office-gobmx/opencl/source/opencl_device.cxx
Stephan Bergmann 235ae98ae6 Extended loplugin:ostr: opencl
Change-Id: I126ed9e9fca6d1ab8d4e42ec0fe1ffb33a5f8ae8
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/159689
Tested-by: Jenkins
Reviewed-by: Stephan Bergmann <sbergman@redhat.com>
2023-11-19 22:35:12 +01:00

609 lines
22 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include <float.h>
#include <iostream>
#include <memory>
#include <string_view>
#include <vector>
#include <algorithm>
#include <comphelper/random.hxx>
#include <o3tl/safeint.hxx>
#include <opencl/openclconfig.hxx>
#include <opencl/platforminfo.hxx>
#include <sal/log.hxx>
#include <rtl/math.hxx>
#include <tools/time.hxx>
#include <opencl/OpenCLZone.hxx>
#include <opencl_device.hxx>
#include <opencl_device_selection.h>
#define INPUTSIZE 15360
#define OUTPUTSIZE 15360
namespace {
void DS_CHECK_STATUS(cl_int status, char const * name) {
if (CL_SUCCESS != status)
{
SAL_INFO("opencl.device", "Error code is " << status << " at " << name);
}
}
bool bIsDeviceSelected = false;
ds_device selectedDevice;
struct LibreOfficeDeviceEvaluationIO
{
std::vector<double> input0;
std::vector<double> input1;
std::vector<double> input2;
std::vector<double> input3;
std::vector<double> output;
tools::ULong inputSize;
tools::ULong outputSize;
};
const char* source = R"delimit(
#if defined(KHR_DP_EXTENSION)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#elif defined(AMD_DP_EXTENSION)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#endif
int isNan(fp_t a) { return a != a; }
fp_t fsum(fp_t a, fp_t b) { return a + b; }
fp_t fAverage(__global fp_t* input)
{
fp_t sum = 0;
int count = 0;
for (int i = 0; i < INPUTSIZE; i++)
{
if (!isNan(input[i]))
{
sum = fsum(input[i], sum);
count += 1;
}
}
return sum / (fp_t)count;
}
fp_t fMin(__global fp_t* input)
{
fp_t min = MAXFLOAT;
for (int i = 0; i < INPUTSIZE; i++)
{
if (!isNan(input[i]))
{
min = fmin(input[i], min);
}
}
return min;
}
fp_t fSoP(__global fp_t* input0, __global fp_t* input1)
{
fp_t sop = 0.0;
for (int i = 0; i < INPUTSIZE; i++)
{
sop += (isNan(input0[i]) ? 0 : input0[i]) * (isNan(input1[i]) ? 0 : input1[i]);
}
return sop;
}
__kernel void DynamicKernel(
__global fp_t* result, __global fp_t* input0, __global fp_t* input1, __global fp_t* input2, __global fp_t* input3)
{
int gid0 = get_global_id(0);
fp_t tmp0 = fAverage(input0);
fp_t tmp1 = fMin(input1) * fSoP(input2, input3);
result[gid0] = fsum(tmp0, tmp1);
}
)delimit";
size_t sourceSize[] = { strlen(source) };
/* Random number generator */
double random(double min, double max)
{
if (rtl::math::approxEqual(min, max))
return min;
return comphelper::rng::uniform_real_distribution(min, max);
}
/* Populate input */
void populateInput(std::unique_ptr<LibreOfficeDeviceEvaluationIO> const & testData)
{
double* input0 = testData->input0.data();
double* input1 = testData->input1.data();
double* input2 = testData->input2.data();
double* input3 = testData->input3.data();
for (tools::ULong i = 0; i < testData->inputSize; i++)
{
input0[i] = random(0, i);
input1[i] = random(0, i);
input2[i] = random(0, i);
input3[i] = random(0, i);
}
}
/* Evaluate devices */
ds_status evaluateScoreForDevice(ds_device& rDevice, std::unique_ptr<LibreOfficeDeviceEvaluationIO> const & testData)
{
if (rDevice.eType == DeviceType::OpenCLDevice)
{
/* Evaluating an OpenCL device */
SAL_INFO("opencl.device", "Device: \"" << rDevice.sDeviceName << "\" (OpenCL) evaluation...");
cl_int clStatus;
/* Check for 64-bit float extensions */
std::unique_ptr<char[]> aExtInfo;
{
size_t aDevExtInfoSize = 0;
OpenCLZone zone;
clStatus = clGetDeviceInfo(rDevice.aDeviceID, CL_DEVICE_EXTENSIONS, 0, nullptr, &aDevExtInfoSize);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clGetDeviceInfo");
aExtInfo.reset(new char[aDevExtInfoSize]);
clStatus = clGetDeviceInfo(rDevice.aDeviceID, CL_DEVICE_EXTENSIONS, sizeof(char) * aDevExtInfoSize, aExtInfo.get(), nullptr);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clGetDeviceInfo");
}
bool bKhrFp64Flag = false;
bool bAmdFp64Flag = false;
const char* buildOption = nullptr;
std::string tmpStr("-Dfp_t=double -Dfp_t4=double4 -Dfp_t16=double16 -DINPUTSIZE=");
std::ostringstream tmpOStrStr;
tmpOStrStr << std::dec << INPUTSIZE;
tmpStr.append(tmpOStrStr.str());
if ((std::string(aExtInfo.get())).find("cl_khr_fp64") != std::string::npos)
{
bKhrFp64Flag = true;
//buildOption = "-D KHR_DP_EXTENSION -Dfp_t=double -Dfp_t4=double4 -Dfp_t16=double16";
tmpStr.append(" -DKHR_DP_EXTENSION");
buildOption = tmpStr.c_str();
SAL_INFO("opencl.device", "... has cl_khr_fp64");
}
else if ((std::string(aExtInfo.get())).find("cl_amd_fp64") != std::string::npos)
{
bAmdFp64Flag = true;
//buildOption = "-D AMD_DP_EXTENSION -Dfp_t=double -Dfp_t4=double4 -Dfp_t16=double16";
tmpStr.append(" -DAMD_DP_EXTENSION");
buildOption = tmpStr.c_str();
SAL_INFO("opencl.device", "... has cl_amd_fp64");
}
if (!bKhrFp64Flag && !bAmdFp64Flag)
{
/* No 64-bit float support */
rDevice.fTime = DBL_MAX;
rDevice.bErrors = false;
SAL_INFO("opencl.device", "... no fp64 support");
}
else
{
/* 64-bit float support present */
OpenCLZone zone;
/* Create context and command queue */
cl_context clContext = clCreateContext(nullptr, 1, &rDevice.aDeviceID, nullptr, nullptr, &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateContext");
cl_command_queue clQueue = clCreateCommandQueue(clContext, rDevice.aDeviceID, 0, &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateCommandQueue");
/* Build program */
cl_program clProgram = clCreateProgramWithSource(clContext, 1, &source, sourceSize, &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateProgramWithSource");
clStatus = clBuildProgram(clProgram, 1, &rDevice.aDeviceID, buildOption, nullptr, nullptr);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clBuildProgram");
if (CL_SUCCESS != clStatus)
{
/* Build program failed */
size_t length;
char* buildLog;
clStatus = clGetProgramBuildInfo(clProgram, rDevice.aDeviceID, CL_PROGRAM_BUILD_LOG, 0, nullptr, &length);
buildLog = static_cast<char*>(malloc(length));
clGetProgramBuildInfo(clProgram, rDevice.aDeviceID, CL_PROGRAM_BUILD_LOG, length, buildLog, &length);
SAL_INFO("opencl.device", "Build Errors:\n" << buildLog);
free(buildLog);
rDevice.fTime = DBL_MAX;
rDevice.bErrors = true;
}
else
{
/* Build program succeeded */
sal_uInt64 kernelTime = tools::Time::GetMonotonicTicks();
/* Run kernel */
cl_kernel clKernel = clCreateKernel(clProgram, "DynamicKernel", &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateKernel");
cl_mem clResult = clCreateBuffer(clContext, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->outputSize, testData->output.data(), &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clResult");
cl_mem clInput0 = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize, testData->input0.data(), &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput0");
cl_mem clInput1 = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize, testData->input1.data(), &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput1");
cl_mem clInput2 = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize, testData->input2.data(), &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput2");
cl_mem clInput3 = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize, testData->input3.data(), &clStatus);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput3");
clStatus = clSetKernelArg(clKernel, 0, sizeof(cl_mem), static_cast<void*>(&clResult));
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clResult");
clStatus = clSetKernelArg(clKernel, 1, sizeof(cl_mem), static_cast<void*>(&clInput0));
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput0");
clStatus = clSetKernelArg(clKernel, 2, sizeof(cl_mem), static_cast<void*>(&clInput1));
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput1");
clStatus = clSetKernelArg(clKernel, 3, sizeof(cl_mem), static_cast<void*>(&clInput2));
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput2");
clStatus = clSetKernelArg(clKernel, 4, sizeof(cl_mem), static_cast<void*>(&clInput3));
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput3");
size_t globalWS[1] = { testData->outputSize };
size_t const localSize[1] = { 64 };
clStatus = clEnqueueNDRangeKernel(clQueue, clKernel, 1, nullptr, globalWS, localSize, 0, nullptr, nullptr);
DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clEnqueueNDRangeKernel");
clFinish(clQueue);
clReleaseMemObject(clInput3);
clReleaseMemObject(clInput2);
clReleaseMemObject(clInput1);
clReleaseMemObject(clInput0);
clReleaseMemObject(clResult);
clReleaseKernel(clKernel);
rDevice.fTime = tools::Time::GetMonotonicTicks() - kernelTime;
rDevice.bErrors = false;
}
clReleaseProgram(clProgram);
clReleaseCommandQueue(clQueue);
clReleaseContext(clContext);
}
}
else
{
/* Evaluating a Native CPU device */
SAL_INFO("opencl.device", "Device: \"CPU\" (Native) evaluation...");
sal_uInt64 kernelTime = tools::Time::GetMonotonicTicks();
tools::ULong j;
for (j = 0; j < testData->outputSize; j++)
{
double fAverage = 0.0f;
double fMin = DBL_MAX;
double fSoP = 0.0f;
for (tools::ULong i = 0; i < testData->inputSize; i++)
{
fAverage += testData->input0[i];
fMin = std::min(fMin, testData->input1[i]);
fSoP += testData->input2[i] * testData->input3[i];
}
fAverage /= testData->inputSize;
testData->output[j] = fAverage + (fMin * fSoP);
// Don't run for much longer than one second
if (j > 0 && j % 100 == 0)
{
rDevice.fTime = tools::Time::GetMonotonicTicks() - kernelTime;
if (rDevice.fTime >= 1)
break;
}
}
rDevice.fTime = tools::Time::GetMonotonicTicks() - kernelTime;
// Scale time to how long it would have taken to go all the way to outputSize
rDevice.fTime /= (static_cast<double>(j) / testData->outputSize);
// InterpretTail - the S/W fallback is nothing like as efficient
// as any good openCL implementation: no SIMD, tons of branching
// in the inner loops etc. Generously characterise it as only 10x
// slower than the above.
rDevice.fTime *= 10.0;
rDevice.bErrors = false;
}
return DS_SUCCESS;
}
ds_status profileDevices(std::unique_ptr<ds_profile> const & pProfile, std::unique_ptr<LibreOfficeDeviceEvaluationIO> const & pTestData)
{
ds_status status = DS_SUCCESS;
if (!pProfile)
return DS_INVALID_PROFILE;
for (ds_device& rDevice : pProfile->devices)
{
ds_status evaluatorStatus = evaluateScoreForDevice(rDevice, pTestData);
if (evaluatorStatus != DS_SUCCESS)
{
status = evaluatorStatus;
return status;
}
}
return status;
}
/* Pick best device */
int pickBestDevice(std::unique_ptr<ds_profile> const & profile)
{
double bestScore = DBL_MAX;
int nBestDeviceIndex = -1;
for (std::vector<ds_device>::size_type d = 0; d < profile->devices.size();
d++)
{
ds_device& device = profile->devices[d];
// Check denylist and allowlist for actual devices
if (device.eType == DeviceType::OpenCLDevice)
{
// There is a silly impedance mismatch here. Why do we
// need two different ways to describe an OpenCL platform
// and an OpenCL device driver?
OpenCLPlatformInfo aPlatform;
OpenCLDeviceInfo aDevice;
// We know that only the below fields are used by checkForKnownBadCompilers()
aPlatform.maVendor = OStringToOUString(device.sPlatformVendor, RTL_TEXTENCODING_UTF8);
aDevice.maName = OStringToOUString(device.sDeviceName, RTL_TEXTENCODING_UTF8);
aDevice.maDriver = OStringToOUString(device.sDriverVersion, RTL_TEXTENCODING_UTF8);
// If denylisted or not allowlisted, ignore it
if (OpenCLConfig::get().checkImplementation(aPlatform, aDevice))
{
SAL_INFO("opencl.device", "Device[" << d << "] " << device.sDeviceName << " is denylisted or not allowlisted");
device.fTime = DBL_MAX;
device.bErrors = false;
}
}
double fScore = DBL_MAX;
if (device.fTime >= 0.0
|| rtl::math::approxEqual(device.fTime, DBL_MAX))
{
fScore = device.fTime;
}
else
{
SAL_INFO("opencl.device", "Unusual null score");
}
if (device.eType == DeviceType::OpenCLDevice)
{
SAL_INFO("opencl.device", "Device[" << d << "] " << device.sDeviceName << " (OpenCL) score is " << fScore);
}
else
{
SAL_INFO("opencl.device", "Device[" << d << "] CPU (Native) score is " << fScore);
}
if (fScore < bestScore)
{
bestScore = fScore;
nBestDeviceIndex = d;
}
}
if (nBestDeviceIndex != -1 && profile->devices[nBestDeviceIndex].eType == DeviceType::OpenCLDevice)
{
SAL_INFO("opencl.device", "Selected Device[" << nBestDeviceIndex << "]: " << profile->devices[nBestDeviceIndex].sDeviceName << "(OpenCL).");
}
else
{
SAL_INFO("opencl.device", "Selected Device[" << nBestDeviceIndex << "]: CPU (Native).");
}
return nBestDeviceIndex;
}
/* Return device ID for matching device name */
int matchDevice(std::unique_ptr<ds_profile> const & profile, const char* deviceName)
{
int deviceMatch = -1;
for (size_t d = 0; d < profile->devices.size() - 1; d++)
{
if (profile->devices[d].sDeviceName.indexOf(deviceName) != -1)
deviceMatch = d;
}
if (std::string("NATIVE_CPU").find(deviceName) != std::string::npos)
deviceMatch = profile->devices.size() - 1;
return deviceMatch;
}
class LogWriter
{
private:
SvFileStream maStream;
public:
explicit LogWriter(OUString const & aFileName)
: maStream(aFileName, StreamMode::WRITE)
{}
void text(std::string_view rText)
{
maStream.WriteOString(rText);
maStream.WriteChar('\n');
}
void log(std::string_view rKey, std::string_view rValue)
{
maStream.WriteOString(rKey);
maStream.WriteOString(": ");
maStream.WriteOString(rValue);
maStream.WriteChar('\n');
}
void log(std::string_view rKey, int rValue)
{
log(rKey, OString::number(rValue));
}
void log(std::string_view rKey, bool rValue)
{
log(rKey, OString::boolean(rValue));
}
};
void writeDevicesLog(std::unique_ptr<ds_profile> const & rProfile, std::u16string_view sProfilePath, int nSelectedIndex)
{
OUString aCacheFile(OUString::Concat(sProfilePath) + "opencl_devices.log");
LogWriter aWriter(aCacheFile);
int nIndex = 0;
for (const ds_device& rDevice : rProfile->devices)
{
if (rDevice.eType == DeviceType::OpenCLDevice)
{
aWriter.log("Device Index", nIndex);
aWriter.log(" Selected", nIndex == nSelectedIndex);
aWriter.log(" Device Name", rDevice.sDeviceName);
aWriter.log(" Device Vendor", rDevice.sDeviceVendor);
aWriter.log(" Device Version", rDevice.sDeviceVersion);
aWriter.log(" Driver Version", rDevice.sDriverVersion);
aWriter.log(" Device Type", rDevice.sDeviceType);
aWriter.log(" Device Extensions", rDevice.sDeviceExtensions);
aWriter.log(" Device OpenCL C Version", rDevice.sDeviceOpenCLVersion);
aWriter.log(" Device Available", rDevice.bDeviceAvailable);
aWriter.log(" Device Compiler Available", rDevice.bDeviceCompilerAvailable);
aWriter.log(" Device Linker Available", rDevice.bDeviceLinkerAvailable);
aWriter.log(" Platform Name", rDevice.sPlatformName);
aWriter.log(" Platform Vendor", rDevice.sPlatformVendor);
aWriter.log(" Platform Version", rDevice.sPlatformVersion);
aWriter.log(" Platform Profile", rDevice.sPlatformProfile);
aWriter.log(" Platform Extensions", rDevice.sPlatformExtensions);
aWriter.text("");
}
nIndex++;
}
}
} // end anonymous namespace
ds_device const & getDeviceSelection(
std::u16string_view sProfilePath, bool bForceSelection)
{
/* Run only if device is not yet selected */
if (!bIsDeviceSelected || bForceSelection)
{
/* Setup */
std::unique_ptr<ds_profile> aProfile;
ds_status status;
status = initDSProfile(aProfile, "LibreOffice v1"_ostr);
if (status != DS_SUCCESS)
{
// failed to initialize profile.
selectedDevice.eType = DeviceType::NativeCPU;
return selectedDevice;
}
/* Try reading scores from file */
OUString sFilePath = OUString::Concat(sProfilePath) + "opencl_profile.xml";
if (!bForceSelection)
{
status = readProfile(sFilePath, aProfile);
}
else
{
status = DS_INVALID_PROFILE;
SAL_INFO("opencl.device", "Performing forced profiling.");
}
if (DS_SUCCESS != status)
{
if (!bForceSelection)
{
SAL_INFO("opencl.device", "Profile file not available (" << sFilePath << "); performing profiling.");
}
/* Populate input data for micro-benchmark */
std::unique_ptr<LibreOfficeDeviceEvaluationIO> testData(new LibreOfficeDeviceEvaluationIO);
testData->inputSize = INPUTSIZE;
testData->outputSize = OUTPUTSIZE;
testData->input0.resize(testData->inputSize);
testData->input1.resize(testData->inputSize);
testData->input2.resize(testData->inputSize);
testData->input3.resize(testData->inputSize);
testData->output.resize(testData->outputSize);
populateInput(testData);
/* Perform evaluations */
status = profileDevices(aProfile, testData);
if (DS_SUCCESS == status)
{
/* Write scores to file */
status = writeProfile(sFilePath, aProfile);
if (DS_SUCCESS == status)
{
SAL_INFO("opencl.device", "Scores written to file (" << sFilePath << ").");
}
else
{
SAL_INFO("opencl.device", "Error saving scores to file (" << sFilePath << "); scores not written to file.");
}
}
else
{
SAL_INFO("opencl.device", "Unable to evaluate performance; scores not written to file.");
}
}
else
{
SAL_INFO("opencl.device", "Profile read from file (" << sFilePath << ").");
}
/* Pick best device */
int bestDeviceIdx = pickBestDevice(aProfile);
/* Override if necessary */
char* overrideDeviceStr = getenv("SC_OPENCL_DEVICE_OVERRIDE");
if (nullptr != overrideDeviceStr)
{
int overrideDeviceIdx = matchDevice(aProfile, overrideDeviceStr);
if (-1 != overrideDeviceIdx)
{
SAL_INFO("opencl.device", "Overriding Device Selection (SC_OPENCL_DEVICE_OVERRIDE=" << overrideDeviceStr << ").");
bestDeviceIdx = overrideDeviceIdx;
if (aProfile->devices[bestDeviceIdx].eType == DeviceType::OpenCLDevice)
{
SAL_INFO("opencl.device", "Selected Device[" << bestDeviceIdx << "]: " << aProfile->devices[bestDeviceIdx].sDeviceName << " (OpenCL).");
}
else
{
SAL_INFO("opencl.device", "Selected Device[" << bestDeviceIdx << "]: CPU (Native).");
}
}
else
{
SAL_INFO("opencl.device", "Ignoring invalid SC_OPENCL_DEVICE_OVERRIDE=" << overrideDeviceStr << ").");
}
}
/* Final device selection */
if (bestDeviceIdx >=0 && o3tl::make_unsigned( bestDeviceIdx ) < aProfile->devices.size() )
{
selectedDevice = aProfile->devices[bestDeviceIdx];
bIsDeviceSelected = true;
writeDevicesLog(aProfile, sProfilePath, bestDeviceIdx);
} else {
selectedDevice.eType = DeviceType::NativeCPU;
}
}
return selectedDevice;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */