office-gobmx/include/o3tl/sorted_vector.hxx
Noel Grandin 1a12861e01 std::unordered_set<T*> -> o3tl::sorted_vector
which is much better for CPU cache, since the representation is more
compact, and since we almost always do insert() in pointer order,
there is surprisingly little sorting

Also add a count() method for compatibility with std::set and the
proposed std::flat_set

Change-Id: I2a3211dc59919cfec5cac1497530a4c3600d50ca
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/87793
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2020-02-01 08:19:54 +01:00

376 lines
11 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#ifndef INCLUDED_O3TL_SORTED_VECTOR_HXX
#define INCLUDED_O3TL_SORTED_VECTOR_HXX
#include <vector>
#include <algorithm>
#include <functional>
#include <memory>
#include <type_traits>
namespace o3tl
{
// forward declared because it's default template arg for sorted_vector
template<class Value, class Compare>
struct find_unique;
/** Represents a sorted vector of values.
@tpl Value class of item to be stored in container
@tpl Compare comparison method
@tpl Find look up index of a Value in the array
*/
template<
typename Value,
typename Compare = std::less<Value>,
template<typename, typename> class Find = find_unique,
bool = std::is_copy_constructible<Value>::value >
class sorted_vector
{
private:
typedef Find<Value, Compare> Find_t;
typedef typename std::vector<Value> vector_t;
typedef typename std::vector<Value>::iterator iterator;
public:
typedef typename std::vector<Value>::const_iterator const_iterator;
typedef typename std::vector<Value>::difference_type difference_type;
typedef typename std::vector<Value>::size_type size_type;
constexpr sorted_vector( std::initializer_list<Value> init )
: m_vector(init)
{
std::sort(m_vector.begin(), m_vector.end(), Compare());
}
sorted_vector() = default;
sorted_vector(sorted_vector const&) = default;
sorted_vector(sorted_vector&&) = default;
sorted_vector& operator=(sorted_vector const&) = default;
sorted_vector& operator=(sorted_vector&&) = default;
// MODIFIERS
std::pair<const_iterator,bool> insert( Value&& x )
{
std::pair<const_iterator, bool> const ret(Find_t()(m_vector.begin(), m_vector.end(), x));
if (!ret.second)
{
const_iterator const it = m_vector.insert(m_vector.begin() + (ret.first - m_vector.begin()), std::move(x));
return std::make_pair(it, true);
}
return std::make_pair(ret.first, false);
}
std::pair<const_iterator,bool> insert( const Value& x )
{
std::pair<const_iterator, bool> const ret(Find_t()(m_vector.begin(), m_vector.end(), x));
if (!ret.second)
{
const_iterator const it = m_vector.insert(m_vector.begin() + (ret.first - m_vector.begin()), x);
return std::make_pair(it, true);
}
return std::make_pair(ret.first, false);
}
size_type erase( const Value& x )
{
std::pair<const_iterator, bool> const ret(Find_t()(m_vector.begin(), m_vector.end(), x));
if (ret.second)
{
m_vector.erase(m_vector.begin() + (ret.first - m_vector.begin()));
return 1;
}
return 0;
}
void erase( size_t index )
{
m_vector.erase(m_vector.begin() + index);
}
// like C++ 2011: erase with const_iterator (doesn't change sort order)
void erase(const_iterator const& position)
{ // C++98 has vector::erase(iterator), so call that
m_vector.erase(m_vector.begin() + (position - m_vector.begin()));
}
void erase(const_iterator const& first, const_iterator const& last)
{
m_vector.erase(m_vector.begin() + (first - m_vector.begin()),
m_vector.begin() + (last - m_vector.begin()));
}
/**
* make erase return the removed element, otherwise there is no useful way of extracting a std::unique_ptr
* from this.
*/
Value erase_extract( size_t index )
{
Value val = std::move(m_vector[index]);
m_vector.erase(m_vector.begin() + index);
return val;
}
void clear()
{
m_vector.clear();
}
void swap(sorted_vector & other)
{
m_vector.swap(other.m_vector);
}
void reserve(size_type amount)
{
m_vector.reserve(amount);
}
// ACCESSORS
size_type size() const
{
return m_vector.size();
}
bool empty() const
{
return m_vector.empty();
}
// Only return a const iterator, so that the vector cannot be directly updated.
const_iterator begin() const
{
return m_vector.begin();
}
// Only return a const iterator, so that the vector cannot be directly updated.
const_iterator end() const
{
return m_vector.end();
}
const Value& front() const
{
return m_vector.front();
}
const Value& back() const
{
return m_vector.back();
}
const Value& operator[]( size_t index ) const
{
return m_vector.operator[]( index );
}
// OPERATIONS
const_iterator lower_bound( const Value& x ) const
{
return std::lower_bound( m_vector.begin(), m_vector.end(), x, Compare() );
}
const_iterator upper_bound( const Value& x ) const
{
return std::upper_bound( m_vector.begin(), m_vector.end(), x, Compare() );
}
/* Searches the container for an element with a value of x
* and returns an iterator to it if found, otherwise it returns an
* iterator to sorted_vector::end (the element past the end of the container).
*
* Only return a const iterator, so that the vector cannot be directly updated.
*/
const_iterator find( const Value& x ) const
{
std::pair<const_iterator, bool> const ret(Find_t()(m_vector.begin(), m_vector.end(), x));
return (ret.second) ? ret.first : m_vector.end();
}
size_type count(const Value& v) const
{
return find(v) != end() ? 1 : 0;
}
bool operator==(const sorted_vector & other) const
{
return m_vector == other.m_vector;
}
bool operator!=(const sorted_vector & other) const
{
return m_vector != other.m_vector;
}
void insert(sorted_vector<Value,Compare,Find> const& rOther)
{
// optimization for the rather common case that we are overwriting this with the contents
// of another sorted vector
if ( empty() )
{
m_vector.insert(m_vector.begin(), rOther.m_vector.begin(), rOther.m_vector.end());
}
else
{
for (const_iterator it = rOther.m_vector.begin(); it != rOther.m_vector.end(); ++it)
{
insert(*it);
}
}
}
/* Clear() elements in the vector, and free them one by one. */
void DeleteAndDestroyAll()
{
for (const_iterator it = m_vector.begin(); it != m_vector.end(); ++it)
{
delete *it;
}
clear();
}
// fdo#58793: some existing code in Writer (SwpHintsArray)
// routinely modifies the members of the vector in a way that
// violates the sort order, and then re-sorts the array.
// This is a kludge to enable that code to work.
// If you are calling this function, you are Doing It Wrong!
void Resort()
{
std::stable_sort(m_vector.begin(), m_vector.end(), Compare());
}
private:
vector_t m_vector;
};
/* Specialise the template for cases like Value = std::unique_ptr<T>, where
MSVC2017 needs some help
*/
template<
typename Value,
typename Compare,
template<typename, typename> class Find >
class sorted_vector<Value,Compare,Find,false> : public sorted_vector<Value, Compare, Find, true>
{
public:
using sorted_vector<Value, Compare, Find, true>::sorted_vector;
typedef sorted_vector<Value, Compare, Find, true> super_sorted_vector;
sorted_vector(sorted_vector const&) = delete;
sorted_vector& operator=(sorted_vector const&) = delete;
sorted_vector() = default;
sorted_vector(sorted_vector&&) = default;
sorted_vector& operator=(sorted_vector&&) = default;
/**
* implement find for sorted_vectors containing std::unique_ptr
*/
typename super_sorted_vector::const_iterator find( typename Value::element_type const * x ) const
{
Value tmp(const_cast<typename Value::element_type*>(x));
auto ret = super_sorted_vector::find(tmp);
tmp.release();
return ret;
}
/**
* implement upper_bound for sorted_vectors containing std::unique_ptr
*/
typename super_sorted_vector::const_iterator upper_bound( typename Value::element_type const * x ) const
{
Value tmp(const_cast<typename Value::element_type*>(x));
auto ret = super_sorted_vector::upper_bound(tmp);
tmp.release();
return ret;
}
/**
* implement lower_bound for sorted_vectors containing std::unique_ptr
*/
typename super_sorted_vector::const_iterator lower_bound( typename Value::element_type const * x ) const
{
Value tmp(const_cast<typename Value::element_type*>(x));
auto ret = super_sorted_vector::lower_bound(tmp);
tmp.release();
return ret;
}
};
/** Implements an ordering function over a pointer, where the comparison uses the < operator on the pointed-to types.
Very useful for the cases where we put pointers to objects inside a sorted_vector.
*/
template <class T> struct less_ptr_to
{
bool operator() ( T* const& lhs, T* const& rhs ) const
{
return (*lhs) < (*rhs);
}
};
template <class T> struct less_uniqueptr_to
{
bool operator() ( std::unique_ptr<T> const& lhs, std::unique_ptr<T> const& rhs ) const
{
return (*lhs) < (*rhs);
}
};
/** the elements are totally ordered by Compare,
for no 2 elements !Compare(a,b) && !Compare(b,a) is true
*/
template<class Value, class Compare>
struct find_unique
{
typedef typename sorted_vector<Value, Compare,
o3tl::find_unique> ::const_iterator const_iterator;
std::pair<const_iterator, bool> operator()(
const_iterator first, const_iterator last,
Value const& v)
{
const_iterator const it = std::lower_bound(first, last, v, Compare());
return std::make_pair(it, (it != last && !Compare()(v, *it)));
}
};
/** the elements are partially ordered by Compare,
2 elements are allowed if they are not the same element (pointer equal)
*/
template<class Value, class Compare>
struct find_partialorder_ptrequals
{
typedef typename sorted_vector<Value, Compare,
o3tl::find_partialorder_ptrequals>::const_iterator const_iterator;
std::pair<const_iterator, bool> operator()(
const_iterator first, const_iterator last,
Value const& v)
{
std::pair<const_iterator, const_iterator> const its =
std::equal_range(first, last, v, Compare());
for (const_iterator it = its.first; it != its.second; ++it)
{
if (v == *it)
{
return std::make_pair(it, true);
}
}
return std::make_pair(its.first, false);
}
};
} // namespace o3tl
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */