office-gobmx/basegfx/source/matrix/b3dhommatrix.cxx
Vladimir Glazounov 484c3ddfd5 INTEGRATION: CWS aw033 (1.8.2); FILE MERGED
2008/06/10 09:26:43 aw 1.8.2.8: #i39532# adapted missing tooling conversion
2008/05/14 14:42:03 aw 1.8.2.7: RESYNC: (1.13-1.14); FILE MERGED
2007/05/23 23:35:55 aw 1.8.2.6: RESYNC: (1.12-1.13); FILE MERGED
2006/11/28 16:12:59 aw 1.8.2.5: RESYNC: (1.11-1.12); FILE MERGED
2006/09/27 16:29:22 aw 1.8.2.4: #i39532# changes after resync to m185
2006/09/26 14:48:15 aw 1.8.2.3: RESYNC: (1.9-1.11); FILE MERGED
2006/05/12 11:36:05 aw 1.8.2.2: code changes for primitive support
2005/10/28 11:22:54 aw 1.8.2.1: #i39532#
2008-08-19 23:00:34 +00:00

599 lines
16 KiB
C++

/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2008 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: b3dhommatrix.cxx,v $
* $Revision: 1.15 $
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"
#include <rtl/instance.hxx>
#include <basegfx/matrix/b3dhommatrix.hxx>
#include <hommatrixtemplate.hxx>
#include <basegfx/vector/b3dvector.hxx>
namespace basegfx
{
class Impl3DHomMatrix : public ::basegfx::internal::ImplHomMatrixTemplate< 4 >
{
};
namespace { struct IdentityMatrix : public rtl::Static< B3DHomMatrix::ImplType,
IdentityMatrix > {}; }
B3DHomMatrix::B3DHomMatrix() :
mpImpl( IdentityMatrix::get() ) // use common identity matrix
{
}
B3DHomMatrix::B3DHomMatrix(const B3DHomMatrix& rMat) :
mpImpl(rMat.mpImpl)
{
}
B3DHomMatrix::~B3DHomMatrix()
{
}
B3DHomMatrix& B3DHomMatrix::operator=(const B3DHomMatrix& rMat)
{
mpImpl = rMat.mpImpl;
return *this;
}
void B3DHomMatrix::makeUnique()
{
mpImpl.make_unique();
}
double B3DHomMatrix::get(sal_uInt16 nRow, sal_uInt16 nColumn) const
{
return mpImpl->get(nRow, nColumn);
}
void B3DHomMatrix::set(sal_uInt16 nRow, sal_uInt16 nColumn, double fValue)
{
mpImpl->set(nRow, nColumn, fValue);
}
bool B3DHomMatrix::isLastLineDefault() const
{
return mpImpl->isLastLineDefault();
}
bool B3DHomMatrix::isIdentity() const
{
if(mpImpl.same_object(IdentityMatrix::get()))
return true;
return mpImpl->isIdentity();
}
void B3DHomMatrix::identity()
{
mpImpl = IdentityMatrix::get();
}
bool B3DHomMatrix::isInvertible() const
{
return mpImpl->isInvertible();
}
bool B3DHomMatrix::invert()
{
Impl3DHomMatrix aWork(*mpImpl);
sal_uInt16* pIndex = new sal_uInt16[mpImpl->getEdgeLength()];
sal_Int16 nParity;
if(aWork.ludcmp(pIndex, nParity))
{
mpImpl->doInvert(aWork, pIndex);
delete[] pIndex;
return true;
}
delete[] pIndex;
return false;
}
bool B3DHomMatrix::isNormalized() const
{
return mpImpl->isNormalized();
}
void B3DHomMatrix::normalize()
{
if(!const_cast<const B3DHomMatrix*>(this)->mpImpl->isNormalized())
mpImpl->doNormalize();
}
double B3DHomMatrix::determinant() const
{
return mpImpl->doDeterminant();
}
double B3DHomMatrix::trace() const
{
return mpImpl->doTrace();
}
void B3DHomMatrix::transpose()
{
mpImpl->doTranspose();
}
B3DHomMatrix& B3DHomMatrix::operator+=(const B3DHomMatrix& rMat)
{
mpImpl->doAddMatrix(*rMat.mpImpl);
return *this;
}
B3DHomMatrix& B3DHomMatrix::operator-=(const B3DHomMatrix& rMat)
{
mpImpl->doSubMatrix(*rMat.mpImpl);
return *this;
}
B3DHomMatrix& B3DHomMatrix::operator*=(double fValue)
{
const double fOne(1.0);
if(!fTools::equal(fOne, fValue))
mpImpl->doMulMatrix(fValue);
return *this;
}
B3DHomMatrix& B3DHomMatrix::operator/=(double fValue)
{
const double fOne(1.0);
if(!fTools::equal(fOne, fValue))
mpImpl->doMulMatrix(1.0 / fValue);
return *this;
}
B3DHomMatrix& B3DHomMatrix::operator*=(const B3DHomMatrix& rMat)
{
if(!rMat.isIdentity())
mpImpl->doMulMatrix(*rMat.mpImpl);
return *this;
}
bool B3DHomMatrix::operator==(const B3DHomMatrix& rMat) const
{
if(mpImpl.same_object(rMat.mpImpl))
return true;
return mpImpl->isEqual(*rMat.mpImpl);
}
bool B3DHomMatrix::operator!=(const B3DHomMatrix& rMat) const
{
return !(*this == rMat);
}
void B3DHomMatrix::rotate(double fAngleX,double fAngleY,double fAngleZ)
{
if(!fTools::equalZero(fAngleX) || !fTools::equalZero(fAngleY) || !fTools::equalZero(fAngleZ))
{
if(!fTools::equalZero(fAngleX))
{
Impl3DHomMatrix aRotMatX;
double fSin(sin(fAngleX));
double fCos(cos(fAngleX));
aRotMatX.set(1, 1, fCos);
aRotMatX.set(2, 2, fCos);
aRotMatX.set(2, 1, fSin);
aRotMatX.set(1, 2, -fSin);
mpImpl->doMulMatrix(aRotMatX);
}
if(!fTools::equalZero(fAngleY))
{
Impl3DHomMatrix aRotMatY;
double fSin(sin(fAngleY));
double fCos(cos(fAngleY));
aRotMatY.set(0, 0, fCos);
aRotMatY.set(2, 2, fCos);
aRotMatY.set(0, 2, fSin);
aRotMatY.set(2, 0, -fSin);
mpImpl->doMulMatrix(aRotMatY);
}
if(!fTools::equalZero(fAngleZ))
{
Impl3DHomMatrix aRotMatZ;
double fSin(sin(fAngleZ));
double fCos(cos(fAngleZ));
aRotMatZ.set(0, 0, fCos);
aRotMatZ.set(1, 1, fCos);
aRotMatZ.set(1, 0, fSin);
aRotMatZ.set(0, 1, -fSin);
mpImpl->doMulMatrix(aRotMatZ);
}
}
}
void B3DHomMatrix::translate(double fX, double fY, double fZ)
{
if(!fTools::equalZero(fX) || !fTools::equalZero(fY) || !fTools::equalZero(fZ))
{
Impl3DHomMatrix aTransMat;
aTransMat.set(0, 3, fX);
aTransMat.set(1, 3, fY);
aTransMat.set(2, 3, fZ);
mpImpl->doMulMatrix(aTransMat);
}
}
void B3DHomMatrix::scale(double fX, double fY, double fZ)
{
const double fOne(1.0);
if(!fTools::equal(fOne, fX) || !fTools::equal(fOne, fY) ||!fTools::equal(fOne, fZ))
{
Impl3DHomMatrix aScaleMat;
aScaleMat.set(0, 0, fX);
aScaleMat.set(1, 1, fY);
aScaleMat.set(2, 2, fZ);
mpImpl->doMulMatrix(aScaleMat);
}
}
void B3DHomMatrix::shearXY(double fSx, double fSy)
{
// #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
if(!fTools::equalZero(fSx) || !fTools::equalZero(fSy))
{
Impl3DHomMatrix aShearXYMat;
aShearXYMat.set(0, 2, fSx);
aShearXYMat.set(1, 2, fSy);
mpImpl->doMulMatrix(aShearXYMat);
}
}
void B3DHomMatrix::shearYZ(double fSy, double fSz)
{
// #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
if(!fTools::equalZero(fSy) || !fTools::equalZero(fSz))
{
Impl3DHomMatrix aShearYZMat;
aShearYZMat.set(1, 0, fSy);
aShearYZMat.set(2, 0, fSz);
mpImpl->doMulMatrix(aShearYZMat);
}
}
void B3DHomMatrix::shearXZ(double fSx, double fSz)
{
// #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
if(!fTools::equalZero(fSx) || !fTools::equalZero(fSz))
{
Impl3DHomMatrix aShearXZMat;
aShearXZMat.set(0, 1, fSx);
aShearXZMat.set(2, 1, fSz);
mpImpl->doMulMatrix(aShearXZMat);
}
}
void B3DHomMatrix::frustum(double fLeft, double fRight, double fBottom, double fTop, double fNear, double fFar)
{
const double fZero(0.0);
const double fOne(1.0);
if(!fTools::more(fNear, fZero))
{
fNear = 0.001;
}
if(!fTools::more(fFar, fZero))
{
fFar = fOne;
}
if(fTools::equal(fNear, fFar))
{
fFar = fNear + fOne;
}
if(fTools::equal(fLeft, fRight))
{
fLeft -= fOne;
fRight += fOne;
}
if(fTools::equal(fTop, fBottom))
{
fBottom -= fOne;
fTop += fOne;
}
Impl3DHomMatrix aFrustumMat;
aFrustumMat.set(0, 0, 2.0 * fNear / (fRight - fLeft));
aFrustumMat.set(1, 1, 2.0 * fNear / (fTop - fBottom));
aFrustumMat.set(0, 2, (fRight + fLeft) / (fRight - fLeft));
aFrustumMat.set(1, 2, (fTop + fBottom) / (fTop - fBottom));
aFrustumMat.set(2, 2, -fOne * ((fFar + fNear) / (fFar - fNear)));
aFrustumMat.set(3, 2, -fOne);
aFrustumMat.set(2, 3, -fOne * ((2.0 * fFar * fNear) / (fFar - fNear)));
aFrustumMat.set(3, 3, fZero);
mpImpl->doMulMatrix(aFrustumMat);
}
void B3DHomMatrix::ortho(double fLeft, double fRight, double fBottom, double fTop, double fNear, double fFar)
{
if(fTools::equal(fNear, fFar))
{
fFar = fNear + 1.0;
}
if(fTools::equal(fLeft, fRight))
{
fLeft -= 1.0;
fRight += 1.0;
}
if(fTools::equal(fTop, fBottom))
{
fBottom -= 1.0;
fTop += 1.0;
}
Impl3DHomMatrix aOrthoMat;
aOrthoMat.set(0, 0, 2.0 / (fRight - fLeft));
aOrthoMat.set(1, 1, 2.0 / (fTop - fBottom));
aOrthoMat.set(2, 2, -1.0 * (2.0 / (fFar - fNear)));
aOrthoMat.set(0, 3, -1.0 * ((fRight + fLeft) / (fRight - fLeft)));
aOrthoMat.set(1, 3, -1.0 * ((fTop + fBottom) / (fTop - fBottom)));
aOrthoMat.set(2, 3, -1.0 * ((fFar + fNear) / (fFar - fNear)));
mpImpl->doMulMatrix(aOrthoMat);
}
void B3DHomMatrix::orientation(B3DPoint aVRP, B3DVector aVPN, B3DVector aVUV)
{
Impl3DHomMatrix aOrientationMat;
// translate -VRP
aOrientationMat.set(0, 3, -aVRP.getX());
aOrientationMat.set(1, 3, -aVRP.getY());
aOrientationMat.set(2, 3, -aVRP.getZ());
// build rotation
aVUV.normalize();
aVPN.normalize();
// build x-axis as peroendicular fron aVUV and aVPN
B3DVector aRx(aVUV.getPerpendicular(aVPN));
aRx.normalize();
// y-axis perpendicular to that
B3DVector aRy(aVPN.getPerpendicular(aRx));
aRy.normalize();
// the calculated normals are the line vectors of the rotation matrix,
// set them to create rotation
aOrientationMat.set(0, 0, aRx.getX());
aOrientationMat.set(0, 1, aRx.getY());
aOrientationMat.set(0, 2, aRx.getZ());
aOrientationMat.set(1, 0, aRy.getX());
aOrientationMat.set(1, 1, aRy.getY());
aOrientationMat.set(1, 2, aRy.getZ());
aOrientationMat.set(2, 0, aVPN.getX());
aOrientationMat.set(2, 1, aVPN.getY());
aOrientationMat.set(2, 2, aVPN.getZ());
mpImpl->doMulMatrix(aOrientationMat);
}
bool B3DHomMatrix::decompose(B3DTuple& rScale, B3DTuple& rTranslate, B3DTuple& rRotate, B3DTuple& rShear) const
{
// when perspective is used, decompose is not made here
if(!mpImpl->isLastLineDefault())
return false;
// If determinant is zero, decomposition is not possible
if(0.0 == determinant())
return false;
// isolate translation
rTranslate.setX(mpImpl->get(0, 3));
rTranslate.setY(mpImpl->get(1, 3));
rTranslate.setZ(mpImpl->get(2, 3));
// correct translate values
rTranslate.correctValues();
// get scale and shear
B3DVector aCol0(mpImpl->get(0, 0), mpImpl->get(1, 0), mpImpl->get(2, 0));
B3DVector aCol1(mpImpl->get(0, 1), mpImpl->get(1, 1), mpImpl->get(2, 1));
B3DVector aCol2(mpImpl->get(0, 2), mpImpl->get(1, 2), mpImpl->get(2, 2));
B3DVector aTemp;
// get ScaleX
rScale.setX(aCol0.getLength());
aCol0.normalize();
// get ShearXY
rShear.setX(aCol0.scalar(aCol1));
if(fTools::equalZero(rShear.getX()))
{
rShear.setX(0.0);
}
else
{
aTemp.setX(aCol1.getX() - rShear.getX() * aCol0.getX());
aTemp.setY(aCol1.getY() - rShear.getX() * aCol0.getY());
aTemp.setZ(aCol1.getZ() - rShear.getX() * aCol0.getZ());
aCol1 = aTemp;
}
// get ScaleY
rScale.setY(aCol1.getLength());
aCol1.normalize();
const double fShearX(rShear.getX());
if(!fTools::equalZero(fShearX))
{
rShear.setX(rShear.getX() / rScale.getY());
}
// get ShearXZ
rShear.setY(aCol0.scalar(aCol2));
if(fTools::equalZero(rShear.getY()))
{
rShear.setY(0.0);
}
else
{
aTemp.setX(aCol2.getX() - rShear.getY() * aCol0.getX());
aTemp.setY(aCol2.getY() - rShear.getY() * aCol0.getY());
aTemp.setZ(aCol2.getZ() - rShear.getY() * aCol0.getZ());
aCol2 = aTemp;
}
// get ShearYZ
rShear.setZ(aCol1.scalar(aCol2));
if(fTools::equalZero(rShear.getZ()))
{
rShear.setZ(0.0);
}
else
{
aTemp.setX(aCol2.getX() - rShear.getZ() * aCol1.getX());
aTemp.setY(aCol2.getY() - rShear.getZ() * aCol1.getY());
aTemp.setZ(aCol2.getZ() - rShear.getZ() * aCol1.getZ());
aCol2 = aTemp;
}
// get ScaleZ
rScale.setZ(aCol2.getLength());
aCol2.normalize();
const double fShearY(rShear.getY());
if(!fTools::equalZero(fShearY))
{
rShear.setY(rShear.getY() / rScale.getZ());
}
const double fShearZ(rShear.getZ());
if(!fTools::equalZero(fShearZ))
{
rShear.setZ(rShear.getZ() / rScale.getZ());
}
// correct shear values
rShear.correctValues();
// Coordinate system flip?
if(0.0 > aCol0.scalar(aCol1.getPerpendicular(aCol2)))
{
rScale = -rScale;
aCol0 = -aCol0;
aCol1 = -aCol1;
aCol2 = -aCol2;
}
// correct scale values
rScale.correctValues(1.0);
// Get rotations
{
double fy=0;
double cy=0;
if( ::basegfx::fTools::equal( aCol0.getZ(), 1.0 )
|| aCol0.getZ() > 1.0 )
{
fy = -F_PI/2.0;
cy = 0.0;
}
else if( ::basegfx::fTools::equal( aCol0.getZ(), -1.0 )
|| aCol0.getZ() < -1.0 )
{
fy = F_PI/2.0;
cy = 0.0;
}
else
{
fy = asin( -aCol0.getZ() );
cy = cos(fy);
}
rRotate.setY(fy);
if( ::basegfx::fTools::equalZero( cy ) )
{
if( aCol0.getZ() > 0.0 )
rRotate.setX(atan2(-1.0*aCol1.getX(), aCol1.getY()));
else
rRotate.setX(atan2(aCol1.getX(), aCol1.getY()));
rRotate.setZ(0.0);
}
else
{
rRotate.setX(atan2(aCol1.getZ(), aCol2.getZ()));
rRotate.setZ(atan2(aCol0.getY(), aCol0.getX()));
}
// corrcet rotate values
rRotate.correctValues();
}
return true;
}
} // end of namespace basegfx
// eof