office-gobmx/bridges/source/cpp_uno/gcc3_ios_arm/uno2cpp-arm64.cxx
Tor Lillqvist e0849330bc Get rid of unnecessary directory levels $D/inc/$D
Change-Id: Ibf313b8948a493043006ebf3a8281487c1f67b48
Reviewed-on: https://gerrit.libreoffice.org/25532
Tested-by: Jenkins <ci@libreoffice.org>
Reviewed-by: Tor Lillqvist <tml@collabora.com>
Tested-by: Tor Lillqvist <tml@collabora.com>
2016-05-27 17:10:45 +00:00

556 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifdef __arm64
#include <com/sun/star/uno/RuntimeException.hpp>
#include "bridge.hxx"
#include "types.hxx"
#include "unointerfaceproxy.hxx"
#include "vtables.hxx"
#include "share.hxx"
using namespace ::com::sun::star::uno;
namespace arm
{
bool is_hfa_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
if (p->nMembers >= 4)
return false;
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if ((p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_FLOAT &&
p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_DOUBLE) ||
p->ppTypeRefs[i]->eTypeClass != p->ppTypeRefs[0]->eTypeClass)
return false;
}
return true;
}
bool return_in_x8( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return false;
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
// A Composite Type not larger than 16 bytes is returned in x0, x1
bool bRet = pTypeDescr->nSize > 16;
if (is_hfa_struct(pTypeDescr))
bRet = false;
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return true;
}
}
void MapReturn(sal_uInt64 x0, sal_uInt64 x1, typelib_TypeDescriptionReference *pReturnType, sal_uInt64 *pRegisterReturn)
{
switch( pReturnType->eTypeClass )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
pRegisterReturn[1] = x1;
// fallthrough
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
pRegisterReturn[0] = x0;
break;
case typelib_TypeClass_FLOAT:
register float fret asm("s0");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
*(float*)pRegisterReturn = fret;
#pragma GCC diagnostic pop
break;
case typelib_TypeClass_DOUBLE:
register double dret asm("d0");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
*(double*)pRegisterReturn = dret;
#pragma GCC diagnostic pop
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
if (!arm::return_in_x8(pReturnType))
{
pRegisterReturn[0] = x0;
pRegisterReturn[1] = x1;
}
break;
default:
break;
}
}
namespace
{
void callVirtualMethod(
void *pThis,
sal_Int32 nVtableIndex,
void *pRegisterReturn,
typelib_TypeDescriptionReference *pReturnType,
sal_uInt64 *pStack,
int nStack,
sal_uInt64 *pGPR,
double *pFPR)
{
// never called
if (! pThis)
CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something
if ( nStack )
{
// 16-bytes aligned
sal_uInt32 nStackBytes = ( ( nStack + 3 ) >> 2 ) * 16;
sal_uInt32 *stack = (sal_uInt32 *) alloca( nStackBytes );
memcpy( stack, pStack, nStackBytes );
}
sal_uInt64 pMethod = *((sal_uInt64*)pThis);
pMethod += 8 * nVtableIndex;
pMethod = *((sal_uInt64 *)pMethod);
// For value returned in registers
sal_uInt64 x0;
sal_uInt64 x1;
__asm__ __volatile__
(
" ldp x0, x1, %[pgpr_0]\n"
" ldp x2, x3, %[pgpr_2]\n"
" ldp x4, x5, %[pgpr_4]\n"
" ldp x6, x7, %[pgpr_6]\n"
" ldr x8, %[pregisterreturn]\n"
" ldp d0, d1, %[pfpr_0]\n"
" ldp d2, d3, %[pfpr_2]\n"
" ldp d4, d5, %[pfpr_4]\n"
" ldp d6, d7, %[pfpr_6]\n"
" blr %[pmethod]\n"
" str x0, %[x0]\n"
" str x1, %[x1]\n"
: [x0]"=m" (x0), [x1]"=m" (x1)
: [pgpr_0]"m" (pGPR[0]),
[pgpr_2]"m" (pGPR[2]),
[pgpr_4]"m" (pGPR[4]),
[pgpr_6]"m" (pGPR[6]),
[pregisterreturn]"m" (pRegisterReturn),
[pfpr_0]"m" (pFPR[0]),
[pfpr_2]"m" (pFPR[2]),
[pfpr_4]"m" (pFPR[4]),
[pfpr_6]"m" (pFPR[6]),
[pmethod]"r" (pMethod)
: "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7"
);
MapReturn(x0, x1, pReturnType, (sal_uInt64 *) pRegisterReturn);
}
}
#define INSERT_INT64( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV );
#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );
#define INSERT_DOUBLE( pSV, nr, pFPR, pDS ) \
if ( nr < arm::MAX_FPR_REGS ) \
pFPR[nr++] = *reinterpret_cast<double *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<double *>( pSV );
#define INSERT_FLOAT( pSV, nr, pFPR, pDS ) \
INSERT_DOUBLE( pSV, nr, pGPR, pDS )
namespace {
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: values|ptr ...
sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+2) * sizeof(sal_Int64) );
sal_uInt64 * pStackStart = pStack;
sal_uInt64 pGPR[arm::MAX_GPR_REGS];
int nGPR = 0;
// storage and counter for SIMD/FP registers
double pFPR[arm::MAX_FPR_REGS];
int nFPR = 0;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
assert( pReturnTypeDescr);
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
if (!arm::return_in_x8( pReturnTypeRef ) )
pCppReturn = pUnoReturn; // direct way for simple types
else
{
// complex return via x8
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
}
}
// push this
void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI())
+ aVtableSlot.offset;
INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack );
// stack space
// args
void ** pCppArgs = (void **)alloca( sizeof(void *) * nParams );
// indices of values this have to be converted (interface conversion cpp<=>uno)
int * pTempIndices = (int *)alloca( sizeof(int) * nParams );
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)alloca( sizeof(void *) * nParams );
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos],
pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_FLOAT:
INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, pStack );
break;
case typelib_TypeClass_DOUBLE:
INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, pStack );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack );
}
}
assert( nGPR <= arm::MAX_GPR_REGS );
assert( nFPR <= arm::MAX_FPR_REGS );
try
{
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeRef,
pStackStart,
(pStack - pStackStart),
pGPR,
pFPR);
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException( abi::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
#if OSL_DEBUG_LEVEL > 0
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#endif
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert( nMemberPos < pTypeDescr->nAllMembers && "### member pos out of range!");
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>
(pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1;
cpp_call(
pThis, aVtableSlot, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers && "### member pos out of range!");
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>
(pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
pThis->getBridge()->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString("illegal member type description!"),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */