office-gobmx/agg/source/agg_rasterizer_scanline_aa.cpp
Jens-Heiner Rechtien a33d30556e INTEGRATION: CWS warnings01 (1.1.4); FILE MERGED
2005/12/02 10:37:51 mbu 1.1.4.1: necessary changes to prevent warnings
2006-06-20 04:00:03 +00:00

621 lines
16 KiB
C++
Executable file

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class outline_aa - implementation.
//
// Initially the rendering algorithm was designed by David Turner and the
// other authors of the FreeType library - see the above notice. I nearly
// created a similar renderer, but still I was far from David's work.
// I completely redesigned the original code and adapted it for Anti-Grain
// ideas. Two functions - render_line and render_hline are the core of
// the algorithm - they calculate the exact coverage of each pixel cell
// of the polygon. I left these functions almost as is, because there's
// no way to improve the perfection - hats off to David and his group!
//
// All other code is very different from the original.
//
//----------------------------------------------------------------------------
#include <string.h>
#include "agg_rasterizer_scanline_aa.h"
namespace agg
{
//------------------------------------------------------------------------
AGG_INLINE void cell_aa::set_cover(int c, int a)
{
cover = c;
area = a;
}
//------------------------------------------------------------------------
AGG_INLINE void cell_aa::add_cover(int c, int a)
{
cover += c;
area += a;
}
//------------------------------------------------------------------------
AGG_INLINE void cell_aa::set_coord(int cx, int cy)
{
x = int16(cx);
y = int16(cy);
packed_coord = (cy << 16) + cx;
}
//------------------------------------------------------------------------
AGG_INLINE void cell_aa::set(int cx, int cy, int c, int a)
{
x = int16(cx);
y = int16(cy);
packed_coord = (cy << 16) + cx;
cover = c;
area = a;
}
//------------------------------------------------------------------------
outline_aa::~outline_aa()
{
delete [] m_sorted_cells;
if(m_num_blocks)
{
cell_aa** ptr = m_cells + m_num_blocks - 1;
while(m_num_blocks--)
{
delete [] *ptr;
ptr--;
}
delete [] m_cells;
}
}
//------------------------------------------------------------------------
outline_aa::outline_aa() :
m_num_blocks(0),
m_max_blocks(0),
m_cur_block(0),
m_num_cells(0),
m_cells(0),
m_cur_cell_ptr(0),
m_sorted_cells(0),
m_sorted_size(0),
m_cur_x(0),
m_cur_y(0),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF),
m_sorted(false)
{
m_cur_cell.set(0x7FFF, 0x7FFF, 0, 0);
}
//------------------------------------------------------------------------
void outline_aa::reset()
{
m_num_cells = 0;
m_cur_block = 0;
m_cur_cell.set(0x7FFF, 0x7FFF, 0, 0);
m_sorted = false;
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
}
//------------------------------------------------------------------------
void outline_aa::allocate_block()
{
if(m_cur_block >= m_num_blocks)
{
if(m_num_blocks >= m_max_blocks)
{
cell_aa** new_cells = new cell_aa* [m_max_blocks + cell_block_pool];
if(m_cells)
{
memcpy(new_cells, m_cells, m_max_blocks * sizeof(cell_aa*));
delete [] m_cells;
}
m_cells = new_cells;
m_max_blocks += cell_block_pool;
}
m_cells[m_num_blocks++] = new cell_aa [unsigned(cell_block_size)];
}
m_cur_cell_ptr = m_cells[m_cur_block++];
}
//------------------------------------------------------------------------
AGG_INLINE void outline_aa::add_cur_cell()
{
if(m_cur_cell.area | m_cur_cell.cover)
{
if((m_num_cells & cell_block_mask) == 0)
{
if(m_num_blocks >= cell_block_limit) return;
allocate_block();
}
*m_cur_cell_ptr++ = m_cur_cell;
++m_num_cells;
if(m_cur_cell.x < m_min_x) m_min_x = m_cur_cell.x;
if(m_cur_cell.x > m_max_x) m_max_x = m_cur_cell.x;
}
}
//------------------------------------------------------------------------
AGG_INLINE void outline_aa::set_cur_cell(int x, int y)
{
if(m_cur_cell.packed_coord != (y << 16) + x)
{
add_cur_cell();
m_cur_cell.set(x, y, 0, 0);
}
}
//------------------------------------------------------------------------
AGG_INLINE void outline_aa::render_hline(int ey, int x1, int y1, int x2, int y2)
{
int ex1 = x1 >> poly_base_shift;
int ex2 = x2 >> poly_base_shift;
int fx1 = x1 & poly_base_mask;
int fx2 = x2 & poly_base_mask;
int delta, p, first, dx;
int incr, lift, mod, rem;
//trivial case. Happens often
if(y1 == y2)
{
set_cur_cell(ex2, ey);
return;
}
//everything is located in a single cell. That is easy!
if(ex1 == ex2)
{
delta = y2 - y1;
m_cur_cell.add_cover(delta, (fx1 + fx2) * delta);
return;
}
//ok, we'll have to render a run of adjacent cells on the same
//hline...
p = (poly_base_size - fx1) * (y2 - y1);
first = poly_base_size;
incr = 1;
dx = x2 - x1;
if(dx < 0)
{
p = fx1 * (y2 - y1);
first = 0;
incr = -1;
dx = -dx;
}
delta = p / dx;
mod = p % dx;
if(mod < 0)
{
delta--;
mod += dx;
}
m_cur_cell.add_cover(delta, (fx1 + first) * delta);
ex1 += incr;
set_cur_cell(ex1, ey);
y1 += delta;
if(ex1 != ex2)
{
p = poly_base_size * (y2 - y1 + delta);
lift = p / dx;
rem = p % dx;
if (rem < 0)
{
lift--;
rem += dx;
}
mod -= dx;
while (ex1 != ex2)
{
delta = lift;
mod += rem;
if(mod >= 0)
{
mod -= dx;
delta++;
}
m_cur_cell.add_cover(delta, (poly_base_size) * delta);
y1 += delta;
ex1 += incr;
set_cur_cell(ex1, ey);
}
}
delta = y2 - y1;
m_cur_cell.add_cover(delta, (fx2 + poly_base_size - first) * delta);
}
//------------------------------------------------------------------------
void outline_aa::render_line(int x1, int y1, int x2, int y2)
{
int ey1 = y1 >> poly_base_shift;
int ey2 = y2 >> poly_base_shift;
int fy1 = y1 & poly_base_mask;
int fy2 = y2 & poly_base_mask;
int dx, dy, x_from, x_to;
int p, rem, mod, lift, delta, first, incr;
dx = x2 - x1;
dy = y2 - y1;
//everything is on a single hline
if(ey1 == ey2)
{
render_hline(ey1, x1, fy1, x2, fy2);
return;
}
//Vertical line - we have to calculate start and end cells,
//and then - the common values of the area and coverage for
//all cells of the line. We know exactly there's only one
//cell, so, we don't have to call render_hline().
incr = 1;
if(dx == 0)
{
int ex = x1 >> poly_base_shift;
int two_fx = (x1 - (ex << poly_base_shift)) << 1;
int area;
first = poly_base_size;
if(dy < 0)
{
first = 0;
incr = -1;
}
x_from = x1;
//render_hline(ey1, x_from, fy1, x_from, first);
delta = first - fy1;
m_cur_cell.add_cover(delta, two_fx * delta);
ey1 += incr;
set_cur_cell(ex, ey1);
delta = first + first - poly_base_size;
area = two_fx * delta;
while(ey1 != ey2)
{
//render_hline(ey1, x_from, poly_base_size - first, x_from, first);
m_cur_cell.set_cover(delta, area);
ey1 += incr;
set_cur_cell(ex, ey1);
}
//render_hline(ey1, x_from, poly_base_size - first, x_from, fy2);
delta = fy2 - poly_base_size + first;
m_cur_cell.add_cover(delta, two_fx * delta);
return;
}
//ok, we have to render several hlines
p = (poly_base_size - fy1) * dx;
first = poly_base_size;
if(dy < 0)
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = p / dy;
mod = p % dy;
if(mod < 0)
{
delta--;
mod += dy;
}
x_from = x1 + delta;
render_hline(ey1, x1, fy1, x_from, first);
ey1 += incr;
set_cur_cell(x_from >> poly_base_shift, ey1);
if(ey1 != ey2)
{
p = poly_base_size * dx;
lift = p / dy;
rem = p % dy;
if(rem < 0)
{
lift--;
rem += dy;
}
mod -= dy;
while(ey1 != ey2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dy;
delta++;
}
x_to = x_from + delta;
render_hline(ey1, x_from, poly_base_size - first, x_to, first);
x_from = x_to;
ey1 += incr;
set_cur_cell(x_from >> poly_base_shift, ey1);
}
}
render_hline(ey1, x_from, poly_base_size - first, x2, fy2);
}
//------------------------------------------------------------------------
void outline_aa::move_to(int x, int y)
{
if(m_sorted) reset();
set_cur_cell(x >> poly_base_shift, y >> poly_base_shift);
m_cur_x = x;
m_cur_y = y;
}
//------------------------------------------------------------------------
void outline_aa::line_to(int x, int y)
{
render_line(m_cur_x, m_cur_y, x, y);
m_cur_x = x;
m_cur_y = y;
m_sorted = false;
}
//------------------------------------------------------------------------
enum
{
qsort_threshold = 9
};
//------------------------------------------------------------------------
template <class T> AGG_INLINE void swap_cells(T* a, T* b)
{
T temp = *a;
*a = *b;
*b = temp;
}
//------------------------------------------------------------------------
template <class T> AGG_INLINE bool less_than(T* a, T* b)
{
return (*a)->packed_coord < (*b)->packed_coord;
}
//------------------------------------------------------------------------
void outline_aa::qsort_cells(cell_aa** start, unsigned num)
{
cell_aa** stack[80];
cell_aa*** top;
cell_aa** limit;
cell_aa** base;
limit = start + num;
base = start;
top = stack;
for (;;)
{
int len = int(limit - base);
cell_aa** i;
cell_aa** j;
cell_aa** pivot;
if(len > qsort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_cells(base, pivot);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
if(less_than(j, i))
{
swap_cells(i, j);
}
if(less_than(base, i))
{
swap_cells(base, i);
}
if(less_than(j, base))
{
swap_cells(base, j);
}
for(;;)
{
do i++; while( less_than(i, base) );
do j--; while( less_than(base, j) );
if ( i > j )
{
break;
}
swap_cells(i, j);
}
swap_cells(base, j);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; less_than(j + 1, j); j--)
{
swap_cells(j + 1, j);
if (j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------------------------
void outline_aa::sort_cells()
{
if(m_num_cells == 0) return;
if(m_num_cells > m_sorted_size)
{
delete [] m_sorted_cells;
m_sorted_size = m_num_cells;
m_sorted_cells = new cell_aa* [m_num_cells + 1];
}
cell_aa** sorted_ptr = m_sorted_cells;
cell_aa** block_ptr = m_cells;
cell_aa* cell_ptr;
unsigned nb = m_num_cells >> cell_block_shift;
unsigned i;
while(nb--)
{
cell_ptr = *block_ptr++;
i = cell_block_size;
while(i--)
{
*sorted_ptr++ = cell_ptr++;
}
}
cell_ptr = *block_ptr++;
i = m_num_cells & cell_block_mask;
while(i--)
{
*sorted_ptr++ = cell_ptr++;
}
m_sorted_cells[m_num_cells] = 0;
qsort_cells(m_sorted_cells, m_num_cells);
m_min_y = m_sorted_cells[0]->y;
m_max_y = m_sorted_cells[m_num_cells - 1]->y;
}
//------------------------------------------------------------------------
const cell_aa* const* outline_aa::cells()
{
//Perform sort only the first time.
if(!m_sorted)
{
add_cur_cell();
sort_cells();
m_sorted = true;
}
return m_sorted_cells;
}
}