
aNewData[ ::std::slice( nIndex * m_nColumnCount, nRemainingCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ ::std::slice( (nIndex + 1) * m_nColumnCount, nRemainingCount, 1 ) ] );
}
m_nRowCount = nNewRowCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAtIndex < static_cast< sal_Int32 >( m_aRowLabels.size()))
m_aRowLabels.erase( m_aRowLabels.begin() + nAtIndex );
#if OSL_DEBUG_LEVEL > 2
traceData();
#endif
}
sal_Int32 InternalData::getRowCount() const
{
return m_nRowCount;
}
sal_Int32 InternalData::getColumnCount() const
{
return m_nColumnCount;
}
void InternalData::setRowLabels( const ::std::vector< OUString > & rNewRowLabels )
{
m_aRowLabels = rNewRowLabels;
if( m_aRowLabels.size() < static_cast< ::std::vector< OUString >::size_type >( m_nRowCount ))
m_aRowLabels.resize( m_nRowCount );
else
enlargeData( 0, static_cast< sal_Int32 >( m_aRowLabels.size() ));
}
::std::vector< OUString > InternalData::getRowLabels() const
{
return m_aRowLabels;
}
void InternalData::setColumnLabels( const ::std::vector< OUString > & rNewColumnLabels )
{
m_aColumnLabels = rNewColumnLabels;
if( m_aColumnLabels.size() < static_cast< ::std::vector< OUString >::size_type >( m_nColumnCount ))
m_aColumnLabels.resize( m_nColumnCount );
else
enlargeData( static_cast< sal_Int32 >( m_aColumnLabels.size()), 0 );
}
::std::vector< OUString > InternalData::getColumnLabels() const
{
return m_aColumnLabels;
}
bool InternalData::setDataByDataSource(
const Reference< chart2::data::XDataSource > & xDataSource,
const Sequence< beans::PropertyValue > & rArgs )
{
OUString aRangeRepresentation;
uno::Sequence< sal_Int32 > aSequenceMapping; //yyyy todo...? InternalData::setDataByDataSource
bool bUseColumns = true;
bool bFirstCellAsLabel = true;
bool bHasCategories = true;
DataSourceHelper::readArguments( rArgs, aRangeRepresentation, aSequenceMapping, bUseColumns, bFirstCellAsLabel, bHasCategories );
typedef ::std::vector< Reference< chart2::data::XLabeledDataSequence > > tLSeqCntType;
tLSeqCntType aLSeqVec( ContainerHelper::SequenceToVector( xDataSource->getDataSequences()));
tLSeqCntType::const_iterator aIt( aLSeqVec.begin());
const tLSeqCntType::const_iterator aEndIt( aLSeqVec.end());
if( bHasCategories && aIt != aEndIt )
{
if( bUseColumns )
setRowLabels( ContainerHelper::SequenceToVector(
DataSequenceToStringSequence( (*aIt)->getValues() )));
else
setColumnLabels( ContainerHelper::SequenceToVector(
DataSequenceToStringSequence( (*aIt)->getValues() )));
++aIt;
}
::std::vector< Sequence< double > > aDataVec;
::std::vector< OUString > aLabelVec;
transform( aIt, aEndIt, back_inserter( aDataVec ), lcl_ValuesOfLabeledSequence());
transform( aIt, aEndIt, back_inserter( aLabelVec ), lcl_LabelOfLabeledSequence());
setData( ContainerHelper::ContainerToSequence( aDataVec ), bUseColumns );
if( bUseColumns )
setColumnLabels( aLabelVec );
else
setRowLabels( aLabelVec );
return bUseColumns;
}
#if OSL_DEBUG_LEVEL > 2
void InternalData::traceData() const
{
OSL_TRACE( "InternalData: Data in rows\n" );
for( sal_Int32 i=0; i<m_nRowCount; ++i )
{
tDataType aSlice( m_aData[ ::std::slice( i*m_nColumnCount, m_nColumnCount, 1 ) ] );
for( sal_Int32 j=0; j<m_nColumnCount; ++j )
OSL_TRACE( "%lf ", aSlice[j] );
OSL_TRACE( "\n" );
}
OSL_TRACE( "\n" );
}
#endif
} // namespace impl
// ================================================================================
namespace
{
// note: in xmloff this name is used to indicate usage of own data
static const ::rtl::OUString lcl_aServiceName(
RTL_CONSTASCII_USTRINGPARAM( "com.sun.star.comp.chart.InternalDataProvider" ));
static const ::rtl::OUString lcl_aCategoriesRangeName(
RTL_CONSTASCII_USTRINGPARAM( "categories" ));
static const ::rtl::OUString lcl_aCategoriesRoleName(
RTL_CONSTASCII_USTRINGPARAM( "categories" ));
static const ::rtl::OUString lcl_aLabelRangePrefix(
RTL_CONSTASCII_USTRINGPARAM( "label " ));
static const ::rtl::OUString lcl_aCompleteRange(
RTL_CONSTASCII_USTRINGPARAM( "all" ));
struct lcl_DataProviderRangeCreator : public unary_function< OUString, Reference< chart2::data::XLabeledDataSequence > >
{
lcl_DataProviderRangeCreator( const Reference< chart2::data::XDataProvider > & xDataProvider ) :
m_xDataProvider( xDataProvider )
{}
Reference< chart2::data::XLabeledDataSequence > operator() ( const OUString & rRange )
{
Reference< chart2::data::XLabeledDataSequence > xResult;
if( m_xDataProvider.is())
try
{
xResult.set( new ::chart::LabeledDataSequence(
m_xDataProvider->createDataSequenceByRangeRepresentation( rRange )));
}
catch( const lang::IllegalArgumentException & ex )
{
// data provider cannot create single data sequences, but then
// detectArguments should work also with an empty data source
(void)(ex);
}
catch( const uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
return xResult;
}
private:
Reference< chart2::data::XDataProvider > m_xDataProvider;
};
typedef ::std::multimap< OUString, uno::WeakReference< chart2::data::XDataSequence > >
lcl_tSequenceMap;
struct lcl_modifySeqMapValue : public ::std::unary_function< lcl_tSequenceMap, void >
{
void operator() ( const lcl_tSequenceMap::value_type & rMapEntry )
{
// convert weak reference to reference
Reference< chart2::data::XDataSequence > xSeq( rMapEntry.second );
if( xSeq.is())
{
Reference< util::XModifiable > xMod( xSeq, uno::UNO_QUERY );
if( xMod.is())
xMod->setModified( sal_True );
}
}
};
Sequence< Reference< chart2::data::XLabeledDataSequence > >
lcl_internalizeData(
const Sequence< Reference< chart2::data::XLabeledDataSequence > > & rDataSeq,
impl::InternalData & rInternalData,
InternalDataProvider & rProvider )
{
Sequence< Reference< chart2::data::XLabeledDataSequence > > aResult( rDataSeq.getLength());
for( sal_Int32 i=0; i<rDataSeq.getLength(); ++i )
{
sal_Int32 nNewIndex( rInternalData.appendColumn());
OUString aIdentifier( OUString::valueOf( nNewIndex ));
//@todo: deal also with genericXDataSequence
Reference< chart2::data::XNumericalDataSequence > xValues( rDataSeq[i]->getValues(), uno::UNO_QUERY );
Reference< chart2::data::XTextualDataSequence > xLabel( rDataSeq[i]->getLabel(), uno::UNO_QUERY );
Reference< chart2::data::XDataSequence > xNewValues;
if( xValues.is())
{
::std::vector< double > aValues( ContainerHelper::SequenceToVector( xValues->getNumericalData()));
rInternalData.enlargeData( nNewIndex + 1, aValues.size());
rInternalData.setDataAt( nNewIndex, true, aValues );
xNewValues.set( rProvider.createDataSequenceByRangeRepresentation( aIdentifier ));
comphelper::copyProperties(
Reference< beans::XPropertySet >( xValues, uno::UNO_QUERY ),
Reference< beans::XPropertySet >( xNewValues, uno::UNO_QUERY ));
}
if( xLabel.is())
{
::std::vector< OUString > aLabels( rInternalData.getColumnLabels());
OSL_ASSERT( static_cast< size_t >( nNewIndex ) < aLabels.size());
aLabels[nNewIndex] = impl::FlattenStringSequence( xLabel->getTextualData());
rInternalData.setColumnLabels( aLabels );
Reference< chart2::data::XDataSequence > xNewLabel(
rProvider.createDataSequenceByRangeRepresentation( lcl_aLabelRangePrefix + aIdentifier ));
comphelper::copyProperties(
Reference< beans::XPropertySet >( xLabel, uno::UNO_QUERY ),
Reference< beans::XPropertySet >( xNewLabel, uno::UNO_QUERY ));
aResult[i] =
Reference< chart2::data::XLabeledDataSequence >(
new LabeledDataSequence( xNewValues, xNewLabel ));
}
else
{
aResult[i] =
Reference< chart2::data::XLabeledDataSequence >(
new LabeledDataSequence( xNewValues ));
}
}
return aResult;
}
struct lcl_internalizeSeries : public ::std::unary_function< Reference< chart2::XDataSeries >, void >
{
lcl_internalizeSeries( impl::InternalData & rInternalData,
InternalDataProvider & rProvider ) :
m_rInternalData( rInternalData ),
m_rProvider( rProvider )
{}
void operator() ( const Reference< chart2::XDataSeries > & xSeries )
{
Reference< chart2::data::XDataSource > xSource( xSeries, uno::UNO_QUERY );
Reference< chart2::data::XDataSink > xSink( xSeries, uno::UNO_QUERY );
if( xSource.is() && xSink.is())
xSink->setData( lcl_internalizeData( xSource->getDataSequences(), m_rInternalData, m_rProvider ));
}
private:
impl::InternalData & m_rInternalData;
InternalDataProvider & m_rProvider;
};
} // anonymous namespace
InternalDataProvider::InternalDataProvider(const Reference< uno::XComponentContext > & /*_xContext*/) :
m_bDataInColumns( true )
{}
// ================================================================================
InternalDataProvider::InternalDataProvider() :
m_bDataInColumns( true )
{}
InternalDataProvider::InternalDataProvider(
const Reference< ::com::sun::star::chart::XChartDataArray > & xDataToCopy ) :
m_bDataInColumns( true )
{
if( xDataToCopy.is())
{
setData( xDataToCopy->getData() );
setColumnDescriptions( xDataToCopy->getColumnDescriptions() );
setRowDescriptions( xDataToCopy->getRowDescriptions() );
}
}
InternalDataProvider::InternalDataProvider(
const Reference< chart2::XChartDocument > & xChartDoc ) :
m_bDataInColumns( true )
{
try
{
Reference< chart2::XDiagram > xDiagram( ChartModelHelper::findDiagram( xChartDoc ) );
if( xDiagram.is())
{
impl::InternalData & rData( getInternalData());
// categories
Reference< chart2::data::XLabeledDataSequence > xCategories( DiagramHelper::getCategoriesFromDiagram( xDiagram ));
if( xCategories.is())
{
// @todo: be able to deal with XDataSequence, too
Reference< chart2::data::XTextualDataSequence > xSeq( xCategories->getValues(), uno::UNO_QUERY );
if( xSeq.is())
rData.setRowLabels( ContainerHelper::SequenceToVector( xSeq->getTextualData()));
DiagramHelper::setCategoriesToDiagram(
new LabeledDataSequence(
createDataSequenceByRangeRepresentation( lcl_aCategoriesRangeName )),
xDiagram );
}
// data series
::std::vector< Reference< chart2::XDataSeries > > aSeriesVector( ChartModelHelper::getDataSeries( xChartDoc ));
::std::for_each( aSeriesVector.begin(), aSeriesVector.end(),
lcl_internalizeSeries( rData, *this ));
// unused data
Sequence< Reference< chart2::data::XLabeledDataSequence > > aUnusedData( xDiagram->getUnusedData());
aUnusedData = lcl_internalizeData( aUnusedData, rData, *this );
xDiagram->setUnusedData( aUnusedData );
}
}
catch( const uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
}
// copy-CTOR
InternalDataProvider::InternalDataProvider( const InternalDataProvider & rOther ) :
impl::InternalDataProvider_Base(),
m_aSequenceMap( rOther.m_aSequenceMap ),
m_apData( new impl::InternalData( rOther.getInternalData())),
m_bDataInColumns( rOther.m_bDataInColumns )
{}
InternalDataProvider::~InternalDataProvider()
{}
void InternalDataProvider::addDataSequenceToMap(
const OUString & rRangeRepresentation,
const Reference< chart2::data::XDataSequence > & xSequence )
{
m_aSequenceMap.insert(
tSequenceMap::value_type(
rRangeRepresentation,
uno::WeakReference< chart2::data::XDataSequence >( xSequence )));
}
void InternalDataProvider::deleteMapReferences( const OUString & rRangeRepresentation )
{
// set sequence to deleted by setting its range to an empty string
tSequenceMapRange aRange( m_aSequenceMap.equal_range( rRangeRepresentation ));
for( tSequenceMap::iterator aIt( aRange.first ); aIt != aRange.second; ++aIt )
{
Reference< chart2::data::XDataSequence > xSeq( aIt->second );
if( xSeq.is())
{
Reference< container::XNamed > xNamed( xSeq, uno::UNO_QUERY );
if( xNamed.is())
xNamed->setName( OUString());
}
}
// remove from map
m_aSequenceMap.erase( aRange.first, aRange.second );
}
void InternalDataProvider::adaptMapReferences(
const OUString & rOldRangeRepresentation,
const OUString & rNewRangeRepresentation )
{
tSequenceMapRange aRange( m_aSequenceMap.equal_range( rOldRangeRepresentation ));
tSequenceMap aNewElements;
for( tSequenceMap::iterator aIt( aRange.first ); aIt != aRange.second; ++aIt )
{
Reference< chart2::data::XDataSequence > xSeq( aIt->second );
if( xSeq.is())
{
Reference< container::XNamed > xNamed( xSeq, uno::UNO_QUERY );
if( xNamed.is())
xNamed->setName( rNewRangeRepresentation );
}
aNewElements.insert( tSequenceMap::value_type( rNewRangeRepresentation, aIt->second ));
}
// erase map values for old index
m_aSequenceMap.erase( aRange.first, aRange.second );
// add new entries for values with new index
::std::copy( aNewElements.begin(), aNewElements.end(),
::std::inserter( m_aSequenceMap,
m_aSequenceMap.upper_bound( rNewRangeRepresentation )));
}
void InternalDataProvider::increaseMapReferences(
sal_Int32 nBegin, sal_Int32 nEnd )
{
for( sal_Int32 nIndex = nEnd - 1; nIndex >= nBegin; --nIndex )
{
adaptMapReferences( OUString::valueOf( nIndex ),
OUString::valueOf( nIndex + 1 ));
adaptMapReferences( lcl_aLabelRangePrefix + OUString::valueOf( nIndex ),
lcl_aLabelRangePrefix + OUString::valueOf( nIndex + 1 ));
}
}
void InternalDataProvider::decreaseMapReferences(
sal_Int32 nBegin, sal_Int32 nEnd )
{
for( sal_Int32 nIndex = nBegin; nIndex < nEnd; ++nIndex )
{
adaptMapReferences( OUString::valueOf( nIndex ),
OUString::valueOf( nIndex - 1 ));
adaptMapReferences( lcl_aLabelRangePrefix + OUString::valueOf( nIndex ),
lcl_aLabelRangePrefix + OUString::valueOf( nIndex - 1 ));
}
}
Reference< chart2::data::XDataSequence > InternalDataProvider::createDataSequenceAndAddToMap(
const OUString & rRangeRepresentation )
{
Reference< chart2::data::XDataSequence > xSeq(
new UncachedDataSequence( this, rRangeRepresentation ));
addDataSequenceToMap( rRangeRepresentation, xSeq );
return xSeq;
}
Reference< chart2::data::XDataSequence > InternalDataProvider::createDataSequenceAndAddToMap(
const OUString & rRangeRepresentation,
const OUString & rRole )
{
Reference< chart2::data::XDataSequence > xSeq(
new UncachedDataSequence( this, rRangeRepresentation, rRole ));
addDataSequenceToMap( rRangeRepresentation, xSeq );
return xSeq;
}
const impl::InternalData & InternalDataProvider::getInternalData() const
{
if( m_apData.get())
return *(m_apData.get());
m_apData.reset( new impl::InternalData());
return *(m_apData.get());
}
impl::InternalData & InternalDataProvider::getInternalData()
{
if( m_apData.get())
return *(m_apData.get());
m_apData.reset( new impl::InternalData());
return *(m_apData.get());
}
void InternalDataProvider::createDefaultData()
{
getInternalData().createDefaultData();
}
// ____ XDataProvider ____
::sal_Bool SAL_CALL InternalDataProvider::createDataSourcePossible( const Sequence< beans::PropertyValue >& /* aArguments */ )
throw (uno::RuntimeException)
{
return true;
}
Reference< chart2::data::XDataSource > SAL_CALL InternalDataProvider::createDataSource(
const Sequence< beans::PropertyValue >& aArguments )
throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
OUString aRangeRepresentation;
bool bUseColumns = true;
bool bFirstCellAsLabel = true;
bool bHasCategories = true;
uno::Sequence< sal_Int32 > aSequenceMapping;
DataSourceHelper::readArguments( aArguments, aRangeRepresentation, aSequenceMapping, bUseColumns, bFirstCellAsLabel, bHasCategories );
OSL_ASSERT( aRangeRepresentation.equals( lcl_aCompleteRange ));
::std::vector< Reference< chart2::data::XLabeledDataSequence > > aResultLSeqVec;
impl::InternalData & rData( getInternalData());
// categories
aResultLSeqVec.push_back(
new LabeledDataSequence( createDataSequenceAndAddToMap( lcl_aCategoriesRangeName, lcl_aCategoriesRoleName )));
// data with labels
::std::vector< Reference< chart2::data::XLabeledDataSequence > > aDataVec;
const sal_Int32 nCount = (bUseColumns ? rData.getColumnCount() : rData.getRowCount());
for( sal_Int32 nIdx=0; nIdx<nCount; ++nIdx )
{
aDataVec.push_back(
new LabeledDataSequence(
createDataSequenceAndAddToMap( OUString::valueOf( nIdx )),
createDataSequenceAndAddToMap( lcl_aLabelRangePrefix + OUString::valueOf( nIdx ))));
}
// attention: this data provider has the limitation that it stores
// internally if data comes from columns or rows. It is intended for
// creating only one used data source.
// @todo: add this information in the range representation strings
m_bDataInColumns = bUseColumns;
//reorder labeled sequences according to aSequenceMapping; ignore categories
for( sal_Int32 nNewIndex = 0; nNewIndex < aSequenceMapping.getLength(); nNewIndex++ )
{
std::vector< LabeledDataSequence* >::size_type nOldIndex = aSequenceMapping[nNewIndex];
if( nOldIndex < aDataVec.size() )
{
if( aDataVec[nOldIndex].is() )
{
aResultLSeqVec.push_back( aDataVec[nOldIndex] );
aDataVec[nOldIndex] = 0;
}
}
}
//add left over data sequences to result
::std::vector< Reference< chart2::data::XLabeledDataSequence > >::iterator aIt(aDataVec.begin());
const ::std::vector< Reference< chart2::data::XLabeledDataSequence > >::const_iterator aEndIt(aDataVec.end());
for( ;aIt!=aEndIt; ++aIt)
{
if( aIt->is() )
aResultLSeqVec.push_back( *aIt );
}
return new DataSource( ContainerHelper::ContainerToSequence(aResultLSeqVec) );
}
Sequence< beans::PropertyValue > SAL_CALL InternalDataProvider::detectArguments(
const Reference< chart2::data::XDataSource >& /* xDataSource */ )
throw (uno::RuntimeException)
{
Sequence< beans::PropertyValue > aArguments( 4 );
aArguments[0] = beans::PropertyValue(
C2U("CellRangeRepresentation"), -1, uno::makeAny( lcl_aCompleteRange ),
beans::PropertyState_DIRECT_VALUE );
aArguments[1] = beans::PropertyValue(
C2U("DataRowSource"), -1, uno::makeAny(
m_bDataInColumns
? ::com::sun::star::chart::ChartDataRowSource_COLUMNS
: ::com::sun::star::chart::ChartDataRowSource_ROWS ),
beans::PropertyState_DIRECT_VALUE );
// internal data always contains labels and categories
aArguments[2] = beans::PropertyValue(
C2U("FirstCellAsLabel"), -1, uno::makeAny( true ), beans::PropertyState_DIRECT_VALUE );
aArguments[3] = beans::PropertyValue(
C2U("HasCategories"), -1, uno::makeAny( true ), beans::PropertyState_DIRECT_VALUE );
// #i85913# Sequence Mapping is not needed for internal data, as it is
// applied to the data when the data source is created.
return aArguments;
}
::sal_Bool SAL_CALL InternalDataProvider::createDataSequenceByRangeRepresentationPossible( const OUString& /* aRangeRepresentation */ )
throw (uno::RuntimeException)
{
return true;
}
Reference< chart2::data::XDataSequence > SAL_CALL InternalDataProvider::createDataSequenceByRangeRepresentation(
const OUString& aRangeRepresentation )
throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
if( aRangeRepresentation.equals( lcl_aCategoriesRangeName ))
{
// categories
return createDataSequenceAndAddToMap( lcl_aCategoriesRangeName, lcl_aCategoriesRoleName );
}
else if( aRangeRepresentation.match( lcl_aLabelRangePrefix ))
{
// label
sal_Int32 nIndex = aRangeRepresentation.copy( lcl_aLabelRangePrefix.getLength()).toInt32();
return createDataSequenceAndAddToMap( lcl_aLabelRangePrefix + OUString::valueOf( nIndex ));
}
else if( aRangeRepresentation.equalsAsciiL( RTL_CONSTASCII_STRINGPARAM( "last" )))
{
sal_Int32 nIndex = (m_bDataInColumns
? getInternalData().getColumnCount()
: getInternalData().getRowCount()) - 1;
return createDataSequenceAndAddToMap( OUString::valueOf( nIndex ));
}
else if( aRangeRepresentation.getLength())
{
// data
sal_Int32 nIndex = aRangeRepresentation.toInt32();
return createDataSequenceAndAddToMap( OUString::valueOf( nIndex ));
}
return Reference< chart2::data::XDataSequence >();
}
Reference< sheet::XRangeSelection > SAL_CALL InternalDataProvider::getRangeSelection()
throw (uno::RuntimeException)
{
// there is no range selection component
return Reference< sheet::XRangeSelection >();
}
// ____ XInternalDataProvider ____
::sal_Bool SAL_CALL InternalDataProvider::hasDataByRangeRepresentation( const OUString& aRange )
throw (uno::RuntimeException)
{
sal_Bool bResult = false;
const impl::InternalData & rData( getInternalData());
if( aRange.equals( lcl_aCategoriesRangeName ))
{
bResult = true;
}
else if( aRange.match( lcl_aLabelRangePrefix ))
{
sal_Int32 nIndex = aRange.copy( lcl_aLabelRangePrefix.getLength()).toInt32();
bResult = (nIndex < (m_bDataInColumns ? rData.getColumnCount(): rData.getRowCount()));
}
else
{
sal_Int32 nIndex = aRange.toInt32();
bResult = (nIndex < (m_bDataInColumns ? rData.getColumnCount(): rData.getRowCount()));
}
return bResult;
}
Sequence< uno::Any > SAL_CALL InternalDataProvider::getDataByRangeRepresentation( const OUString& aRange )
throw (uno::RuntimeException)
{
Sequence< uno::Any > aResult;
const impl::InternalData & rData( getInternalData());
if( aRange.equals( lcl_aCategoriesRangeName ))
{
vector< OUString > aCategories( m_bDataInColumns ? rData.getRowLabels() : rData.getColumnLabels());
aResult.realloc( aCategories.size());
transform( aCategories.begin(), aCategories.end(),
aResult.getArray(), CommonFunctors::makeAny< OUString >());
}
else if( aRange.match( lcl_aLabelRangePrefix ))
{
sal_Int32 nIndex = aRange.copy( lcl_aLabelRangePrefix.getLength()).toInt32();
vector< OUString > aLabels( m_bDataInColumns ? rData.getColumnLabels() : rData.getRowLabels());
if( nIndex < static_cast< sal_Int32 >( aLabels.size()))
{
aResult.realloc( 1 );
aResult[0] = uno::makeAny( aLabels[ nIndex ] );
}
}
else
{
sal_Int32 nIndex = aRange.toInt32();
if( nIndex < (m_bDataInColumns ? rData.getColumnCount() : rData.getRowCount()))
{
Sequence< double > aData( rData.getDataAt( nIndex, m_bDataInColumns ));
aResult.realloc( aData.getLength());
transform( aData.getConstArray(), aData.getConstArray() + aData.getLength(),
aResult.getArray(), CommonFunctors::makeAny< double >());
}
}
return aResult;
}
void SAL_CALL InternalDataProvider::setDataByRangeRepresentation(
const OUString& aRange, const Sequence< uno::Any >& aNewData )
throw (uno::RuntimeException)
{
impl::InternalData & rData( getInternalData());
if( aRange.equals( lcl_aCategoriesRangeName ))
{
vector< OUString > aCategories;
transform( aNewData.getConstArray(), aNewData.getConstArray() + aNewData.getLength(),
back_inserter( aCategories ), CommonFunctors::AnyToString());
if( m_bDataInColumns )
rData.setRowLabels( aCategories );
else
rData.setColumnLabels( aCategories );
}
else if( aRange.match( lcl_aLabelRangePrefix ))
{
sal_uInt32 nIndex = aRange.copy( lcl_aLabelRangePrefix.getLength()).toInt32();
OUString aNewLabel;
if( aNewData.getLength() &&
(aNewData[0] >>= aNewLabel))
{
if( m_bDataInColumns )
{
vector< OUString > aLabels( rData.getColumnLabels());
if ( aLabels.size() <= nIndex )
aLabels.push_back(aNewLabel);
else
aLabels[ nIndex ] = aNewLabel;
rData.setColumnLabels( aLabels );
}
else
{
vector< OUString > aLabels( rData.getRowLabels());
if ( aLabels.size() <= nIndex )
aLabels.push_back(aNewLabel);
else
aLabels[ nIndex ] = aNewLabel;
rData.setRowLabels( aLabels );
}
}
}
else
{
sal_Int32 nIndex = aRange.toInt32();
// ensure that the data is large enough
if( m_bDataInColumns )
rData.enlargeData( nIndex, 0 );
else
rData.enlargeData( 0, nIndex );
if( nIndex < (m_bDataInColumns ? rData.getColumnCount() : rData.getRowCount()))
{
vector< double > aNewDataVec;
transform( aNewData.getConstArray(), aNewData.getConstArray() + aNewData.getLength(),
back_inserter( aNewDataVec ), CommonFunctors::AnyToDouble());
rData.setDataAt( nIndex, m_bDataInColumns, aNewDataVec );
}
}
}
void SAL_CALL InternalDataProvider::insertSequence( ::sal_Int32 nAfterIndex )
throw (uno::RuntimeException)
{
if( m_bDataInColumns )
{
increaseMapReferences( nAfterIndex + 1, getInternalData().getColumnCount());
getInternalData().insertColumn( nAfterIndex );
}
else
{
increaseMapReferences( nAfterIndex + 1, getInternalData().getRowCount());
getInternalData().insertRow( nAfterIndex );
}
}
void SAL_CALL InternalDataProvider::deleteSequence( ::sal_Int32 nAtIndex )
throw (uno::RuntimeException)
{
deleteMapReferences( OUString::valueOf( nAtIndex ));
deleteMapReferences( lcl_aLabelRangePrefix + OUString::valueOf( nAtIndex ));
if( m_bDataInColumns )
{
decreaseMapReferences( nAtIndex + 1, getInternalData().getColumnCount());
getInternalData().deleteColumn( nAtIndex );
}
else
{
decreaseMapReferences( nAtIndex + 1, getInternalData().getRowCount());
getInternalData().deleteRow( nAtIndex );
}
}
void SAL_CALL InternalDataProvider::appendSequence()
throw (uno::RuntimeException)
{
if( m_bDataInColumns )
getInternalData().appendColumn();
else
getInternalData().appendRow();
}
void SAL_CALL InternalDataProvider::insertDataPointForAllSequences( ::sal_Int32 nAfterIndex )
throw (uno::RuntimeException)
{
sal_Int32 nMaxRep = 0;
if( m_bDataInColumns )
{
getInternalData().insertRow( nAfterIndex );
nMaxRep = getInternalData().getColumnCount();
}
else
{
getInternalData().insertColumn( nAfterIndex );
nMaxRep = getInternalData().getRowCount();
}
// notify change to all affected ranges
tSequenceMap::const_iterator aBegin( m_aSequenceMap.lower_bound( C2U("0")));
tSequenceMap::const_iterator aEnd( m_aSequenceMap.upper_bound( OUString::valueOf( nMaxRep )));
::std::for_each( aBegin, aEnd, lcl_modifySeqMapValue());
tSequenceMapRange aRange( m_aSequenceMap.equal_range( lcl_aCategoriesRangeName ));
::std::for_each( aRange.first, aRange.second, lcl_modifySeqMapValue());
}
void SAL_CALL InternalDataProvider::deleteDataPointForAllSequences( ::sal_Int32 nAtIndex )
throw (uno::RuntimeException)
{
sal_Int32 nMaxRep = 0;
if( m_bDataInColumns )
{
getInternalData().deleteRow( nAtIndex );
nMaxRep = getInternalData().getColumnCount();
}
else
{
getInternalData().deleteColumn( nAtIndex );
nMaxRep = getInternalData().getRowCount();
}
// notify change to all affected ranges
tSequenceMap::const_iterator aBegin( m_aSequenceMap.lower_bound( C2U("0")));
tSequenceMap::const_iterator aEnd( m_aSequenceMap.upper_bound( OUString::valueOf( nMaxRep )));
::std::for_each( aBegin, aEnd, lcl_modifySeqMapValue());
tSequenceMapRange aRange( m_aSequenceMap.equal_range( lcl_aCategoriesRangeName ));
::std::for_each( aRange.first, aRange.second, lcl_modifySeqMapValue());
}
void SAL_CALL InternalDataProvider::swapDataPointWithNextOneForAllSequences( ::sal_Int32 nAtIndex )
throw (uno::RuntimeException)
{
getInternalData().swapAllDataAtIndexWithNext( nAtIndex, m_bDataInColumns );
sal_Int32 nMaxRep = (m_bDataInColumns
? getInternalData().getColumnCount()
: getInternalData().getRowCount());
// notify change to all affected ranges
tSequenceMap::const_iterator aBegin( m_aSequenceMap.lower_bound( C2U("0")));
tSequenceMap::const_iterator aEnd( m_aSequenceMap.upper_bound( OUString::valueOf( nMaxRep )));
::std::for_each( aBegin, aEnd, lcl_modifySeqMapValue());
tSequenceMapRange aRange( m_aSequenceMap.equal_range( lcl_aCategoriesRangeName ));
::std::for_each( aRange.first, aRange.second, lcl_modifySeqMapValue());
}
void SAL_CALL InternalDataProvider::registerDataSequenceForChanges( const Reference< chart2::data::XDataSequence >& xSeq )
throw (uno::RuntimeException)
{
if( xSeq.is())
addDataSequenceToMap( xSeq->getSourceRangeRepresentation(), xSeq );
}
// ____ XRangeXMLConversion ____
OUString SAL_CALL InternalDataProvider::convertRangeToXML( const OUString& aRangeRepresentation )
throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
XMLRangeHelper::CellRange aRange;
aRange.aTableName = OUString(RTL_CONSTASCII_USTRINGPARAM("local-table"));
impl::InternalData & rData( getInternalData());
// attention: this data provider has the limitation that it stores
// internally if data comes from columns or rows. It is intended for
// creating only one used data source.
// @todo: add this information in the range representation strings
if( aRangeRepresentation.equals( lcl_aCategoriesRangeName ))
{
aRange.aUpperLeft.bIsEmpty = false;
if( m_bDataInColumns )
{
aRange.aUpperLeft.nColumn = 0;
aRange.aUpperLeft.nRow = 1;
aRange.aLowerRight = aRange.aUpperLeft;
aRange.aLowerRight.nRow = rData.getRowCount();
}
else
{
aRange.aUpperLeft.nColumn = 1;
aRange.aUpperLeft.nRow = 0;
aRange.aLowerRight = aRange.aUpperLeft;
aRange.aLowerRight.nColumn = rData.getColumnCount();
}
}
else if( aRangeRepresentation.match( lcl_aLabelRangePrefix ))
{
sal_Int32 nIndex = aRangeRepresentation.copy( lcl_aLabelRangePrefix.getLength()).toInt32();
aRange.aUpperLeft.bIsEmpty = false;
aRange.aLowerRight.bIsEmpty = true;
if( m_bDataInColumns )
{
aRange.aUpperLeft.nColumn = nIndex + 1;
aRange.aUpperLeft.nRow = 0;
}
else
{
aRange.aUpperLeft.nColumn = 0;
aRange.aUpperLeft.nRow = nIndex + 1;
}
}
else if( aRangeRepresentation.equals( lcl_aCompleteRange ))
{
aRange.aUpperLeft.bIsEmpty = false;
aRange.aLowerRight.bIsEmpty = false;
aRange.aUpperLeft.nColumn = 0;
aRange.aUpperLeft.nRow = 0;
aRange.aLowerRight.nColumn = rData.getColumnCount();
aRange.aLowerRight.nRow = rData.getRowCount();
}
else
{
sal_Int32 nIndex = aRangeRepresentation.toInt32();
aRange.aUpperLeft.bIsEmpty = false;
if( m_bDataInColumns )
{
aRange.aUpperLeft.nColumn = nIndex + 1;
aRange.aUpperLeft.nRow = 1;
aRange.aLowerRight = aRange.aUpperLeft;
aRange.aLowerRight.nRow = rData.getRowCount();
}
else
{
aRange.aUpperLeft.nColumn = 1;
aRange.aUpperLeft.nRow = nIndex + 1;
aRange.aLowerRight = aRange.aUpperLeft;
aRange.aLowerRight.nColumn = rData.getColumnCount();
}
}
return XMLRangeHelper::getXMLStringFromCellRange( aRange );
}
OUString SAL_CALL InternalDataProvider::convertRangeFromXML( const OUString& aXMLRange )
throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
XMLRangeHelper::CellRange aRange( XMLRangeHelper::getCellRangeFromXMLString( aXMLRange ));
if( aRange.aUpperLeft.bIsEmpty )
{
OSL_ENSURE( aRange.aLowerRight.bIsEmpty, "Weird Range" );
return OUString();
}
// "all"
if( !aRange.aLowerRight.bIsEmpty &&
( aRange.aUpperLeft.nColumn != aRange.aLowerRight.nColumn ) &&
( aRange.aUpperLeft.nRow != aRange.aLowerRight.nRow ) )
return lcl_aCompleteRange;
// attention: this data provider has the limitation that it stores
// internally if data comes from columns or rows. It is intended for
// creating only one used data source.
// @todo: add this information in the range representation strings
// data in columns
if( m_bDataInColumns )
{
if( aRange.aUpperLeft.nColumn == 0 )
return lcl_aCategoriesRangeName;
if( aRange.aUpperLeft.nRow == 0 )
return lcl_aLabelRangePrefix + OUString::valueOf( aRange.aUpperLeft.nColumn - 1 );
return OUString::valueOf( aRange.aUpperLeft.nColumn - 1 );
}
// data in rows
if( aRange.aUpperLeft.nRow == 0 )
return lcl_aCategoriesRangeName;
if( aRange.aUpperLeft.nColumn == 0 )
return lcl_aLabelRangePrefix + OUString::valueOf( aRange.aUpperLeft.nRow - 1 );
return OUString::valueOf( aRange.aUpperLeft.nRow - 1 );
}
// ____ XChartDataArray ____
// note: do not use m_bDataInColumns for all XChartDataArray-specific code
// the chart-API assumes data is always in rows
Sequence< Sequence< double > > SAL_CALL InternalDataProvider::getData()
throw (uno::RuntimeException)
{
return getInternalData().getData( false );
}
void SAL_CALL InternalDataProvider::setData( const Sequence< Sequence< double > >& aData )
throw (uno::RuntimeException)
{
return getInternalData().setData( aData, false );
}
Sequence< OUString > SAL_CALL InternalDataProvider::getRowDescriptions()
throw (uno::RuntimeException)
{
return ContainerHelper::ContainerToSequence( getInternalData().getRowLabels());
}
void SAL_CALL InternalDataProvider::setRowDescriptions( const Sequence< OUString >& aRowDescriptions )
throw (uno::RuntimeException)
{
getInternalData().setRowLabels( ContainerHelper::SequenceToVector( aRowDescriptions ));
}
Sequence< OUString > SAL_CALL InternalDataProvider::getColumnDescriptions()
throw (uno::RuntimeException)
{
return ContainerHelper::ContainerToSequence( getInternalData().getColumnLabels());
}
void SAL_CALL InternalDataProvider::setColumnDescriptions( const Sequence< OUString >& aColumnDescriptions )
throw (uno::RuntimeException)
{
getInternalData().setColumnLabels( ContainerHelper::SequenceToVector( aColumnDescriptions ));
}
// ____ XChartData (base of XChartDataArray) ____
void SAL_CALL InternalDataProvider::addChartDataChangeEventListener(
const Reference< ::com::sun::star::chart::XChartDataChangeEventListener >& )
throw (uno::RuntimeException)
{
}
void SAL_CALL InternalDataProvider::removeChartDataChangeEventListener(
const Reference< ::com::sun::star::chart::XChartDataChangeEventListener >& )
throw (uno::RuntimeException)
{
}
double SAL_CALL InternalDataProvider::getNotANumber()
throw (uno::RuntimeException)
{
double fNan;
::rtl::math::setNan( & fNan );
return fNan;
}
::sal_Bool SAL_CALL InternalDataProvider::isNotANumber( double nNumber )
throw (uno::RuntimeException)
{
return ::rtl::math::isNan( nNumber )
|| ::rtl::math::isInf( nNumber );
}
// lang::XInitialization:
void SAL_CALL InternalDataProvider::initialize(const uno::Sequence< uno::Any > & _aArguments) throw (uno::RuntimeException, uno::Exception)
{
comphelper::SequenceAsHashMap aArgs(_aArguments);
if ( aArgs.getUnpackedValueOrDefault(::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("CreateDefaultData")),sal_False) )
createDefaultData();
}
// ____ XCloneable ____
Reference< util::XCloneable > SAL_CALL InternalDataProvider::createClone()
throw (uno::RuntimeException)
{
return Reference< util::XCloneable >( new InternalDataProvider( *this ));
}
// ================================================================================
Sequence< OUString > InternalDataProvider::getSupportedServiceNames_Static()
{
Sequence< OUString > aServices( 1 );
aServices[ 0 ] = OUString( RTL_CONSTASCII_USTRINGPARAM( "com.sun.star.chart2.data.DataProvider" ));
return aServices;
}
// ================================================================================
APPHELPER_XSERVICEINFO_IMPL( InternalDataProvider, lcl_aServiceName );
} // namespace chart