office-gobmx/vcl/quartz/salbmp.cxx
Tor Lillqvist 63dcca42ce Re-work the vcl aspects of the iOS port
Don't try to use similar code as for OS X to manage windows, events
etc. I.e. don't use UIKit in vcl to do that. Instead, just do as in
the Android port, use the "headless" vcl backend. Do keep using
CoreText, though, not FreeType & fontconfig.

Start changing the iOS "Viewer" app to correspond to the Android
"desktop" app (so it should be renamed).

Work in progress since a long time, several crucial details still
missing, but committing for now.

Change-Id: Iac5fbf8def415e4d0d21e5200450a373420ad7ee
2013-03-21 13:28:32 +02:00

916 lines
29 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "basebmp/scanlineformats.hxx"
#include "basebmp/color.hxx"
#include "basegfx/vector/b2ivector.hxx"
#include "tools/color.hxx"
#include "vcl/bitmap.hxx"
#include "vcl/salbtype.hxx"
#include "quartz/salbmp.h"
#ifdef MACOSX
#include "aqua/saldata.hxx"
#else
#include "saldatabasic.hxx"
#endif
#include "bmpfast.hxx"
static const unsigned long k16BitRedColorMask = 0x00007c00;
static const unsigned long k16BitGreenColorMask = 0x000003e0;
static const unsigned long k16BitBlueColorMask = 0x0000001f;
static const unsigned long k32BitRedColorMask = 0x00ff0000;
static const unsigned long k32BitGreenColorMask = 0x0000ff00;
static const unsigned long k32BitBlueColorMask = 0x000000ff;
// =======================================================================
static bool isValidBitCount( sal_uInt16 nBitCount )
{
return (nBitCount == 1) || (nBitCount == 4) || (nBitCount == 8) || (nBitCount == 16) || (nBitCount == 24) || (nBitCount == 32);
}
// =======================================================================
QuartzSalBitmap::QuartzSalBitmap()
: mxGraphicContext( NULL )
, mxCachedImage( NULL )
, mnBits(0)
, mnWidth(0)
, mnHeight(0)
, mnBytesPerRow(0)
{
}
// ------------------------------------------------------------------
QuartzSalBitmap::~QuartzSalBitmap()
{
Destroy();
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::Create( CGLayerRef xLayer, int nBitmapBits,
int nX, int nY, int nWidth, int nHeight, bool /*bMirrorVert*/ )
{
DBG_ASSERT( xLayer, "QuartzSalBitmap::Create() from non-layered context" );
// sanitize input parameters
if( nX < 0 )
nWidth += nX, nX = 0;
if( nY < 0 )
nHeight += nY, nY = 0;
const CGSize aLayerSize = CGLayerGetSize( xLayer );
if( nWidth >= (int)aLayerSize.width - nX )
nWidth = (int)aLayerSize.width - nX;
if( nHeight >= (int)aLayerSize.height - nY )
nHeight = (int)aLayerSize.height - nY;
if( (nWidth < 0) || (nHeight < 0) )
nWidth = nHeight = 0;
// initialize properties
mnWidth = nWidth;
mnHeight = nHeight;
mnBits = nBitmapBits ? nBitmapBits : 32;
// initialize drawing context
CreateContext();
// copy layer content into the bitmap buffer
const CGPoint aSrcPoint = { static_cast<CGFloat>(-nX), static_cast<CGFloat>(-nY) };
::CGContextDrawLayerAtPoint( mxGraphicContext, aSrcPoint, xLayer );
return true;
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::Create( const Size& rSize, sal_uInt16 nBits, const BitmapPalette& rBitmapPalette )
{
if( !isValidBitCount( nBits ) )
return false;
maPalette = rBitmapPalette;
mnBits = nBits;
mnWidth = rSize.Width();
mnHeight = rSize.Height();
return AllocateUserData();
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::Create( const SalBitmap& rSalBmp )
{
return Create( rSalBmp, rSalBmp.GetBitCount() );
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::Create( const SalBitmap& rSalBmp, SalGraphics* pGraphics )
{
return Create( rSalBmp, pGraphics ? pGraphics->GetBitCount() : rSalBmp.GetBitCount() );
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::Create( const SalBitmap& rSalBmp, sal_uInt16 nNewBitCount )
{
const QuartzSalBitmap& rSourceBitmap = static_cast<const QuartzSalBitmap&>(rSalBmp);
if( isValidBitCount( nNewBitCount ) && rSourceBitmap.maUserBuffer.get() )
{
mnBits = nNewBitCount;
mnWidth = rSourceBitmap.mnWidth;
mnHeight = rSourceBitmap.mnHeight;
maPalette = rSourceBitmap.maPalette;
if( AllocateUserData() )
{
ConvertBitmapData( mnWidth, mnHeight, mnBits, mnBytesPerRow, maPalette, maUserBuffer.get(), rSourceBitmap.mnBits, rSourceBitmap.mnBytesPerRow, rSourceBitmap.maPalette, rSourceBitmap.maUserBuffer.get() );
return true;
}
}
return false;
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::Create( const ::com::sun::star::uno::Reference< ::com::sun::star::rendering::XBitmapCanvas > /*xBitmapCanvas*/, Size& /*rSize*/, bool /*bMask*/ )
{
return false;
}
// ------------------------------------------------------------------
void QuartzSalBitmap::Destroy()
{
DestroyContext();
maUserBuffer.reset();
}
// ------------------------------------------------------------------
void QuartzSalBitmap::DestroyContext()
{
CGImageRelease( mxCachedImage );
mxCachedImage = NULL;
if( mxGraphicContext )
{
CGContextRelease( mxGraphicContext );
mxGraphicContext = NULL;
maContextBuffer.reset();
}
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::CreateContext()
{
DestroyContext();
// prepare graphics context
// convert image from user input if available
const bool bSkipConversion = !maUserBuffer;
if( bSkipConversion )
AllocateUserData();
// default to RGBA color space
CGColorSpaceRef aCGColorSpace = GetSalData()->mxRGBSpace;
CGBitmapInfo aCGBmpInfo = kCGImageAlphaNoneSkipFirst;
// convert data into something accepted by CGBitmapContextCreate()
size_t bitsPerComponent = (mnBits == 16) ? 5 : 8;
sal_uInt32 nContextBytesPerRow = mnBytesPerRow;
if( (mnBits == 16) || (mnBits == 32) )
{
// no conversion needed for truecolor
maContextBuffer = maUserBuffer;
}
else if( (mnBits == 8) && maPalette.IsGreyPalette() )
{
// no conversion needed for grayscale
maContextBuffer = maUserBuffer;
aCGColorSpace = GetSalData()->mxGraySpace;
aCGBmpInfo = kCGImageAlphaNone;
bitsPerComponent = mnBits;
}
// TODO: is special handling for 1bit input buffers worth it?
else
{
// convert user data to 32 bit
nContextBytesPerRow = mnWidth << 2;
try
{
maContextBuffer.reset( new sal_uInt8[ mnHeight * nContextBytesPerRow ] );
if( !bSkipConversion )
ConvertBitmapData( mnWidth, mnHeight,
32, nContextBytesPerRow, maPalette, maContextBuffer.get(),
mnBits, mnBytesPerRow, maPalette, maUserBuffer.get() );
}
catch( const std::bad_alloc& )
{
mxGraphicContext = 0;
}
}
if( maContextBuffer.get() )
{
mxGraphicContext = ::CGBitmapContextCreate( maContextBuffer.get(), mnWidth, mnHeight,
bitsPerComponent, nContextBytesPerRow, aCGColorSpace, aCGBmpInfo );
}
if( !mxGraphicContext )
maContextBuffer.reset();
return mxGraphicContext != NULL;
}
// ------------------------------------------------------------------
bool QuartzSalBitmap::AllocateUserData()
{
Destroy();
if( mnWidth && mnHeight )
{
mnBytesPerRow = 0;
switch( mnBits )
{
case 1: mnBytesPerRow = (mnWidth + 7) >> 3; break;
case 4: mnBytesPerRow = (mnWidth + 1) >> 1; break;
case 8: mnBytesPerRow = mnWidth; break;
case 16: mnBytesPerRow = mnWidth << 1; break;
case 24: mnBytesPerRow = (mnWidth << 1) + mnWidth; break;
case 32: mnBytesPerRow = mnWidth << 2; break;
default:
OSL_FAIL("vcl::QuartzSalBitmap::AllocateUserData(), illegal bitcount!");
}
}
try
{
if( mnBytesPerRow )
maUserBuffer.reset( new sal_uInt8[mnBytesPerRow * mnHeight] );
}
catch( const std::bad_alloc& )
{
OSL_FAIL( "vcl::QuartzSalBitmap::AllocateUserData: bad alloc" );
maUserBuffer.reset( NULL );
mnBytesPerRow = 0;
}
return maUserBuffer.get() != 0;
}
// ------------------------------------------------------------------
class ImplPixelFormat
{
protected:
sal_uInt8* pData;
public:
static ImplPixelFormat* GetFormat( sal_uInt16 nBits, const BitmapPalette& rPalette );
virtual void StartLine( sal_uInt8* pLine ) { pData = pLine; }
virtual void SkipPixel( sal_uInt32 nPixel ) = 0;
virtual ColorData ReadPixel() = 0;
virtual void WritePixel( ColorData nColor ) = 0;
virtual ~ImplPixelFormat() { }
};
class ImplPixelFormat32 : public ImplPixelFormat
// currently ARGB-format for 32bit depth
{
public:
virtual void SkipPixel( sal_uInt32 nPixel )
{
pData += nPixel << 2;
}
virtual ColorData ReadPixel()
{
const ColorData c = RGB_COLORDATA( pData[1], pData[2], pData[3] );
pData += 4;
return c;
}
virtual void WritePixel( ColorData nColor )
{
*pData++ = 0;
*pData++ = COLORDATA_RED( nColor );
*pData++ = COLORDATA_GREEN( nColor );
*pData++ = COLORDATA_BLUE( nColor );
}
};
class ImplPixelFormat24 : public ImplPixelFormat
// currently BGR-format for 24bit depth
{
public:
virtual void SkipPixel( sal_uInt32 nPixel )
{
pData += (nPixel << 1) + nPixel;
}
virtual ColorData ReadPixel()
{
const ColorData c = RGB_COLORDATA( pData[2], pData[1], pData[0] );
pData += 3;
return c;
}
virtual void WritePixel( ColorData nColor )
{
*pData++ = COLORDATA_BLUE( nColor );
*pData++ = COLORDATA_GREEN( nColor );
*pData++ = COLORDATA_RED( nColor );
}
};
class ImplPixelFormat16 : public ImplPixelFormat
// currently R5G6B5-format for 16bit depth
{
protected:
sal_uInt16* pData16;
public:
virtual void StartLine( sal_uInt8* pLine )
{
pData16 = (sal_uInt16*)pLine;
}
virtual void SkipPixel( sal_uInt32 nPixel )
{
pData += nPixel;
}
virtual ColorData ReadPixel()
{
const ColorData c = RGB_COLORDATA( (*pData & 0x7c00) >> 7, (*pData & 0x03e0) >> 2 , (*pData & 0x001f) << 3 );
pData++;
return c;
}
virtual void WritePixel( ColorData nColor )
{
*pData++ = ((COLORDATA_RED( nColor ) & 0xf8 ) << 7 ) ||
((COLORDATA_GREEN( nColor ) & 0xf8 ) << 2 ) ||
((COLORDATA_BLUE( nColor ) & 0xf8 ) >> 3 );
}
};
class ImplPixelFormat8 : public ImplPixelFormat
{
private:
const BitmapPalette& mrPalette;
public:
ImplPixelFormat8( const BitmapPalette& rPalette )
: mrPalette( rPalette )
{
}
virtual void SkipPixel( sal_uInt32 nPixel )
{
pData += nPixel;
}
virtual ColorData ReadPixel()
{
return mrPalette[ *pData++ ].operator Color().GetColor();
}
virtual void WritePixel( ColorData nColor )
{
const BitmapColor aColor( COLORDATA_RED( nColor ), COLORDATA_GREEN( nColor ), COLORDATA_BLUE( nColor ) );
*pData++ = static_cast< sal_uInt8 >( mrPalette.GetBestIndex( aColor ) );
}
};
class ImplPixelFormat4 : public ImplPixelFormat
{
private:
const BitmapPalette& mrPalette;
sal_uInt32 mnX;
sal_uInt32 mnShift;
public:
ImplPixelFormat4( const BitmapPalette& rPalette )
: mrPalette( rPalette )
{
}
virtual void SkipPixel( sal_uInt32 nPixel )
{
mnX += nPixel;
if( (nPixel & 1) )
mnShift ^= 4;
}
virtual void StartLine( sal_uInt8* pLine )
{
pData = pLine;
mnX = 0;
mnShift = 4;
}
virtual ColorData ReadPixel()
{
const BitmapColor& rColor = mrPalette[( pData[mnX >> 1] >> mnShift) & 0x0f];
mnX++;
mnShift ^= 4;
return rColor.operator Color().GetColor();
}
virtual void WritePixel( ColorData nColor )
{
const BitmapColor aColor( COLORDATA_RED( nColor ), COLORDATA_GREEN( nColor ), COLORDATA_BLUE( nColor ) );
pData[mnX>>1] &= (0xf0 >> mnShift);
pData[mnX>>1] |= (static_cast< sal_uInt8 >( mrPalette.GetBestIndex( aColor ) ) & 0x0f);
mnX++;
mnShift ^= 4;
}
};
class ImplPixelFormat1 : public ImplPixelFormat
{
private:
const BitmapPalette& mrPalette;
sal_uInt32 mnX;
public:
ImplPixelFormat1( const BitmapPalette& rPalette )
: mrPalette( rPalette )
{
}
virtual void SkipPixel( sal_uInt32 nPixel )
{
mnX += nPixel;
}
virtual void StartLine( sal_uInt8* pLine )
{
pData = pLine;
mnX = 0;
}
virtual ColorData ReadPixel()
{
const BitmapColor& rColor = mrPalette[ (pData[mnX >> 3 ] >> ( 7 - ( mnX & 7 ) )) & 1];
mnX++;
return rColor.operator Color().GetColor();
}
virtual void WritePixel( ColorData nColor )
{
const BitmapColor aColor( COLORDATA_RED( nColor ), COLORDATA_GREEN( nColor ), COLORDATA_BLUE( nColor ) );
if( mrPalette.GetBestIndex( aColor ) & 1 )
pData[ mnX >> 3 ] |= 1 << ( 7 - ( mnX & 7 ) );
else
pData[ mnX >> 3 ] &= ~( 1 << ( 7 - ( mnX & 7 ) ) );
mnX++;
}
};
ImplPixelFormat* ImplPixelFormat::GetFormat( sal_uInt16 nBits, const BitmapPalette& rPalette )
{
switch( nBits )
{
case 1: return new ImplPixelFormat1( rPalette );
case 4: return new ImplPixelFormat4( rPalette );
case 8: return new ImplPixelFormat8( rPalette );
case 16: return new ImplPixelFormat16;
case 24: return new ImplPixelFormat24;
case 32: return new ImplPixelFormat32;
}
return 0;
}
void QuartzSalBitmap::ConvertBitmapData( sal_uInt32 nWidth, sal_uInt32 nHeight,
sal_uInt16 nDestBits, sal_uInt32 nDestBytesPerRow, const BitmapPalette& rDestPalette, sal_uInt8* pDestData,
sal_uInt16 nSrcBits, sal_uInt32 nSrcBytesPerRow, const BitmapPalette& rSrcPalette, sal_uInt8* pSrcData )
{
if( (nDestBytesPerRow == nSrcBytesPerRow) && (nDestBits == nSrcBits) && ((nSrcBits != 8) || (rDestPalette.operator==( rSrcPalette ))) )
{
// simple case, same format, so just copy
memcpy( pDestData, pSrcData, nHeight * nDestBytesPerRow );
return;
}
// try accelerated conversion if possible
// TODO: are other truecolor conversions except BGR->ARGB worth it?
bool bConverted = false;
if( (nSrcBits == 24) && (nDestBits == 32) )
{
// TODO: extend bmpfast.cxx with a method that can be directly used here
BitmapBuffer aSrcBuf;
aSrcBuf.mnFormat = BMP_FORMAT_24BIT_TC_BGR;
aSrcBuf.mpBits = pSrcData;
aSrcBuf.mnBitCount = nSrcBits;
aSrcBuf.mnScanlineSize = nSrcBytesPerRow;
BitmapBuffer aDstBuf;
aDstBuf.mnFormat = BMP_FORMAT_32BIT_TC_ARGB;
aDstBuf.mpBits = pDestData;
aSrcBuf.mnBitCount = nDestBits;
aDstBuf.mnScanlineSize = nDestBytesPerRow;
aSrcBuf.mnWidth = aDstBuf.mnWidth = nWidth;
aSrcBuf.mnHeight = aDstBuf.mnHeight = nHeight;
SalTwoRect aTwoRects;
aTwoRects.mnSrcX = aTwoRects.mnDestX = 0;
aTwoRects.mnSrcY = aTwoRects.mnDestY = 0;
aTwoRects.mnSrcWidth = aTwoRects.mnDestWidth = mnWidth;
aTwoRects.mnSrcHeight = aTwoRects.mnDestHeight = mnHeight;
bConverted = ::ImplFastBitmapConversion( aDstBuf, aSrcBuf, aTwoRects );
}
if( !bConverted )
{
// TODO: this implementation is for clarety, not for speed
ImplPixelFormat* pD = ImplPixelFormat::GetFormat( nDestBits, rDestPalette );
ImplPixelFormat* pS = ImplPixelFormat::GetFormat( nSrcBits, rSrcPalette );
if( pD && pS )
{
sal_uInt32 nY = nHeight;
while( nY-- )
{
pD->StartLine( pDestData );
pS->StartLine( pSrcData );
sal_uInt32 nX = nWidth;
while( nX-- )
pD->WritePixel( pS->ReadPixel() );
pSrcData += nSrcBytesPerRow;
pDestData += nDestBytesPerRow;
}
}
delete pS;
delete pD;
}
}
// ------------------------------------------------------------------
Size QuartzSalBitmap::GetSize() const
{
return Size( mnWidth, mnHeight );
}
// ------------------------------------------------------------------
sal_uInt16 QuartzSalBitmap::GetBitCount() const
{
return mnBits;
}
// ------------------------------------------------------------------
static struct pal_entry
{
sal_uInt8 mnRed;
sal_uInt8 mnGreen;
sal_uInt8 mnBlue;
}
const aImplSalSysPalEntryAry[ 16 ] =
{
{ 0, 0, 0 },
{ 0, 0, 0x80 },
{ 0, 0x80, 0 },
{ 0, 0x80, 0x80 },
{ 0x80, 0, 0 },
{ 0x80, 0, 0x80 },
{ 0x80, 0x80, 0 },
{ 0x80, 0x80, 0x80 },
{ 0xC0, 0xC0, 0xC0 },
{ 0, 0, 0xFF },
{ 0, 0xFF, 0 },
{ 0, 0xFF, 0xFF },
{ 0xFF, 0, 0 },
{ 0xFF, 0, 0xFF },
{ 0xFF, 0xFF, 0 },
{ 0xFF, 0xFF, 0xFF }
};
const BitmapPalette& GetDefaultPalette( int mnBits, bool bMonochrome )
{
if( bMonochrome )
return Bitmap::GetGreyPalette( 1U << mnBits );
// at this point we should provide some kind of default palette
// since all other platforms do so, too.
static bool bDefPalInit = false;
static BitmapPalette aDefPalette256;
static BitmapPalette aDefPalette16;
static BitmapPalette aDefPalette2;
if( ! bDefPalInit )
{
bDefPalInit = true;
aDefPalette256.SetEntryCount( 256 );
aDefPalette16.SetEntryCount( 16 );
aDefPalette2.SetEntryCount( 2 );
// Standard colors
unsigned int i;
for( i = 0; i < 16; i++ )
{
aDefPalette16[i] =
aDefPalette256[i] = BitmapColor( aImplSalSysPalEntryAry[i].mnRed,
aImplSalSysPalEntryAry[i].mnGreen,
aImplSalSysPalEntryAry[i].mnBlue );
}
aDefPalette2[0] = BitmapColor( 0, 0, 0 );
aDefPalette2[1] = BitmapColor( 0xff, 0xff, 0xff );
// own palette (6/6/6)
const int DITHER_PAL_STEPS = 6;
const sal_uInt8 DITHER_PAL_DELTA = 51;
int nB, nG, nR;
sal_uInt8 nRed, nGreen, nBlue;
for( nB=0, nBlue=0; nB < DITHER_PAL_STEPS; nB++, nBlue += DITHER_PAL_DELTA )
{
for( nG=0, nGreen=0; nG < DITHER_PAL_STEPS; nG++, nGreen += DITHER_PAL_DELTA )
{
for( nR=0, nRed=0; nR < DITHER_PAL_STEPS; nR++, nRed += DITHER_PAL_DELTA )
{
aDefPalette256[ i ] = BitmapColor( nRed, nGreen, nBlue );
i++;
}
}
}
}
// now fill in appropriate palette
switch( mnBits )
{
case 1: return aDefPalette2;
case 4: return aDefPalette16;
case 8: return aDefPalette256;
default: break;
}
const static BitmapPalette aEmptyPalette;
return aEmptyPalette;
}
BitmapBuffer* QuartzSalBitmap::AcquireBuffer( bool /*bReadOnly*/ )
{
if( !maUserBuffer.get() )
// || maContextBuffer.get() && (maUserBuffer.get() != maContextBuffer.get()) )
{
fprintf(stderr,"ASB::Acq(%dx%d,d=%d)\n",mnWidth,mnHeight,mnBits);
// TODO: AllocateUserData();
return NULL;
}
BitmapBuffer* pBuffer = new BitmapBuffer;
pBuffer->mnWidth = mnWidth;
pBuffer->mnHeight = mnHeight;
pBuffer->maPalette = maPalette;
pBuffer->mnScanlineSize = mnBytesPerRow;
pBuffer->mpBits = maUserBuffer.get();
pBuffer->mnBitCount = mnBits;
switch( mnBits )
{
case 1: pBuffer->mnFormat = BMP_FORMAT_1BIT_MSB_PAL; break;
case 4: pBuffer->mnFormat = BMP_FORMAT_4BIT_MSN_PAL; break;
case 8: pBuffer->mnFormat = BMP_FORMAT_8BIT_PAL; break;
case 16: pBuffer->mnFormat = BMP_FORMAT_16BIT_TC_MSB_MASK;
pBuffer->maColorMask = ColorMask( k16BitRedColorMask, k16BitGreenColorMask, k16BitBlueColorMask );
break;
case 24: pBuffer->mnFormat = BMP_FORMAT_24BIT_TC_BGR; break;
case 32: pBuffer->mnFormat = BMP_FORMAT_32BIT_TC_ARGB;
pBuffer->maColorMask = ColorMask( k32BitRedColorMask, k32BitGreenColorMask, k32BitBlueColorMask );
break;
}
pBuffer->mnFormat |= BMP_FORMAT_BOTTOM_UP;
// some BitmapBuffer users depend on a complete palette
if( (mnBits <= 8) && !maPalette )
pBuffer->maPalette = GetDefaultPalette( mnBits, true );
return pBuffer;
}
// ------------------------------------------------------------------
void QuartzSalBitmap::ReleaseBuffer( BitmapBuffer* pBuffer, bool bReadOnly )
{
// invalidate graphic context if we have different data
if( !bReadOnly )
{
maPalette = pBuffer->maPalette;
if( mxGraphicContext )
DestroyContext();
}
delete pBuffer;
}
// ------------------------------------------------------------------
CGImageRef QuartzSalBitmap::CreateCroppedImage( int nX, int nY, int nNewWidth, int nNewHeight ) const
{
if( !mxCachedImage )
{
if( !mxGraphicContext )
if( !const_cast<QuartzSalBitmap*>(this)->CreateContext() )
return NULL;
mxCachedImage = CGBitmapContextCreateImage( mxGraphicContext );
}
CGImageRef xCroppedImage = NULL;
// short circuit if there is nothing to crop
if( !nX && !nY && (mnWidth == nNewWidth) && (mnHeight == nNewHeight) )
{
xCroppedImage = mxCachedImage;
CFRetain( xCroppedImage );
}
else
{
nY = mnHeight - (nY + nNewHeight); // adjust for y-mirrored context
const CGRect aCropRect = { { static_cast<CGFloat>(nX), static_cast<CGFloat>(nY) }, { static_cast<CGFloat>(nNewWidth), static_cast<CGFloat>(nNewHeight) } };
xCroppedImage = CGImageCreateWithImageInRect( mxCachedImage, aCropRect );
}
return xCroppedImage;
}
// ------------------------------------------------------------------
static void CFRTLFree(void* /*info*/, const void* data, size_t /*size*/)
{
rtl_freeMemory( const_cast<void*>(data) );
}
CGImageRef QuartzSalBitmap::CreateWithMask( const QuartzSalBitmap& rMask,
int nX, int nY, int nWidth, int nHeight ) const
{
CGImageRef xImage( CreateCroppedImage( nX, nY, nWidth, nHeight ) );
if( !xImage )
return NULL;
CGImageRef xMask = rMask.CreateCroppedImage( nX, nY, nWidth, nHeight );
if( !xMask )
return xImage;
// CGImageCreateWithMask() only likes masks or greyscale images => convert if needed
// TODO: isolate in an extra method?
if( !CGImageIsMask(xMask) || (CGImageGetColorSpace(xMask) != GetSalData()->mxGraySpace) )
{
const CGRect xImageRect=CGRectMake( 0, 0, nWidth, nHeight );//the rect has no offset
// create the alpha mask image fitting our image
// TODO: is caching the full mask or the subimage mask worth it?
int nMaskBytesPerRow = ((nWidth + 3) & ~3);
void* pMaskMem = rtl_allocateMemory( nMaskBytesPerRow * nHeight );
CGContextRef xMaskContext = CGBitmapContextCreate( pMaskMem,
nWidth, nHeight, 8, nMaskBytesPerRow, GetSalData()->mxGraySpace, kCGImageAlphaNone );
CGContextDrawImage( xMaskContext, xImageRect, xMask );
CFRelease( xMask );
CGDataProviderRef xDataProvider( CGDataProviderCreateWithData( NULL,
pMaskMem, nHeight * nMaskBytesPerRow, &CFRTLFree ) );
static const CGFloat* pDecode = NULL;
xMask = CGImageMaskCreate( nWidth, nHeight, 8, 8, nMaskBytesPerRow, xDataProvider, pDecode, false );
CFRelease( xDataProvider );
CFRelease( xMaskContext );
}
if( !xMask )
return xImage;
// combine image and alpha mask
CGImageRef xMaskedImage = CGImageCreateWithMask( xImage, xMask );
CFRelease( xMask );
CFRelease( xImage );
return xMaskedImage;
}
// ------------------------------------------------------------------
/** creates an image from the given rectangle, replacing all black pixels with nMaskColor and make all other full transparent */
CGImageRef QuartzSalBitmap::CreateColorMask( int nX, int nY, int nWidth, int nHeight, SalColor nMaskColor ) const
{
CGImageRef xMask = 0;
if( maUserBuffer.get() && (nX + nWidth <= mnWidth) && (nY + nHeight <= mnHeight) )
{
const sal_uInt32 nDestBytesPerRow = nWidth << 2;
sal_uInt32* pMaskBuffer = static_cast<sal_uInt32*>( rtl_allocateMemory( nHeight * nDestBytesPerRow ) );
sal_uInt32* pDest = pMaskBuffer;
ImplPixelFormat* pSourcePixels = ImplPixelFormat::GetFormat( mnBits, maPalette );
if( pMaskBuffer && pSourcePixels )
{
sal_uInt32 nColor;
reinterpret_cast<sal_uInt8*>(&nColor)[0] = 0xff;
reinterpret_cast<sal_uInt8*>(&nColor)[1] = SALCOLOR_RED( nMaskColor );
reinterpret_cast<sal_uInt8*>(&nColor)[2] = SALCOLOR_GREEN( nMaskColor );
reinterpret_cast<sal_uInt8*>(&nColor)[3] = SALCOLOR_BLUE( nMaskColor );
sal_uInt8* pSource = maUserBuffer.get();
if( nY )
pSource += nY * mnBytesPerRow;
int y = nHeight;
while( y-- )
{
pSourcePixels->StartLine( pSource );
pSourcePixels->SkipPixel(nX);
sal_uInt32 x = nWidth;
while( x-- )
{
*pDest++ = ( pSourcePixels->ReadPixel() == 0 ) ? nColor : 0;
}
pSource += mnBytesPerRow;
}
CGDataProviderRef xDataProvider( CGDataProviderCreateWithData(NULL, pMaskBuffer, nHeight * nDestBytesPerRow, &CFRTLFree) );
xMask = CGImageCreate(nWidth, nHeight, 8, 32, nDestBytesPerRow, GetSalData()->mxRGBSpace, kCGImageAlphaPremultipliedFirst, xDataProvider, NULL, true, kCGRenderingIntentDefault);
CFRelease(xDataProvider);
}
else
{
free(pMaskBuffer);
}
delete pSourcePixels;
}
return xMask;
}
// =======================================================================
/** QuartzSalBitmap::GetSystemData Get platform native image data from existing image
*
* @param rData struct BitmapSystemData, defined in vcl/inc/bitmap.hxx
* @return true if successful
**/
bool QuartzSalBitmap::GetSystemData( BitmapSystemData& rData )
{
bool bRet = false;
if( !mxGraphicContext )
CreateContext();
if ( mxGraphicContext )
{
bRet = true;
if ((CGBitmapContextGetBitsPerPixel(mxGraphicContext) == 32) &&
(CGBitmapContextGetBitmapInfo(mxGraphicContext) & kCGBitmapByteOrderMask) != kCGBitmapByteOrder32Host) {
/**
* We need to hack things because VCL does not use kCGBitmapByteOrder32Host, while Cairo requires it.
*/
OSL_TRACE("QuartzSalBitmap::%s(): kCGBitmapByteOrder32Host not found => inserting it.",__func__);
CGImageRef xImage = CGBitmapContextCreateImage (mxGraphicContext);
// re-create the context with single change: include kCGBitmapByteOrder32Host flag.
CGContextRef mxGraphicContextNew = CGBitmapContextCreate( CGBitmapContextGetData(mxGraphicContext),
CGBitmapContextGetWidth(mxGraphicContext),
CGBitmapContextGetHeight(mxGraphicContext),
CGBitmapContextGetBitsPerComponent(mxGraphicContext),
CGBitmapContextGetBytesPerRow(mxGraphicContext),
CGBitmapContextGetColorSpace(mxGraphicContext),
CGBitmapContextGetBitmapInfo(mxGraphicContext) | kCGBitmapByteOrder32Host);
CFRelease(mxGraphicContext);
// Needs to be flipped
CGContextSaveGState( mxGraphicContextNew );
CGContextTranslateCTM (mxGraphicContextNew, 0, CGBitmapContextGetHeight(mxGraphicContextNew));
CGContextScaleCTM (mxGraphicContextNew, 1.0, -1.0);
CGContextDrawImage(mxGraphicContextNew, CGRectMake( 0, 0, CGImageGetWidth(xImage), CGImageGetHeight(xImage)), xImage);
// Flip back
CGContextRestoreGState( mxGraphicContextNew );
CGImageRelease( xImage );
mxGraphicContext = mxGraphicContextNew;
}
rData.rImageContext = (void *) mxGraphicContext;
rData.mnWidth = mnWidth;
rData.mnHeight = mnHeight;
}
return bRet;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */