office-gobmx/drawinglayer/source/primitive2d/svggradientprimitive2d.cxx
Armin Le Grand (Collabora) 13366d4951 CairoSDPR: Add support for SVG Gradient direct rendering
Change-Id: I7fb1c885e46a23e999ea4c98a73d3d526a2923e5
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/172245
Tested-by: Jenkins
Reviewed-by: Armin Le Grand <Armin.Le.Grand@me.com>
2024-08-22 21:11:00 +02:00

1112 lines
44 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <drawinglayer/primitive2d/svggradientprimitive2d.hxx>
#include <drawinglayer/primitive2d/drawinglayer_primitivetypes2d.hxx>
#include <drawinglayer/primitive2d/PolyPolygonColorPrimitive2D.hxx>
#include <drawinglayer/primitive2d/unifiedtransparenceprimitive2d.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <drawinglayer/primitive2d/transparenceprimitive2d.hxx>
#include <drawinglayer/primitive2d/transformprimitive2d.hxx>
#include <drawinglayer/primitive2d/maskprimitive2d.hxx>
#include <drawinglayer/primitive2d/PolyPolygonRGBAPrimitive2D.hxx>
#include <drawinglayer/geometry/viewinformation2d.hxx>
#include <osl/diagnose.h>
#include <sal/log.hxx>
#include <cmath>
#include <utility>
#include <vcl/skia/SkiaHelper.hxx>
using namespace com::sun::star;
namespace
{
sal_uInt32 calculateStepsForSvgGradient(const basegfx::BColor& rColorA, const basegfx::BColor& rColorB, double fDelta, double fDiscreteUnit)
{
// use color distance, assume to do every color step (full quality)
sal_uInt32 nSteps(basegfx::fround(rColorA.getDistance(rColorB) * 255.0));
if(nSteps)
{
// calc discrete length to change color all 1.5 discrete units (pixels)
const sal_uInt32 nDistSteps(basegfx::fround(fDelta / (fDiscreteUnit * 1.5)));
nSteps = std::min(nSteps, nDistSteps);
}
// roughly cut when too big or too small
nSteps = std::min(nSteps, sal_uInt32(255));
nSteps = std::max(nSteps, sal_uInt32(1));
return nSteps;
}
} // end of anonymous namespace
namespace drawinglayer::primitive2d
{
Primitive2DReference SvgGradientHelper::createSingleGradientEntryFill() const
{
const SvgGradientEntryVector& rEntries(getGradientEntries());
const sal_uInt32 nCount(rEntries.size());
if(0 == nCount)
{
// no entries, done
OSL_ENSURE(false, "Single gradient entry construction without entry (!)");
return nullptr;
}
const SvgGradientEntry& rSingleEntry(rEntries[nCount - 1]);
const double fOpacity(rSingleEntry.getOpacity());
if (fOpacity <= 0.0 || basegfx::fTools::equalZero(fOpacity))
{
// completely opaque, done
return nullptr;
}
if (basegfx::fTools::moreOrEqual(fOpacity, 1.0))
{
// no opacity
return Primitive2DReference {
new PolyPolygonColorPrimitive2D(
getPolyPolygon(),
rSingleEntry.getColor()) };
}
// if transparent, use PolyPolygonRGBAPrimitive2D
return Primitive2DReference {
new PolyPolygonRGBAPrimitive2D(
getPolyPolygon(),
rSingleEntry.getColor(),
1.0 - fOpacity) };
}
void SvgGradientHelper::checkPreconditions()
{
const SvgGradientEntryVector& rEntries = getGradientEntries();
if(rEntries.empty())
{
// no fill at all, done
return;
}
// sort maGradientEntries by offset, small to big
std::sort(maGradientEntries.begin(), maGradientEntries.end());
// gradient with at least two colors
bool bAllInvisible(true);
bool bInvalidEntries(false);
for(const SvgGradientEntry& rCandidate : rEntries)
{
if(basegfx::fTools::equalZero(rCandidate.getOpacity()))
{
// invisible
mbFullyOpaque = false;
}
else if(basegfx::fTools::equal(rCandidate.getOpacity(), 1.0))
{
// completely opaque
bAllInvisible = false;
}
else
{
// opacity
bAllInvisible = false;
mbFullyOpaque = false;
}
if(!basegfx::fTools::betweenOrEqualEither(rCandidate.getOffset(), 0.0, 1.0))
{
bInvalidEntries = true;
}
}
if(bAllInvisible)
{
// all invisible, nothing to do
return;
}
if(bInvalidEntries)
{
// invalid entries, do nothing
SAL_WARN("drawinglayer", "SvgGradientHelper got invalid SvgGradientEntries outside [0.0 .. 1.0]");
return;
}
const basegfx::B2DRange aPolyRange(getPolyPolygon().getB2DRange());
if(aPolyRange.isEmpty())
{
// no range to fill, nothing to do
return;
}
const double fPolyWidth(aPolyRange.getWidth());
const double fPolyHeight(aPolyRange.getHeight());
if(basegfx::fTools::equalZero(fPolyWidth) || basegfx::fTools::equalZero(fPolyHeight))
{
// no width/height to fill, nothing to do
return;
}
mbCreatesContent = true;
if(1 == rEntries.size())
{
// fill with single existing color
setSingleEntry();
}
}
const SvgGradientEntry& SvgGradientHelper::FindEntryLessOrEqual(
sal_Int32& rInt,
const double fFrac) const
{
const bool bMirror(SpreadMethod::Reflect == getSpreadMethod() && 0 != rInt % 2);
const SvgGradientEntryVector& rCurrent(bMirror ? getMirroredGradientEntries() : getGradientEntries());
for(SvgGradientEntryVector::const_reverse_iterator aIter(rCurrent.rbegin()); aIter != rCurrent.rend(); ++aIter)
{
if(basegfx::fTools::lessOrEqual(aIter->getOffset(), fFrac))
{
return *aIter;
}
}
// walk over gap to the left, be prepared for missing 0.0/1.0 entries
rInt--;
const bool bMirror2(SpreadMethod::Reflect == getSpreadMethod() && 0 != rInt % 2);
const SvgGradientEntryVector& rCurrent2(bMirror2 ? getMirroredGradientEntries() : getGradientEntries());
return rCurrent2.back();
}
const SvgGradientEntry& SvgGradientHelper::FindEntryMore(
sal_Int32& rInt,
const double fFrac) const
{
const bool bMirror(SpreadMethod::Reflect == getSpreadMethod() && 0 != rInt % 2);
const SvgGradientEntryVector& rCurrent(bMirror ? getMirroredGradientEntries() : getGradientEntries());
for(SvgGradientEntryVector::const_iterator aIter(rCurrent.begin()); aIter != rCurrent.end(); ++aIter)
{
if(basegfx::fTools::more(aIter->getOffset(), fFrac))
{
return *aIter;
}
}
// walk over gap to the right, be prepared for missing 0.0/1.0 entries
rInt++;
const bool bMirror2(SpreadMethod::Reflect == getSpreadMethod() && 0 != rInt % 2);
const SvgGradientEntryVector& rCurrent2(bMirror2 ? getMirroredGradientEntries() : getGradientEntries());
return rCurrent2.front();
}
// tdf#124424 Adapted creation of color runs to do in a single effort. Previous
// version tried to do this from [0.0 .. 1.0] and to re-use transformed versions
// in the caller if SpreadMethod was on some repeat mode, but had problems when
// e.g. like in the bugdoc from the task a negative-only fStart/fEnd run was
// requested in which case it did nothing. Even when reusing the spread might
// not have been a full one from [0.0 .. 1.0].
// This gets complicated due to mirrored runs, but also for gradient definitions
// with missing entries for 0.0 and 1.0 in which case these have to be guessed
// to be there with same parametrisation as their nearest existing entries. These
// *could* have been added at checkPreconditions() but would then create unnecessary
// spreads on zone overlaps.
void SvgGradientHelper::createRun(
Primitive2DContainer& rTargetColor,
Primitive2DContainer& rTargetOpacity,
double fStart,
double fEnd) const
{
double fInt(0.0);
double fFrac(0.0);
double fEnd2(0.0);
if(SpreadMethod::Pad == getSpreadMethod())
{
if(fStart < 0.0)
{
fFrac = std::modf(fStart, &fInt);
const SvgGradientEntry& rFront(getGradientEntries().front());
const SvgGradientEntry aTemp(1.0 + fFrac, rFront.getColor(), rFront.getOpacity());
createAtom(rTargetColor, rTargetOpacity, aTemp, rFront, static_cast<sal_Int32>(fInt - 1), 0);
fStart = rFront.getOffset();
}
if(fEnd > 1.0)
{
// change fEnd early, but create geometry later (after range below)
fEnd2 = fEnd;
fEnd = getGradientEntries().back().getOffset();
}
}
while(fStart < fEnd)
{
fFrac = std::modf(fStart, &fInt);
if(fFrac < 0.0)
{
fInt -= 1;
fFrac = 1.0 + fFrac;
}
sal_Int32 nIntLeft(static_cast<sal_Int32>(fInt));
sal_Int32 nIntRight(nIntLeft);
const SvgGradientEntry& rLeft(FindEntryLessOrEqual(nIntLeft, fFrac));
const SvgGradientEntry& rRight(FindEntryMore(nIntRight, fFrac));
createAtom(rTargetColor, rTargetOpacity, rLeft, rRight, nIntLeft, nIntRight);
const double fNextfStart(static_cast<double>(nIntRight) + rRight.getOffset());
if(basegfx::fTools::more(fNextfStart, fStart))
{
fStart = fNextfStart;
}
else
{
SAL_WARN("drawinglayer", "SvgGradientHelper spread error");
fStart += 1.0;
}
}
if(fEnd2 > 1.0)
{
// create end run for SpreadMethod::Pad late to keep correct creation order
fFrac = std::modf(fEnd2, &fInt);
const SvgGradientEntry& rBack(getGradientEntries().back());
const SvgGradientEntry aTemp(fFrac, rBack.getColor(), rBack.getOpacity());
createAtom(rTargetColor, rTargetOpacity, rBack, aTemp, 0, static_cast<sal_Int32>(fInt));
}
}
Primitive2DReference SvgGradientHelper::createResult(
Primitive2DContainer aTargetColor,
Primitive2DContainer aTargetOpacity,
const basegfx::B2DHomMatrix& rUnitGradientToObject,
bool bInvert) const
{
Primitive2DContainer aTargetColorEntries(aTargetColor.maybeInvert(bInvert));
Primitive2DContainer aTargetOpacityEntries(aTargetOpacity.maybeInvert(bInvert));
if(aTargetColorEntries.empty())
return nullptr;
Primitive2DReference xRefContent;
if(!aTargetOpacityEntries.empty())
{
const Primitive2DReference xRefOpacity = new TransparencePrimitive2D(
std::move(aTargetColorEntries),
std::move(aTargetOpacityEntries));
xRefContent = new TransformPrimitive2D(
rUnitGradientToObject,
Primitive2DContainer { xRefOpacity });
}
else
{
xRefContent = new TransformPrimitive2D(
rUnitGradientToObject,
std::move(aTargetColorEntries));
}
return new MaskPrimitive2D(
getPolyPolygon(),
Primitive2DContainer { xRefContent });
}
SvgGradientHelper::SvgGradientHelper(
basegfx::B2DHomMatrix aGradientTransform,
basegfx::B2DPolyPolygon aPolyPolygon,
SvgGradientEntryVector&& rGradientEntries,
const basegfx::B2DPoint& rStart,
bool bUseUnitCoordinates,
SpreadMethod aSpreadMethod)
: maGradientTransform(std::move(aGradientTransform)),
maPolyPolygon(std::move(aPolyPolygon)),
maGradientEntries(std::move(rGradientEntries)),
maStart(rStart),
maSpreadMethod(aSpreadMethod),
mbCreatesContent(false),
mbSingleEntry(false),
mbFullyOpaque(true),
mbUseUnitCoordinates(bUseUnitCoordinates)
{
}
SvgGradientHelper::~SvgGradientHelper()
{
}
const SvgGradientEntryVector& SvgGradientHelper::getMirroredGradientEntries() const
{
if(maMirroredGradientEntries.empty() && !getGradientEntries().empty())
{
const_cast< SvgGradientHelper* >(this)->createMirroredGradientEntries();
}
return maMirroredGradientEntries;
}
void SvgGradientHelper::createMirroredGradientEntries()
{
if(!maMirroredGradientEntries.empty() || getGradientEntries().empty())
return;
const sal_uInt32 nCount(getGradientEntries().size());
maMirroredGradientEntries.clear();
maMirroredGradientEntries.reserve(nCount);
for(sal_uInt32 a(0); a < nCount; a++)
{
const SvgGradientEntry& rCandidate = getGradientEntries()[nCount - 1 - a];
maMirroredGradientEntries.emplace_back(
1.0 - rCandidate.getOffset(),
rCandidate.getColor(),
rCandidate.getOpacity());
}
}
bool SvgGradientHelper::operator==(const SvgGradientHelper& rSvgGradientHelper) const
{
const SvgGradientHelper& rCompare = rSvgGradientHelper;
return (getGradientTransform() == rCompare.getGradientTransform()
&& getPolyPolygon() == rCompare.getPolyPolygon()
&& getGradientEntries() == rCompare.getGradientEntries()
&& getStart() == rCompare.getStart()
&& getUseUnitCoordinates() == rCompare.getUseUnitCoordinates()
&& getSpreadMethod() == rCompare.getSpreadMethod());
}
} // end of namespace drawinglayer::primitive2d
namespace drawinglayer::primitive2d
{
void SvgLinearGradientPrimitive2D::checkPreconditions()
{
// call parent
SvgGradientHelper::checkPreconditions();
if(getCreatesContent())
{
// Check Vector
const basegfx::B2DVector aVector(getEnd() - getStart());
if(basegfx::fTools::equalZero(aVector.getX()) && basegfx::fTools::equalZero(aVector.getY()))
{
// fill with single color using last stop color
setSingleEntry();
}
}
}
void SvgLinearGradientPrimitive2D::createAtom(
Primitive2DContainer& rTargetColor,
Primitive2DContainer& rTargetOpacity,
const SvgGradientEntry& rFrom,
const SvgGradientEntry& rTo,
sal_Int32 nOffsetFrom,
sal_Int32 nOffsetTo) const
{
// create gradient atom [rFrom.getOffset() .. rTo.getOffset()] with (rFrom.getOffset() > rTo.getOffset())
if(rFrom.getOffset() == rTo.getOffset())
{
OSL_ENSURE(false, "SvgGradient Atom creation with no step width (!)");
}
else
{
rTargetColor.push_back(
new SvgLinearAtomPrimitive2D(
rFrom.getColor(), rFrom.getOffset() + nOffsetFrom,
rTo.getColor(), rTo.getOffset() + nOffsetTo));
if(!getFullyOpaque())
{
const double fTransFrom(1.0 - rFrom.getOpacity());
const double fTransTo(1.0 - rTo.getOpacity());
const basegfx::BColor aColorFrom(fTransFrom, fTransFrom, fTransFrom);
const basegfx::BColor aColorTo(fTransTo, fTransTo, fTransTo);
rTargetOpacity.push_back(
new SvgLinearAtomPrimitive2D(
aColorFrom, rFrom.getOffset() + nOffsetFrom,
aColorTo, rTo.getOffset() + nOffsetTo));
}
}
}
basegfx::B2DHomMatrix SvgLinearGradientPrimitive2D::createUnitGradientToObjectTransformation() const
{
const basegfx::B2DRange aPolyRange(getPolyPolygon().getB2DRange());
const double fPolyWidth(aPolyRange.getWidth());
const double fPolyHeight(aPolyRange.getHeight());
// create ObjectTransform based on polygon range
const basegfx::B2DHomMatrix aObjectTransform(
basegfx::utils::createScaleTranslateB2DHomMatrix(
fPolyWidth, fPolyHeight,
aPolyRange.getMinX(), aPolyRange.getMinY()));
basegfx::B2DHomMatrix aUnitGradientToObject;
if(getUseUnitCoordinates())
{
// interpret in unit coordinate system -> object aspect ratio will scale result
// create unit transform from unit vector [0.0 .. 1.0] along the X-Axis to given
// gradient vector defined by Start,End
const basegfx::B2DVector aVector(getEnd() - getStart());
const double fVectorLength(aVector.getLength());
aUnitGradientToObject.scale(fVectorLength, 1.0);
aUnitGradientToObject.rotate(atan2(aVector.getY(), aVector.getX()));
aUnitGradientToObject.translate(getStart().getX(), getStart().getY());
aUnitGradientToObject *= getGradientTransform();
// create full transform from unit gradient coordinates to object coordinates
// including the SvgGradient transformation
aUnitGradientToObject *= aObjectTransform;
}
else
{
// interpret in object coordinate system -> object aspect ratio will not scale result
const basegfx::B2DPoint aStart(aObjectTransform * getStart());
const basegfx::B2DPoint aEnd(aObjectTransform * getEnd());
const basegfx::B2DVector aVector(aEnd - aStart);
aUnitGradientToObject.scale(aVector.getLength(), 1.0);
aUnitGradientToObject.rotate(atan2(aVector.getY(), aVector.getX()));
aUnitGradientToObject.translate(aStart.getX(), aStart.getY());
aUnitGradientToObject *= getGradientTransform();
}
return aUnitGradientToObject;
}
Primitive2DReference SvgLinearGradientPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
if(getSingleEntry())
{
// fill with last existing color
return createSingleGradientEntryFill();
}
else if(getCreatesContent())
{
// at least two color stops in range [0.0 .. 1.0], sorted, non-null vector, not completely
// invisible, width and height to fill are not empty
basegfx::B2DHomMatrix aUnitGradientToObject(createUnitGradientToObjectTransformation());
// create inverse from it
basegfx::B2DHomMatrix aObjectToUnitGradient(aUnitGradientToObject);
aObjectToUnitGradient.invert();
// back-transform polygon to unit gradient coordinates and get
// UnitRage. This is the range the gradient has to cover
basegfx::B2DPolyPolygon aUnitPoly(getPolyPolygon());
aUnitPoly.transform(aObjectToUnitGradient);
const basegfx::B2DRange aUnitRange(aUnitPoly.getB2DRange());
// prepare result vectors
Primitive2DContainer aTargetColor;
Primitive2DContainer aTargetOpacity;
if(aUnitRange.getWidth() > 0.0)
{
// add a pre-multiply to aUnitGradientToObject to allow
// multiplication of the polygon(xl, 0.0, xr, 1.0)
const basegfx::B2DHomMatrix aPreMultiply(
basegfx::utils::createScaleTranslateB2DHomMatrix(
1.0, aUnitRange.getHeight(), 0.0, aUnitRange.getMinY()));
aUnitGradientToObject = aUnitGradientToObject * aPreMultiply;
// create full color run, including all SpreadMethod variants
createRun(
aTargetColor,
aTargetOpacity,
aUnitRange.getMinX(),
aUnitRange.getMaxX());
}
return createResult(std::move(aTargetColor), std::move(aTargetOpacity), aUnitGradientToObject);
}
return nullptr;
}
SvgLinearGradientPrimitive2D::SvgLinearGradientPrimitive2D(
const basegfx::B2DHomMatrix& rGradientTransform,
const basegfx::B2DPolyPolygon& rPolyPolygon,
SvgGradientEntryVector&& rGradientEntries,
const basegfx::B2DPoint& rStart,
const basegfx::B2DPoint& rEnd,
bool bUseUnitCoordinates,
SpreadMethod aSpreadMethod)
: SvgGradientHelper(rGradientTransform, rPolyPolygon, std::move(rGradientEntries), rStart, bUseUnitCoordinates, aSpreadMethod),
maEnd(rEnd)
{
// ensure Preconditions are checked
checkPreconditions();
}
SvgLinearGradientPrimitive2D::~SvgLinearGradientPrimitive2D()
{
}
bool SvgLinearGradientPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
const SvgGradientHelper* pSvgGradientHelper = dynamic_cast< const SvgGradientHelper* >(&rPrimitive);
if(pSvgGradientHelper && SvgGradientHelper::operator==(*pSvgGradientHelper))
{
const SvgLinearGradientPrimitive2D& rCompare = static_cast< const SvgLinearGradientPrimitive2D& >(rPrimitive);
return (getEnd() == rCompare.getEnd());
}
return false;
}
basegfx::B2DRange SvgLinearGradientPrimitive2D::getB2DRange(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
// return ObjectRange
return getPolyPolygon().getB2DRange();
}
// provide unique ID
sal_uInt32 SvgLinearGradientPrimitive2D::getPrimitive2DID() const
{
return PRIMITIVE2D_ID_SVGLINEARGRADIENTPRIMITIVE2D;
}
} // end of namespace drawinglayer::primitive2d
namespace drawinglayer::primitive2d
{
void SvgRadialGradientPrimitive2D::checkPreconditions()
{
// call parent
SvgGradientHelper::checkPreconditions();
if(getCreatesContent())
{
// Check Radius
if(basegfx::fTools::equalZero(getRadius()))
{
// fill with single color using last stop color
setSingleEntry();
}
}
}
void SvgRadialGradientPrimitive2D::createAtom(
Primitive2DContainer& rTargetColor,
Primitive2DContainer& rTargetOpacity,
const SvgGradientEntry& rFrom,
const SvgGradientEntry& rTo,
sal_Int32 nOffsetFrom,
sal_Int32 nOffsetTo) const
{
// create gradient atom [rFrom.getOffset() .. rTo.getOffset()] with (rFrom.getOffset() > rTo.getOffset())
if(rFrom.getOffset() == rTo.getOffset())
{
OSL_ENSURE(false, "SvgGradient Atom creation with no step width (!)");
}
else
{
const double fScaleFrom(rFrom.getOffset() + nOffsetFrom);
const double fScaleTo(rTo.getOffset() + nOffsetTo);
if(isFocalSet())
{
const basegfx::B2DVector aFocalVector(getFocal() - getStart());
const basegfx::B2DVector aTranslateFrom(aFocalVector * (maFocalLength - fScaleFrom));
const basegfx::B2DVector aTranslateTo(aFocalVector * (maFocalLength - fScaleTo));
rTargetColor.push_back(
new SvgRadialAtomPrimitive2D(
rFrom.getColor(), fScaleFrom, aTranslateFrom,
rTo.getColor(), fScaleTo, aTranslateTo));
}
else
{
rTargetColor.push_back(
new SvgRadialAtomPrimitive2D(
rFrom.getColor(), fScaleFrom,
rTo.getColor(), fScaleTo));
}
if(!getFullyOpaque())
{
const double fTransFrom(1.0 - rFrom.getOpacity());
const double fTransTo(1.0 - rTo.getOpacity());
const basegfx::BColor aColorFrom(fTransFrom, fTransFrom, fTransFrom);
const basegfx::BColor aColorTo(fTransTo, fTransTo, fTransTo);
if(isFocalSet())
{
const basegfx::B2DVector aFocalVector(getFocal() - getStart());
const basegfx::B2DVector aTranslateFrom(aFocalVector * (maFocalLength - fScaleFrom));
const basegfx::B2DVector aTranslateTo(aFocalVector * (maFocalLength - fScaleTo));
rTargetOpacity.push_back(
new SvgRadialAtomPrimitive2D(
aColorFrom, fScaleFrom, aTranslateFrom,
aColorTo, fScaleTo, aTranslateTo));
}
else
{
rTargetOpacity.push_back(
new SvgRadialAtomPrimitive2D(
aColorFrom, fScaleFrom,
aColorTo, fScaleTo));
}
}
}
}
basegfx::B2DHomMatrix SvgRadialGradientPrimitive2D::createUnitGradientToObjectTransformation() const
{
const basegfx::B2DRange aPolyRange(getPolyPolygon().getB2DRange());
const double fPolyWidth(aPolyRange.getWidth());
const double fPolyHeight(aPolyRange.getHeight());
// create ObjectTransform based on polygon range
const basegfx::B2DHomMatrix aObjectTransform(
basegfx::utils::createScaleTranslateB2DHomMatrix(
fPolyWidth, fPolyHeight,
aPolyRange.getMinX(), aPolyRange.getMinY()));
basegfx::B2DHomMatrix aUnitGradientToObject;
if(getUseUnitCoordinates())
{
// interpret in unit coordinate system -> object aspect ratio will scale result
// create unit transform from unit vector to given linear gradient vector
aUnitGradientToObject.scale(getRadius(), getRadius());
aUnitGradientToObject.translate(getStart().getX(), getStart().getY());
if(!getGradientTransform().isIdentity())
{
aUnitGradientToObject = getGradientTransform() * aUnitGradientToObject;
}
// create full transform from unit gradient coordinates to object coordinates
// including the SvgGradient transformation
aUnitGradientToObject = aObjectTransform * aUnitGradientToObject;
}
else
{
// interpret in object coordinate system -> object aspect ratio will not scale result
// use X-Axis with radius, it was already made relative to object width when coming from
// SVG import
const double fRadius((aObjectTransform * basegfx::B2DVector(getRadius(), 0.0)).getLength());
const basegfx::B2DPoint aStart(aObjectTransform * getStart());
aUnitGradientToObject.scale(fRadius, fRadius);
aUnitGradientToObject.translate(aStart.getX(), aStart.getY());
aUnitGradientToObject *= getGradientTransform();
}
return aUnitGradientToObject;
}
Primitive2DReference SvgRadialGradientPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
if(getSingleEntry())
{
// fill with last existing color
return createSingleGradientEntryFill();
}
else if(getCreatesContent())
{
// at least two color stops in range [0.0 .. 1.0], sorted, non-null vector, not completely
// invisible, width and height to fill are not empty
basegfx::B2DHomMatrix aUnitGradientToObject(createUnitGradientToObjectTransformation());
// create inverse from it
basegfx::B2DHomMatrix aObjectToUnitGradient(aUnitGradientToObject);
aObjectToUnitGradient.invert();
// back-transform polygon to unit gradient coordinates and get
// UnitRage. This is the range the gradient has to cover
basegfx::B2DPolyPolygon aUnitPoly(getPolyPolygon());
aUnitPoly.transform(aObjectToUnitGradient);
const basegfx::B2DRange aUnitRange(aUnitPoly.getB2DRange());
// create range which the gradient has to cover to cover the whole given geometry.
// For circle, go from 0.0 to max radius in all directions (the corners)
double fMax(basegfx::B2DVector(aUnitRange.getMinimum()).getLength());
fMax = std::max(fMax, basegfx::B2DVector(aUnitRange.getMaximum()).getLength());
fMax = std::max(fMax, basegfx::B2DVector(aUnitRange.getMinX(), aUnitRange.getMaxY()).getLength());
fMax = std::max(fMax, basegfx::B2DVector(aUnitRange.getMaxX(), aUnitRange.getMinY()).getLength());
// prepare result vectors
Primitive2DContainer aTargetColor;
Primitive2DContainer aTargetOpacity;
if(0.0 < fMax)
{
// prepare maFocalVector
if(isFocalSet())
{
const_cast< SvgRadialGradientPrimitive2D* >(this)->maFocalLength = fMax;
}
// create full color run, including all SpreadMethod variants
createRun(
aTargetColor,
aTargetOpacity,
0.0,
fMax);
}
return createResult(std::move(aTargetColor), std::move(aTargetOpacity), aUnitGradientToObject, true);
}
return nullptr;
}
SvgRadialGradientPrimitive2D::SvgRadialGradientPrimitive2D(
const basegfx::B2DHomMatrix& rGradientTransform,
const basegfx::B2DPolyPolygon& rPolyPolygon,
SvgGradientEntryVector&& rGradientEntries,
const basegfx::B2DPoint& rStart,
double fRadius,
bool bUseUnitCoordinates,
SpreadMethod aSpreadMethod,
const basegfx::B2DPoint* pFocal)
: SvgGradientHelper(rGradientTransform, rPolyPolygon, std::move(rGradientEntries), rStart, bUseUnitCoordinates, aSpreadMethod),
mfRadius(fRadius),
maFocal(rStart),
maFocalLength(0.0)
{
if(pFocal && !pFocal->equal(getStart()))
{
maFocal = *pFocal;
}
// ensure Preconditions are checked
checkPreconditions();
}
SvgRadialGradientPrimitive2D::~SvgRadialGradientPrimitive2D()
{
}
bool SvgRadialGradientPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
const SvgGradientHelper* pSvgGradientHelper = dynamic_cast< const SvgGradientHelper* >(&rPrimitive);
if(!pSvgGradientHelper || !SvgGradientHelper::operator==(*pSvgGradientHelper))
return false;
const SvgRadialGradientPrimitive2D& rCompare = static_cast< const SvgRadialGradientPrimitive2D& >(rPrimitive);
if(getRadius() == rCompare.getRadius())
{
if(isFocalSet() == rCompare.isFocalSet())
{
if(isFocalSet())
{
return getFocal() == rCompare.getFocal();
}
else
{
return true;
}
}
}
return false;
}
basegfx::B2DRange SvgRadialGradientPrimitive2D::getB2DRange(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
// return ObjectRange
return getPolyPolygon().getB2DRange();
}
// provide unique ID
sal_uInt32 SvgRadialGradientPrimitive2D::getPrimitive2DID() const
{
return PRIMITIVE2D_ID_SVGRADIALGRADIENTPRIMITIVE2D;
}
} // end of namespace drawinglayer::primitive2d
// SvgLinearAtomPrimitive2D class
namespace drawinglayer::primitive2d
{
Primitive2DReference SvgLinearAtomPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
const double fDelta(getOffsetB() - getOffsetA());
if(basegfx::fTools::equalZero(fDelta))
return nullptr;
// use one discrete unit for overlap (one pixel)
const double fDiscreteUnit(getDiscreteUnit());
// use color distance and discrete lengths to calculate step count
const sal_uInt32 nSteps(calculateStepsForSvgGradient(getColorA(), getColorB(), fDelta, fDiscreteUnit));
// HACK: Splitting a gradient into adjacent polygons with gradually changing color is silly.
// If antialiasing is used to draw them, the AA-ed adjacent edges won't line up perfectly
// because of the AA (see SkiaSalGraphicsImpl::mergePolyPolygonToPrevious()).
// Make the polygons a bit wider, so they the partial overlap "fixes" this.
const double fixup = SkiaHelper::isVCLSkiaEnabled() ? fDiscreteUnit / 2 : 0;
// tdf#117949 Use a small amount of discrete overlap at the edges. Usually this
// should be exactly 0.0 and 1.0, but there were cases when this gets clipped
// against the mask polygon which got numerically problematic.
// This change is unnecessary in that respect, but avoids that numerical havoc
// by at the same time doing no real harm AFAIK
// TTTT: Remove again when clipping is fixed (!)
// prepare polygon in needed width at start position (with discrete overlap)
const basegfx::B2DPolygon aPolygon(
basegfx::utils::createPolygonFromRect(
basegfx::B2DRange(
getOffsetA() - fDiscreteUnit,
-0.0001, // TTTT -> should be 0.0, see comment above
getOffsetA() + (fDelta / nSteps) + fDiscreteUnit + fixup,
1.0001))); // TTTT -> should be 1.0, see comment above
// prepare loop (inside to outside, [0.0 .. 1.0[)
double fUnitScale(0.0);
const double fUnitStep(1.0 / nSteps);
Primitive2DContainer aContainer;
aContainer.resize(nSteps);
for(sal_uInt32 a(0); a < nSteps; a++, fUnitScale += fUnitStep)
{
basegfx::B2DPolygon aNew(aPolygon);
aNew.transform(basegfx::utils::createTranslateB2DHomMatrix(fDelta * fUnitScale, 0.0));
aContainer[a] = new PolyPolygonColorPrimitive2D(
basegfx::B2DPolyPolygon(aNew),
basegfx::interpolate(getColorA(), getColorB(), fUnitScale));
}
return new GroupPrimitive2D(std::move(aContainer));
}
SvgLinearAtomPrimitive2D::SvgLinearAtomPrimitive2D(
const basegfx::BColor& aColorA, double fOffsetA,
const basegfx::BColor& aColorB, double fOffsetB)
: maColorA(aColorA),
maColorB(aColorB),
mfOffsetA(fOffsetA),
mfOffsetB(fOffsetB)
{
if(mfOffsetA > mfOffsetB)
{
OSL_ENSURE(false, "Wrong offset order (!)");
std::swap(mfOffsetA, mfOffsetB);
}
}
bool SvgLinearAtomPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
if(DiscreteMetricDependentPrimitive2D::operator==(rPrimitive))
{
const SvgLinearAtomPrimitive2D& rCompare = static_cast< const SvgLinearAtomPrimitive2D& >(rPrimitive);
return (getColorA() == rCompare.getColorA()
&& getColorB() == rCompare.getColorB()
&& getOffsetA() == rCompare.getOffsetA()
&& getOffsetB() == rCompare.getOffsetB());
}
return false;
}
// provide unique ID
sal_uInt32 SvgLinearAtomPrimitive2D::getPrimitive2DID() const
{
return PRIMITIVE2D_ID_SVGLINEARATOMPRIMITIVE2D;
}
} // end of namespace drawinglayer::primitive2d
// SvgRadialAtomPrimitive2D class
namespace drawinglayer::primitive2d
{
Primitive2DReference SvgRadialAtomPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
const double fDeltaScale(getScaleB() - getScaleA());
if(basegfx::fTools::equalZero(fDeltaScale))
return nullptr;
// use one discrete unit for overlap (one pixel)
const double fDiscreteUnit(getDiscreteUnit());
// use color distance and discrete lengths to calculate step count
const sal_uInt32 nSteps(calculateStepsForSvgGradient(getColorA(), getColorB(), fDeltaScale, fDiscreteUnit));
// prepare loop ([0.0 .. 1.0[, full polygons, no polypolygons with holes)
double fUnitScale(0.0);
const double fUnitStep(1.0 / nSteps);
Primitive2DContainer aContainer;
aContainer.resize(nSteps);
for(sal_uInt32 a(0); a < nSteps; a++, fUnitScale += fUnitStep)
{
basegfx::B2DHomMatrix aTransform;
const double fEndScale(getScaleB() - (fDeltaScale * fUnitScale));
if(isTranslateSet())
{
const basegfx::B2DVector aTranslate(
basegfx::interpolate(
getTranslateB(),
getTranslateA(),
fUnitScale));
aTransform = basegfx::utils::createScaleTranslateB2DHomMatrix(
fEndScale,
fEndScale,
aTranslate.getX(),
aTranslate.getY());
}
else
{
aTransform = basegfx::utils::createScaleB2DHomMatrix(
fEndScale,
fEndScale);
}
basegfx::B2DPolygon aNew(basegfx::utils::createPolygonFromUnitCircle());
aNew.transform(aTransform);
aContainer[a] = new PolyPolygonColorPrimitive2D(
basegfx::B2DPolyPolygon(aNew),
basegfx::interpolate(getColorB(), getColorA(), fUnitScale));
}
return new GroupPrimitive2D(std::move(aContainer));
}
SvgRadialAtomPrimitive2D::SvgRadialAtomPrimitive2D(
const basegfx::BColor& aColorA, double fScaleA, const basegfx::B2DVector& rTranslateA,
const basegfx::BColor& aColorB, double fScaleB, const basegfx::B2DVector& rTranslateB)
: maColorA(aColorA),
maColorB(aColorB),
mfScaleA(fScaleA),
mfScaleB(fScaleB)
{
// check and evtl. set translations
if(!rTranslateA.equal(rTranslateB))
{
mpTranslate.reset( new VectorPair(rTranslateA, rTranslateB) );
}
// scale A and B have to be positive
mfScaleA = std::max(mfScaleA, 0.0);
mfScaleB = std::max(mfScaleB, 0.0);
// scale B has to be bigger than scale A; swap if different
if(mfScaleA > mfScaleB)
{
OSL_ENSURE(false, "Wrong offset order (!)");
std::swap(mfScaleA, mfScaleB);
if(mpTranslate)
{
std::swap(mpTranslate->maTranslateA, mpTranslate->maTranslateB);
}
}
}
SvgRadialAtomPrimitive2D::SvgRadialAtomPrimitive2D(
const basegfx::BColor& aColorA, double fScaleA,
const basegfx::BColor& aColorB, double fScaleB)
: maColorA(aColorA),
maColorB(aColorB),
mfScaleA(fScaleA),
mfScaleB(fScaleB)
{
// scale A and B have to be positive
mfScaleA = std::max(mfScaleA, 0.0);
mfScaleB = std::max(mfScaleB, 0.0);
// scale B has to be bigger than scale A; swap if different
if(mfScaleA > mfScaleB)
{
OSL_ENSURE(false, "Wrong offset order (!)");
std::swap(mfScaleA, mfScaleB);
}
}
SvgRadialAtomPrimitive2D::~SvgRadialAtomPrimitive2D()
{
}
bool SvgRadialAtomPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
if(!DiscreteMetricDependentPrimitive2D::operator==(rPrimitive))
return false;
const SvgRadialAtomPrimitive2D& rCompare = static_cast< const SvgRadialAtomPrimitive2D& >(rPrimitive);
if(getColorA() == rCompare.getColorA()
&& getColorB() == rCompare.getColorB()
&& getScaleA() == rCompare.getScaleA()
&& getScaleB() == rCompare.getScaleB())
{
if(isTranslateSet() && rCompare.isTranslateSet())
{
return (getTranslateA() == rCompare.getTranslateA()
&& getTranslateB() == rCompare.getTranslateB());
}
else if(!isTranslateSet() && !rCompare.isTranslateSet())
{
return true;
}
}
return false;
}
// provide unique ID
sal_uInt32 SvgRadialAtomPrimitive2D::getPrimitive2DID() const
{
return PRIMITIVE2D_ID_SVGRADIALATOMPRIMITIVE2D;
}
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */