office-gobmx/i18npool/source/calendar/calendar_hijri.cxx
Hossein 0308e48e46 tdf#145759 30.6001 -> monthDaysWithoutJanFeb
30.6001 shows month days without Jan and Feb.
According to the below link, it is calcuated as (365-31-28)/10 = 30.6
but because of a floating point bug, it was used as 30.6001 as a
workaround.

"30.6001, 25 year old hack?"
https://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv011.cgi?read=31650

The value 30.6 is used as i18nutil::monthDaysWithoutJanFeb here
instead of 30.6001. The new value is ~30.60000038 which is > 30.6, so
the calculations should be correct. In order to make sure, a unit test
is added, and part of the values are checked against the values
calculated by this website:

Julian Day and Civil Date Calculator
https://core2.gsfc.nasa.gov/time/julian.html

Change-Id: I8cc7e046514dc3de652a1c37399e351cb2b614dc
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/125813
Tested-by: Jenkins
Reviewed-by: Eike Rathke <erack@redhat.com>
2022-02-25 19:12:41 +01:00

317 lines
9.6 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <i18nutil/calendar.hxx>
#include <cmath>
#include <stdlib.h>
#include <calendar_hijri.hxx>
#include <tools/long.hxx>
#include <basegfx/numeric/ftools.hxx>
using namespace ::com::sun::star::uno;
using namespace ::com::sun::star::lang;
using namespace ::com::sun::star::i18n;
namespace i18npool {
// Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
constexpr double SynPeriod = 29.53058868;
// Julian day on Jan 1, 1900
constexpr double jd1900 = 2415020.75933;
// Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
constexpr sal_Int32 SynRef = 1252;
constexpr sal_Int32 GregRef = 1422;
Calendar_hijri::Calendar_hijri()
{
cCalendar = "com.sun.star.i18n.Calendar_hijri";
}
#define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
// map field value from hijri calendar to gregorian calendar
void Calendar_hijri::mapToGregorian()
{
if (!(fieldSet & FIELDS))
return;
sal_Int32 day = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH]);
sal_Int32 month = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::MONTH]) + 1;
sal_Int32 year = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::YEAR]);
if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
year *= -1;
ToGregorian(&day, &month, &year);
fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast<sal_Int16>(day);
fieldSetValue[CalendarFieldIndex::YEAR] = static_cast<sal_Int16>(abs(year));
fieldSet |= FIELDS;
}
// map field value from gregorian calendar to hijri calendar
void Calendar_hijri::mapFromGregorian()
{
sal_Int32 month, day, year;
day = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::DAY_OF_MONTH]);
month = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::MONTH]) + 1;
year = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::YEAR]);
if (fieldValue[CalendarFieldIndex::ERA] == 0)
year *= -1;
// Get Hijri date
getHijri(&day, &month, &year);
fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast<sal_Int16>(day);
fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
fieldValue[CalendarFieldIndex::YEAR] = static_cast<sal_Int16>(abs(year));
fieldValue[CalendarFieldIndex::ERA] = static_cast<sal_Int16>(year) < 1 ? 0 : 1;
}
// This function returns the Julian date/time of the Nth new moon since
// January 1900. The synodic month is passed as parameter.
// Adapted from "Astronomical Formulae for Calculators" by
// Jean Meeus, Third Edition, Willmann-Bell, 1985.
double
Calendar_hijri::NewMoon(sal_Int32 n)
{
double jd, t, t2, t3, k, ma, sa, tf, xtra;
k = n;
t = k/1236.85; // Time in Julian centuries from 1900 January 0.5
t2 = t * t;
t3 = t2 * t;
// Mean time of phase
jd = jd1900
+ SynPeriod * k
- 0.0001178 * t2
- 0.000000155 * t3
+ 0.00033 * sin(basegfx::deg2rad(166.56 + 132.87 * t - 0.009173 * t2));
// Sun's mean anomaly in radian
sa = basegfx::deg2rad(359.2242
+ 29.10535608 * k
- 0.0000333 * t2
- 0.00000347 * t3);
// Moon's mean anomaly
ma = basegfx::deg2rad(306.0253
+ 385.81691806 * k
+ 0.0107306 * t2
+ 0.00001236 * t3);
// Moon's argument of latitude
tf = 2.0 * basegfx::deg2rad(21.2964
+ 390.67050646 * k
- 0.0016528 * t2
- 0.00000239 * t3);
// should reduce to interval between 0 to 1.0 before calculating further
// Corrections for New Moon
xtra = (0.1734 - 0.000393 * t) * sin(sa)
+ 0.0021 * sin(sa * 2)
- 0.4068 * sin(ma)
+ 0.0161 * sin(2 * ma)
- 0.0004 * sin(3 * ma)
+ 0.0104 * sin(tf)
- 0.0051 * sin(sa + ma)
- 0.0074 * sin(sa - ma)
+ 0.0004 * sin(tf + sa)
- 0.0004 * sin(tf - sa)
- 0.0006 * sin(tf + ma)
+ 0.0010 * sin(tf - ma)
+ 0.0005 * sin(sa + 2 * ma);
// convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
return jd;
}
// Get Hijri Date
void
Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
{
double prevday;
sal_Int32 syndiff;
sal_Int32 newsyn;
double newjd;
sal_Int32 synmonth;
// Get Julian Day from Gregorian
sal_Int32 const julday = getJulianDay(*day, *month, *year);
// obtain approx. of how many Synodic months since the beginning of the year 1900
synmonth = static_cast<sal_Int32>(0.5 + (julday - jd1900)/SynPeriod);
newsyn = synmonth;
prevday = julday - 0.5;
do {
newjd = NewMoon(newsyn);
// Decrement syntonic months
newsyn--;
} while (newjd > prevday);
newsyn++;
// difference from reference point
syndiff = newsyn - SynRef;
// Round up the day
*day = static_cast<sal_Int32>(julday - newjd + 0.5);
*month = (syndiff % 12) + 1;
// currently not supported
//dayOfYear = (sal_Int32)(month * SynPeriod + day);
*year = GregRef + static_cast<sal_Int32>(syndiff / 12);
// If month negative, consider it previous year
if (syndiff != 0 && *month <= 0) {
*month += 12;
(*year)--;
}
// If Before Hijri subtract 1
if (*year <= 0) (*year)--;
}
void
Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
{
sal_Int32 nmonth;
double jday;
if ( *year < 0 ) (*year)++;
// Number of month from reference point
nmonth = *month + *year * 12 - (GregRef * 12 + 1);
// Add Synodic Reference point
nmonth += SynRef;
// Get Julian days add time too
jday = NewMoon(nmonth) + *day;
// Round-up
jday = std::trunc(jday + 0.5);
// Use algorithm from "Numerical Recipes in C"
getGregorianDay(static_cast<sal_Int32>(jday), day, month, year);
// Julian -> Gregorian only works for non-negative year
if ( *year <= 0 ) {
*day = -1;
*month = -1;
*year = -1;
}
}
/* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
/* this algorithm only valid for non-negative gregorian year */
void
Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
{
/* working variables */
tools::Long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
constexpr sal_Int32 GREGORIAN_CROSSOVER = 2299161;
/* test whether to adjust for the Gregorian calendar crossover */
if (lJulianDay >= GREGORIAN_CROSSOVER) {
/* calculate a small adjustment */
tools::Long lAdjust = static_cast<tools::Long>((static_cast<float>(lJulianDay - 1867216) - 0.25) / 36524.25);
lFactorA = lJulianDay + 1 + lAdjust - static_cast<tools::Long>(0.25 * lAdjust);
} else {
/* no adjustment needed */
lFactorA = lJulianDay;
}
lFactorB = lFactorA + 1524;
lFactorC = static_cast<tools::Long>(6680.0 + (static_cast<float>(lFactorB - 2439870) - 122.1) / 365.25);
lFactorD = static_cast<tools::Long>(365 * lFactorC + (0.25 * lFactorC));
lFactorE = static_cast<tools::Long>((lFactorB - lFactorD) / i18nutil::monthDaysWithoutJanFeb);
/* now, pull out the day number */
*pnDay = lFactorB - lFactorD - static_cast<tools::Long>(i18nutil::monthDaysWithoutJanFeb * lFactorE);
/* ...and the month, adjusting it if necessary */
*pnMonth = lFactorE - 1;
if (*pnMonth > 12)
(*pnMonth) -= 12;
/* ...and similarly for the year */
*pnYear = lFactorC - 4715;
if (*pnMonth > 2)
(*pnYear)--;
// Negative year adjustments
if (*pnYear <= 0)
(*pnYear)--;
}
sal_Int32
Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
{
double jy, jm;
if( year == 0 ) {
return -1;
}
if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
return -1;
}
if( month > 2 ) {
jy = year;
jm = month + 1;
} else {
jy = year - 1;
jm = month + 13;
}
sal_Int32 intgr = static_cast<sal_Int32>(static_cast<sal_Int32>(365.25 * jy) + static_cast<sal_Int32>(i18nutil::monthDaysWithoutJanFeb * jm) + day + 1720995 );
//check for switch to Gregorian calendar
double const gregcal = 15 + 31 * ( 10 + 12 * 1582 );
if( day + 31 * (month + 12 * year) >= gregcal ) {
double ja;
ja = std::trunc(0.01 * jy);
intgr += static_cast<sal_Int32>(2 - ja + std::trunc(0.25 * ja));
}
return intgr;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */