office-gobmx/vcl/skia/salbmp.cxx
Mike Kaganski ea9904c896 Drop FRound, and use generalized basegfx::fround
Change-Id: I7447e649dc3ef4e51242f69c7486a3e84e103d2e
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/166159
Tested-by: Jenkins
Reviewed-by: Mike Kaganski <mike.kaganski@collabora.com>
2024-04-17 03:56:59 +02:00

1501 lines
60 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <skia/salbmp.hxx>
#include <o3tl/safeint.hxx>
#include <tools/helpers.hxx>
#include <boost/smart_ptr/make_shared.hpp>
#include <salgdi.hxx>
#include <salinst.hxx>
#include <scanlinewriter.hxx>
#include <svdata.hxx>
#include <bitmap/bmpfast.hxx>
#include <vcl/BitmapReadAccess.hxx>
#include <skia/utils.hxx>
#include <skia/zone.hxx>
#include <SkBitmap.h>
#include <SkCanvas.h>
#include <SkImage.h>
#include <SkPixelRef.h>
#include <SkShader.h>
#include <SkSurface.h>
#include <SkSwizzle.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <skia_opts.hxx>
#ifdef DBG_UTIL
#include <fstream>
#define CANARY "skia-canary"
#endif
using namespace SkiaHelper;
// As constexpr here, evaluating it directly in code makes Clang warn about unreachable code.
constexpr bool kN32_SkColorTypeIsBGRA = (kN32_SkColorType == kBGRA_8888_SkColorType);
SkiaSalBitmap::SkiaSalBitmap() {}
SkiaSalBitmap::~SkiaSalBitmap() {}
SkiaSalBitmap::SkiaSalBitmap(const sk_sp<SkImage>& image)
{
ResetAllData();
mImage = image;
mPalette = BitmapPalette();
#if SKIA_USE_BITMAP32
mBitCount = 32;
#else
mBitCount = 24;
#endif
mSize = mPixelsSize = Size(image->width(), image->height());
ComputeScanlineSize();
mReadAccessCount = 0;
#ifdef DBG_UTIL
mWriteAccessCount = 0;
#endif
SAL_INFO("vcl.skia.trace", "bitmapfromimage(" << this << ")");
}
bool SkiaSalBitmap::Create(const Size& rSize, vcl::PixelFormat ePixelFormat,
const BitmapPalette& rPal)
{
assert(mReadAccessCount == 0);
ResetAllData();
if (ePixelFormat == vcl::PixelFormat::INVALID)
return false;
mPalette = rPal;
mBitCount = vcl::pixelFormatBitCount(ePixelFormat);
mSize = rSize;
ResetPendingScaling();
if (!ComputeScanlineSize())
{
mBitCount = 0;
mSize = mPixelsSize = Size();
mScanlineSize = 0;
mPalette = BitmapPalette();
return false;
}
SAL_INFO("vcl.skia.trace", "create(" << this << ")");
return true;
}
bool SkiaSalBitmap::ComputeScanlineSize()
{
int bitScanlineWidth;
if (o3tl::checked_multiply<int>(mPixelsSize.Width(), mBitCount, bitScanlineWidth))
{
SAL_WARN("vcl.skia", "checked multiply failed");
return false;
}
mScanlineSize = AlignedWidth4Bytes(bitScanlineWidth);
return true;
}
void SkiaSalBitmap::CreateBitmapData()
{
assert(!mBuffer);
// Make sure code has not missed calling ComputeScanlineSize().
assert(mScanlineSize == int(AlignedWidth4Bytes(mPixelsSize.Width() * mBitCount)));
// The pixels could be stored in SkBitmap, but Skia only supports 8bit gray, 16bit and 32bit formats
// (e.g. 24bpp is actually stored as 32bpp). But some of our code accessing the bitmap assumes that
// when it asked for 24bpp, the format really will be 24bpp (e.g. the png loader), so we cannot use
// SkBitmap to store the data. And even 8bpp is problematic, since Skia does not support palettes
// and a VCL bitmap can change its grayscale status simply by changing the palette.
// Moreover creating SkImage from SkBitmap does a data copy unless the bitmap is immutable.
// So just always store pixels in our buffer and convert as necessary.
if (mScanlineSize == 0 || mPixelsSize.Height() == 0)
return;
size_t allocate = mScanlineSize * mPixelsSize.Height();
#ifdef DBG_UTIL
allocate += sizeof(CANARY);
#endif
mBuffer = boost::make_shared_noinit<sal_uInt8[]>(allocate);
#ifdef DBG_UTIL
// fill with random garbage
sal_uInt8* buffer = mBuffer.get();
for (size_t i = 0; i < allocate; i++)
buffer[i] = (i & 0xFF);
memcpy(buffer + allocate - sizeof(CANARY), CANARY, sizeof(CANARY));
#endif
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp)
{
return Create(rSalBmp, vcl::bitDepthToPixelFormat(rSalBmp.GetBitCount()));
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp, SalGraphics* pGraphics)
{
auto ePixelFormat = vcl::PixelFormat::INVALID;
if (pGraphics)
ePixelFormat = vcl::bitDepthToPixelFormat(pGraphics->GetBitCount());
else
ePixelFormat = vcl::bitDepthToPixelFormat(rSalBmp.GetBitCount());
return Create(rSalBmp, ePixelFormat);
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp, vcl::PixelFormat eNewPixelFormat)
{
assert(mReadAccessCount == 0);
assert(&rSalBmp != this);
ResetAllData();
const SkiaSalBitmap& src = static_cast<const SkiaSalBitmap&>(rSalBmp);
mImage = src.mImage;
mImageImmutable = src.mImageImmutable;
mAlphaImage = src.mAlphaImage;
mBuffer = src.mBuffer;
mPalette = src.mPalette;
mBitCount = src.mBitCount;
mSize = src.mSize;
mPixelsSize = src.mPixelsSize;
mScanlineSize = src.mScanlineSize;
mScaleQuality = src.mScaleQuality;
mEraseColorSet = src.mEraseColorSet;
mEraseColor = src.mEraseColor;
if (vcl::pixelFormatBitCount(eNewPixelFormat) != src.GetBitCount())
{
// This appears to be unused(?). Implement this just in case, but be lazy
// about it and rely on EnsureBitmapData() doing the conversion from mImage
// if needed, even if that may need unnecessary to- and from- SkImage
// conversion.
ResetToSkImage(GetSkImage());
}
SAL_INFO("vcl.skia.trace", "create(" << this << "): (" << &src << ")");
return true;
}
bool SkiaSalBitmap::Create(const css::uno::Reference<css::rendering::XBitmapCanvas>&, Size&, bool)
{
return false;
}
void SkiaSalBitmap::Destroy()
{
SAL_INFO("vcl.skia.trace", "destroy(" << this << ")");
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
assert(mReadAccessCount == 0);
ResetAllData();
}
Size SkiaSalBitmap::GetSize() const { return mSize; }
sal_uInt16 SkiaSalBitmap::GetBitCount() const { return mBitCount; }
BitmapBuffer* SkiaSalBitmap::AcquireBuffer(BitmapAccessMode nMode)
{
switch (nMode)
{
case BitmapAccessMode::Write:
EnsureBitmapUniqueData();
if (!mBuffer)
return nullptr;
assert(mPixelsSize == mSize);
assert(!mEraseColorSet);
break;
case BitmapAccessMode::Read:
EnsureBitmapData();
if (!mBuffer)
return nullptr;
assert(mPixelsSize == mSize);
assert(!mEraseColorSet);
break;
case BitmapAccessMode::Info:
// Related tdf#156629 and tdf#156630 force snapshot of alpha mask
// On macOS, with Skia/Metal or Skia/Raster with a Retina display
// (i.e. 2.0 window scale), the alpha mask gets upscaled in certain
// cases.
// This bug appears to be caused by pending scaling of an existing
// SkImage in the bitmap parameter. So, force the SkiaSalBitmap to
// handle its pending scaling.
// Note: also handle pending scaling if SAL_FORCE_HIDPI_SCALING is
// set otherwise exporting the following animated .png image will
// fail:
// https://bugs.documentfoundation.org/attachment.cgi?id=188792
static const bool bForceHiDPIScaling = getenv("SAL_FORCE_HIDPI_SCALING") != nullptr;
if (mImage && !mImageImmutable && mBitCount == 8 && mPalette.IsGreyPalette8Bit()
&& (mPixelsSize != mSize || bForceHiDPIScaling))
{
ResetToSkImage(GetSkImage());
ResetPendingScaling();
assert(mPixelsSize == mSize);
// When many of the images affected by tdf#156629 and
// tdf#156630 are exported to PDF the first time after the
// image has been opened and before it has been printed or run
// in a slideshow, the alpha mask will unexpectedly be
// inverted. Fix that by marking this alpha mask as immutable
// so that when Invert() is called on this alpha mask, it will
// be a noop. Invert() is a noop after EnsureBitmapData() is
// called but we don't want to call that due to performance
// so set a flag instead.
mImageImmutable = true;
}
break;
}
#ifdef DBG_UTIL
// BitmapWriteAccess stores also a copy of the palette and it can
// be modified, so concurrent reading of it might result in inconsistencies.
assert(mWriteAccessCount == 0 || nMode == BitmapAccessMode::Write);
#endif
BitmapBuffer* buffer = new BitmapBuffer;
buffer->mnWidth = mSize.Width();
buffer->mnHeight = mSize.Height();
buffer->mnBitCount = mBitCount;
buffer->maPalette = mPalette;
if (nMode != BitmapAccessMode::Info)
buffer->mpBits = mBuffer.get();
else
buffer->mpBits = nullptr;
if (mPixelsSize == mSize)
buffer->mnScanlineSize = mScanlineSize;
else
{
// The value of mScanlineSize is based on internal mPixelsSize, but the outside
// world cares about mSize, the size that the report as the size of the bitmap,
// regardless of any internal state. So report scanline size for that size.
Size savedPixelsSize = mPixelsSize;
mPixelsSize = mSize;
ComputeScanlineSize();
buffer->mnScanlineSize = mScanlineSize;
mPixelsSize = savedPixelsSize;
ComputeScanlineSize();
}
switch (mBitCount)
{
case 1:
buffer->meFormat = ScanlineFormat::N1BitMsbPal;
break;
case 8:
buffer->meFormat = ScanlineFormat::N8BitPal;
break;
case 24:
// Make the RGB/BGR format match the default Skia 32bpp format, to allow
// easy conversion later.
buffer->meFormat = kN32_SkColorTypeIsBGRA ? ScanlineFormat::N24BitTcBgr
: ScanlineFormat::N24BitTcRgb;
break;
case 32:
buffer->meFormat = kN32_SkColorTypeIsBGRA ? ScanlineFormat::N32BitTcBgra
: ScanlineFormat::N32BitTcRgba;
break;
default:
abort();
}
buffer->meDirection = ScanlineDirection::TopDown;
// Refcount all read/write accesses, to catch problems with existing accesses while
// a bitmap changes, and also to detect when we can free mBuffer if wanted.
// Write mode implies also reading. It would be probably a good idea to count even
// Info accesses, but VclCanvasBitmap keeps one around pointlessly, causing tdf#150817.
if (nMode == BitmapAccessMode::Read || nMode == BitmapAccessMode::Write)
++mReadAccessCount;
#ifdef DBG_UTIL
if (nMode == BitmapAccessMode::Write)
++mWriteAccessCount;
#endif
return buffer;
}
void SkiaSalBitmap::ReleaseBuffer(BitmapBuffer* pBuffer, BitmapAccessMode nMode)
{
ReleaseBuffer(pBuffer, nMode, false);
}
void SkiaSalBitmap::ReleaseBuffer(BitmapBuffer* pBuffer, BitmapAccessMode nMode,
bool dontChangeToErase)
{
if (nMode == BitmapAccessMode::Write)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount > 0);
--mWriteAccessCount;
#endif
mPalette = pBuffer->maPalette;
ResetToBuffer();
DataChanged();
}
if (nMode == BitmapAccessMode::Read || nMode == BitmapAccessMode::Write)
{
assert(mReadAccessCount > 0);
--mReadAccessCount;
}
// Are there any more ground movements underneath us ?
assert(pBuffer->mnWidth == mSize.Width());
assert(pBuffer->mnHeight == mSize.Height());
assert(pBuffer->mnBitCount == mBitCount);
assert(pBuffer->mpBits == mBuffer.get() || nMode == BitmapAccessMode::Info);
verify();
delete pBuffer;
if (nMode == BitmapAccessMode::Write && !dontChangeToErase)
{
// This saves memory and is also used by IsFullyOpaqueAsAlpha() to avoid unnecessary
// alpha blending.
if (IsAllBlack())
{
SAL_INFO("vcl.skia.trace", "releasebuffer(" << this << "): erasing to black");
EraseInternal(COL_BLACK);
}
}
}
static bool isAllZero(const sal_uInt8* data, size_t size)
{ // For performance, check in larger data chunks.
#ifdef UINT64_MAX
const int64_t* d = reinterpret_cast<const int64_t*>(data);
#else
const int32_t* d = reinterpret_cast<const int32_t*>(data);
#endif
constexpr size_t step = sizeof(*d) * 8;
for (size_t i = 0; i < size / step; ++i)
{ // Unrolled loop.
if (d[0] != 0)
return false;
if (d[1] != 0)
return false;
if (d[2] != 0)
return false;
if (d[3] != 0)
return false;
if (d[4] != 0)
return false;
if (d[5] != 0)
return false;
if (d[6] != 0)
return false;
if (d[7] != 0)
return false;
d += 8;
}
for (size_t i = size / step * step; i < size; ++i)
if (data[i] != 0)
return false;
return true;
}
bool SkiaSalBitmap::IsAllBlack() const
{
if (mBitCount % 8 != 0 || (!!mPalette && mPalette[0] != COL_BLACK))
return false; // Don't bother.
if (mSize.Width() * mBitCount / 8 == mScanlineSize)
return isAllZero(mBuffer.get(), mScanlineSize * mSize.Height());
for (tools::Long y = 0; y < mSize.Height(); ++y)
if (!isAllZero(mBuffer.get() + mScanlineSize * y, mSize.Width() * mBitCount / 8))
return false;
return true;
}
bool SkiaSalBitmap::GetSystemData(BitmapSystemData&)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
return false;
}
bool SkiaSalBitmap::ScalingSupported() const { return true; }
bool SkiaSalBitmap::Scale(const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag)
{
SkiaZone zone;
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
Size newSize(basegfx::fround<tools::Long>(mSize.Width() * rScaleX),
basegfx::fround<tools::Long>(mSize.Height() * rScaleY));
if (mSize == newSize)
return true;
SAL_INFO("vcl.skia.trace", "scale(" << this << "): " << mSize << "/" << mBitCount << "->"
<< newSize << ":" << static_cast<int>(nScaleFlag));
if (mEraseColorSet)
{ // Simple.
mSize = newSize;
ResetPendingScaling();
EraseInternal(mEraseColor);
return true;
}
if (mBitCount < 24 && !mPalette.IsGreyPalette8Bit())
{
// Scaling can introduce additional colors not present in the original
// bitmap (e.g. when smoothing). If the bitmap is indexed (has non-trivial palette),
// this would break the bitmap, because the actual scaling is done only somewhen later.
// Linear 8bit palette (grey) is ok, since there we use directly the values as colors.
SAL_INFO("vcl.skia.trace", "scale(" << this << "): indexed bitmap");
return false;
}
// The idea here is that the actual scaling will be delayed until the result
// is actually needed. Usually the scaled bitmap will be drawn somewhere,
// so delaying will mean the scaling can be done as a part of GetSkImage().
// That means it can be GPU-accelerated, while done here directly it would need
// to be either done by CPU, or with the CPU->GPU->CPU roundtrip required
// by GPU-accelerated scaling.
// Pending scaling is detected by 'mSize != mPixelsSize' for mBuffer,
// and 'imageSize(mImage) != mSize' for mImage. It is not intended to have 3 different
// sizes though, code below keeps only mBuffer or mImage. Note that imageSize(mImage)
// may or may not be equal to mPixelsSize, depending on whether mImage is set here
// (sizes will be equal) or whether it's set in GetSkImage() (will not be equal).
// Pending scaling is considered "done" by the time mBuffer is resized (or created).
// Resizing of mImage is somewhat independent of this, since mImage is primarily
// considered to be a cached object (although sometimes it's the only data available).
// If there is already one scale() pending, use the lowest quality of all requested.
switch (nScaleFlag)
{
case BmpScaleFlag::Fast:
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::NearestNeighbor:
// We handle this the same way as Fast by mapping to Skia's nearest-neighbor,
// and it's needed for unittests (mScaling and testTdf132367()).
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::Default:
if (mScaleQuality == BmpScaleFlag::BestQuality)
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::BestQuality:
// Best is the maximum, set by default.
break;
default:
SAL_INFO("vcl.skia.trace", "scale(" << this << "): unsupported scale algorithm");
return false;
}
mSize = newSize;
// If we have both mBuffer and mImage, prefer mImage, since it likely will be drawn later.
// We could possibly try to keep the buffer as well, but that would complicate things
// with two different data structures to be scaled on-demand, and it's a question
// if that'd realistically help with anything.
if (mImage)
ResetToSkImage(mImage);
else
ResetToBuffer();
DataChanged();
// The rest will be handled when the scaled bitmap is actually needed,
// such as in EnsureBitmapData() or GetSkImage().
return true;
}
bool SkiaSalBitmap::Replace(const Color&, const Color&, sal_uInt8)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
return false;
}
bool SkiaSalBitmap::ConvertToGreyscale()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Normally this would need to convert contents of mBuffer for all possible formats,
// so just let the VCL algorithm do it.
// Avoid the costly SkImage->buffer->SkImage conversion.
if (!mBuffer && mImage && !mEraseColorSet)
{
if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
return true;
sk_sp<SkSurface> surface
= createSkSurface(imageSize(mImage), mImage->imageInfo().alphaType());
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
// VCL uses different coefficients for conversion to gray than Skia, so use the VCL
// values from Bitmap::ImplMakeGreyscales(). Do not use kGray_8_SkColorType,
// Skia would use its gray conversion formula.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix toGray(77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // R column
77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // G column
77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // B column
0, 0, 0, 1, 0); // don't modify alpha
paint.setColorFilter(SkColorFilters::Matrix(toGray));
surface->getCanvas()->drawImage(mImage, 0, 0, SkSamplingOptions(), &paint);
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
SAL_INFO("vcl.skia.trace", "converttogreyscale(" << this << ")");
return true;
}
return false;
}
bool SkiaSalBitmap::InterpretAs8Bit()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
return true;
if (mEraseColorSet)
{
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
EraseInternal(mEraseColor);
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with erase color");
return true;
}
// This is usually used by AlphaMask, the point is just to treat
// the content as an alpha channel. This is often used
// by the horrible separate-alpha-outdev hack, where the bitmap comes
// from SkiaSalGraphicsImpl::GetBitmap(), so only mImage is set,
// and that is followed by a later call to GetAlphaSkImage().
// Avoid the costly SkImage->buffer->SkImage conversion and simply
// just treat the SkImage as being for 8bit bitmap. EnsureBitmapData()
// will do the conversion if needed, but the normal case will be
// GetAlphaSkImage() creating kAlpha_8_SkColorType SkImage from it.
if (mImage)
{
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
ResetToSkImage(mImage); // keep mImage, it will be interpreted as 8bit if needed
DataChanged();
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with image");
return true;
}
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with pixel data, ignoring");
return false;
}
bool SkiaSalBitmap::Erase(const Color& color)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Optimized variant, just remember the color and apply it when needed,
// which may save having to do format conversions (e.g. GetSkImage()
// may directly erase the SkImage).
EraseInternal(color);
SAL_INFO("vcl.skia.trace", "erase(" << this << ")");
return true;
}
void SkiaSalBitmap::EraseInternal(const Color& color)
{
ResetAllData();
mEraseColorSet = true;
mEraseColor = color;
}
bool SkiaSalBitmap::AlphaBlendWith(const SalBitmap& rSalBmp)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
const SkiaSalBitmap* otherBitmap = dynamic_cast<const SkiaSalBitmap*>(&rSalBmp);
if (!otherBitmap)
return false;
if (mSize != otherBitmap->mSize)
return false;
// We're called from AlphaMask, which should ensure 8bit.
assert(GetBitCount() == 8 && mPalette.IsGreyPalette8Bit());
// If neither bitmap have Skia images, then AlphaMask::BlendWith() will be faster,
// as it will operate on mBuffer pixel buffers, while for Skia we'd need to convert it.
// If one has and one doesn't, do it using Skia, under the assumption that after this
// the resulting Skia image will be needed for drawing.
if (!(mImage || mEraseColorSet) && !(otherBitmap->mImage || otherBitmap->mEraseColorSet))
return false;
// This is for AlphaMask, which actually stores the alpha as the pixel values.
// I.e. take value of the color channel (one of them, if >8bit, they should be the same).
if (mEraseColorSet && otherBitmap->mEraseColorSet)
{
const sal_uInt16 nGrey1 = mEraseColor.GetRed();
const sal_uInt16 nGrey2 = otherBitmap->mEraseColor.GetRed();
// See comment in AlphaMask::BlendWith for how this calculation was derived
const sal_uInt8 nGrey = static_cast<sal_uInt8>(nGrey1 * nGrey2 / 255);
mEraseColor = Color(nGrey, nGrey, nGrey);
DataChanged();
SAL_INFO("vcl.skia.trace",
"alphablendwith(" << this << ") : with erase color " << otherBitmap);
return true;
}
std::unique_ptr<SkiaSalBitmap> otherBitmapAllocated;
if (otherBitmap->GetBitCount() != 8 || !otherBitmap->mPalette.IsGreyPalette8Bit())
{ // Convert/interpret as 8bit if needed.
otherBitmapAllocated = std::make_unique<SkiaSalBitmap>();
if (!otherBitmapAllocated->Create(*otherBitmap) || !otherBitmapAllocated->InterpretAs8Bit())
return false;
otherBitmap = otherBitmapAllocated.get();
}
// This is 8-bit bitmap serving as mask, so the image itself needs no alpha.
sk_sp<SkSurface> surface = createSkSurface(mSize, kOpaque_SkAlphaType);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is
surface->getCanvas()->drawImage(GetSkImage(), 0, 0, SkSamplingOptions(), &paint);
// in the 0..1 range that skia uses, the equation we want is:
// r = 1 - ((1 - src) + (1 - dest) - (1 - src) * (1 - dest))
// which simplifies to:
// r = src * dest
// which is SkBlendMode::kModulate
paint.setBlendMode(SkBlendMode::kModulate);
surface->getCanvas()->drawImage(otherBitmap->GetSkImage(), 0, 0, SkSamplingOptions(), &paint);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
SAL_INFO("vcl.skia.trace", "alphablendwith(" << this << ") : with image " << otherBitmap);
return true;
}
bool SkiaSalBitmap::Invert()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Normally this would need to convert contents of mBuffer for all possible formats,
// so just let the VCL algorithm do it.
// Avoid the costly SkImage->buffer->SkImage conversion.
if (!mBuffer && mImage && !mImageImmutable && !mEraseColorSet)
{
// This is 8-bit bitmap serving as alpha/transparency/mask, so the image itself needs no alpha.
// tdf#156866 use mSize instead of mPixelSize for inverted surface
// Commit 5baac4e53128d3c0fc73b9918dc9a9c2777ace08 switched to setting
// the surface size to mPixelsSize in an attempt to avoid downscaling
// mImage but since it causes tdf#156866, revert back to setting the
// surface size to mSize.
sk_sp<SkSurface> surface = createSkSurface(mSize, kOpaque_SkAlphaType);
surface->getCanvas()->clear(SK_ColorWHITE);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kDifference);
// Drawing the image does not work so create a shader from the image
paint.setShader(GetSkShader(SkSamplingOptions()));
surface->getCanvas()->drawRect(SkRect::MakeXYWH(0, 0, mSize.Width(), mSize.Height()),
paint);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
#ifdef MACOSX
// tdf#158014 make image immutable after using Skia to invert
// I can't explain why inverting using Skia causes this bug on
// macOS but not other platforms. My guess is that Skia on macOS
// is sharing some data when different SkiaSalBitmap instances
// are created from the same OutputDevice. So, mark this
// SkiaSalBitmap instance's image as immutable so that successive
// inversions are done with buffered bitmap data instead of Skia.
mImageImmutable = true;
#endif
SAL_INFO("vcl.skia.trace", "invert(" << this << ")");
return true;
}
return false;
}
SkBitmap SkiaSalBitmap::GetAsSkBitmap() const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
EnsureBitmapData();
assert(mSize == mPixelsSize); // data has already been scaled if needed
SkiaZone zone;
SkBitmap bitmap;
if (mBuffer)
{
if (mBitCount == 32)
{
// Make a copy, the bitmap should be immutable (otherwise converting it
// to SkImage will make a copy anyway).
const size_t bytes = mPixelsSize.Height() * mScanlineSize;
std::unique_ptr<sal_uInt8[]> data(new sal_uInt8[bytes]);
memcpy(data.get(), mBuffer.get(), bytes);
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(), alphaType()),
data.release(), mScanlineSize,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else if (mBitCount == 24)
{
// Convert 24bpp RGB/BGR to 32bpp RGBA/BGRA.
std::unique_ptr<uint32_t[]> data(
new uint32_t[mPixelsSize.Height() * mPixelsSize.Width()]);
uint32_t* dest = data.get();
// SkConvertRGBToRGBA() also works as BGR to BGRA (the function extends 3 bytes to 4
// by adding 0xFF alpha, so position of B and R doesn't matter).
if (mPixelsSize.Width() * 3 == mScanlineSize)
SkConvertRGBToRGBA(dest, mBuffer.get(), mPixelsSize.Height() * mPixelsSize.Width());
else
{
for (tools::Long y = 0; y < mPixelsSize.Height(); ++y)
{
const sal_uInt8* src = mBuffer.get() + mScanlineSize * y;
SkConvertRGBToRGBA(dest, src, mPixelsSize.Width());
dest += mPixelsSize.Width();
}
}
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
{
// Convert 8bpp gray to 32bpp RGBA/BGRA.
// There's also kGray_8_SkColorType, but it's probably simpler to make
// GetAsSkBitmap() always return 32bpp SkBitmap and then assume mImage
// is always 32bpp too.
std::unique_ptr<uint32_t[]> data(
new uint32_t[mPixelsSize.Height() * mPixelsSize.Width()]);
uint32_t* dest = data.get();
if (mPixelsSize.Width() * 1 == mScanlineSize)
SkConvertGrayToRGBA(dest, mBuffer.get(),
mPixelsSize.Height() * mPixelsSize.Width());
else
{
for (tools::Long y = 0; y < mPixelsSize.Height(); ++y)
{
const sal_uInt8* src = mBuffer.get() + mScanlineSize * y;
SkConvertGrayToRGBA(dest, src, mPixelsSize.Width());
dest += mPixelsSize.Width();
}
}
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else
{
std::unique_ptr<sal_uInt8[]> data = convertDataBitCount(
mBuffer.get(), mPixelsSize.Width(), mPixelsSize.Height(), mBitCount, mScanlineSize,
mPalette, kN32_SkColorTypeIsBGRA ? BitConvert::BGRA : BitConvert::RGBA);
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
}
bitmap.setImmutable();
return bitmap;
}
// If mEraseColor is set, this is the color to use when the bitmap is used as alpha bitmap.
// E.g. COL_BLACK actually means fully transparent and COL_WHITE means fully opaque.
// This is because the alpha value is set as the color itself, not the alpha of the color.
static SkColor fromEraseColorToAlphaImageColor(Color color)
{
return SkColorSetARGB(color.GetBlue(), 0, 0, 0);
}
// SkiaSalBitmap can store data in both the SkImage and our mBuffer, which with large
// images can waste quite a lot of memory. Ideally we should store the data in Skia's
// SkBitmap, but LO wants us to support data formats that Skia doesn't support.
// So try to conserve memory by keeping the data only once in that was the most
// recently wanted storage, and drop the other one. Usually the other one won't be needed
// for a long time, and especially with raster the conversion is usually fast.
// Do this only with raster, to avoid GPU->CPU transfer in GPU mode (exception is 32bit
// builds, where memory is more important). Also don't do this with paletted bitmaps,
// where EnsureBitmapData() would be expensive.
// Ideally SalBitmap should be able to say which bitmap formats it supports
// and VCL code should oblige, which would allow reusing the same data.
bool SkiaSalBitmap::ConserveMemory() const
{
static bool keepBitmapBuffer = getenv("SAL_SKIA_KEEP_BITMAP_BUFFER") != nullptr;
constexpr bool is32Bit = sizeof(void*) == 4;
// 16MiB bitmap data at least (set to 0 for easy testing).
constexpr tools::Long maxBufferSize = 2000 * 2000 * 4;
return !keepBitmapBuffer && (renderMethodToUse() == RenderRaster || is32Bit)
&& mPixelsSize.Height() * mScanlineSize > maxBufferSize
&& (mBitCount > 8 || (mBitCount == 8 && mPalette.IsGreyPalette8Bit()));
}
const sk_sp<SkImage>& SkiaSalBitmap::GetSkImage(DirectImage direct) const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (direct == DirectImage::Yes)
return mImage;
if (mEraseColorSet)
{
if (mImage)
{
assert(imageSize(mImage) == mSize);
return mImage;
}
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(
mSize, mEraseColor.IsTransparent() ? kPremul_SkAlphaType : kOpaque_SkAlphaType);
assert(surface);
surface->getCanvas()->clear(toSkColor(mEraseColor));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = makeCheckedImageSnapshot(surface);
SAL_INFO("vcl.skia.trace", "getskimage(" << this << ") from erase color " << mEraseColor);
return mImage;
}
if (mPixelsSize != mSize && !mImage && renderMethodToUse() != RenderRaster)
{
// The bitmap has a pending scaling, but no image. This function would below call GetAsSkBitmap(),
// which would do CPU-based pixel scaling, and then it would get converted to an image.
// Be more efficient, first convert to an image and then the block below will scale on the GPU.
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): shortcut image scaling "
<< mPixelsSize << "->" << mSize);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
Size savedSize = mSize;
thisPtr->mSize = mPixelsSize; // block scaling
SkiaZone zone;
sk_sp<SkImage> image = createSkImage(GetAsSkBitmap());
assert(image);
thisPtr->mSize = savedSize;
thisPtr->ResetToSkImage(image);
}
if (mImage)
{
if (imageSize(mImage) != mSize)
{
assert(!mBuffer); // This code should be only called if only mImage holds data.
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(mSize, mImage->imageInfo().alphaType());
assert(surface);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
surface->getCanvas()->drawImageRect(
mImage, SkRect::MakeWH(mSize.Width(), mSize.Height()),
makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1), &paint);
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): image scaled "
<< Size(mImage->width(), mImage->height())
<< "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = makeCheckedImageSnapshot(surface);
}
return mImage;
}
SkiaZone zone;
sk_sp<SkImage> image = createSkImage(GetAsSkBitmap());
assert(image);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = image;
// The data is now stored both in the SkImage and in our mBuffer, so drop the buffer
// if conserving memory. It'll be converted back by EnsureBitmapData() if needed.
if (ConserveMemory() && mReadAccessCount == 0)
{
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): dropping buffer");
thisPtr->ResetToSkImage(mImage);
}
SAL_INFO("vcl.skia.trace", "getskimage(" << this << ")");
return mImage;
}
const sk_sp<SkImage>& SkiaSalBitmap::GetAlphaSkImage(DirectImage direct) const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (direct == DirectImage::Yes)
return mAlphaImage;
if (mEraseColorSet)
{
if (mAlphaImage)
{
assert(imageSize(mAlphaImage) == mSize);
return mAlphaImage;
}
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
surface->getCanvas()->clear(fromEraseColorToAlphaImageColor(mEraseColor));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
SAL_INFO("vcl.skia.trace",
"getalphaskimage(" << this << ") from erase color " << mEraseColor);
return mAlphaImage;
}
if (mAlphaImage)
{
if (imageSize(mAlphaImage) == mSize)
return mAlphaImage;
}
if (mImage)
{
SkiaZone zone;
const bool scaling = imageSize(mImage) != mSize;
SkPixmap pixmap;
if (mImage->peekPixels(&pixmap))
{
assert(pixmap.colorType() == kN32_SkColorType);
// In non-GPU mode, convert 32bit data to 8bit alpha, this is faster than
// the SkColorFilter below. Since this is the VCL alpha-vdev alpha, where
// all R,G,B are the same and in fact mean alpha, this means we simply take one
// 8bit channel from the input, and that's the output.
SkBitmap bitmap;
if (!bitmap.installPixels(pixmap))
abort();
SkBitmap alphaBitmap;
if (!alphaBitmap.tryAllocPixels(SkImageInfo::MakeA8(bitmap.width(), bitmap.height())))
abort();
if (int(bitmap.rowBytes()) == bitmap.width() * 4)
{
SkConvertRGBAToR(alphaBitmap.getAddr8(0, 0), bitmap.getAddr32(0, 0),
bitmap.width() * bitmap.height());
}
else
{
for (tools::Long y = 0; y < bitmap.height(); ++y)
SkConvertRGBAToR(alphaBitmap.getAddr8(0, y), bitmap.getAddr32(0, y),
bitmap.width());
}
alphaBitmap.setImmutable();
sk_sp<SkImage> alphaImage = createSkImage(alphaBitmap);
assert(alphaImage);
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ") from raster image");
// Don't bother here with ConserveMemory(), mImage -> mAlphaImage conversions should
// generally only happen with the separate-alpha-outdev hack, and those bitmaps should
// be temporary.
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = alphaImage;
// Fix testDelayedScaleAlphaImage unit test
// Do not return the alpha mask if it is awaiting pending scaling.
// Pending scaling has not yet been done at this point since the
// scaling is done in the code following this block.
if (!scaling)
return mAlphaImage;
}
// Move the R channel value to the alpha channel. This seems to be the only
// way to reinterpret data in SkImage as an alpha SkImage without accessing the pixels.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix redToAlpha(0, 0, 0, 0, 0, // R column
0, 0, 0, 0, 0, // G column
0, 0, 0, 0, 0, // B column
1, 0, 0, 0, 0); // A column
SkPaint paint;
paint.setColorFilter(SkColorFilters::Matrix(redToAlpha));
if (scaling)
assert(!mBuffer); // This code should be only called if only mImage holds data.
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
surface->getCanvas()->drawImageRect(
mImage, SkRect::MakeWH(mSize.Width(), mSize.Height()),
scaling ? makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1)
: SkSamplingOptions(),
&paint);
if (scaling)
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << "): image scaled "
<< Size(mImage->width(), mImage->height())
<< "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
else
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ") from image");
// Don't bother here with ConserveMemory(), mImage -> mAlphaImage conversions should
// generally only happen with the separate-alpha-outdev hack, and those bitmaps should
// be temporary.
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
return mAlphaImage;
}
SkiaZone zone;
EnsureBitmapData();
assert(mSize == mPixelsSize); // data has already been scaled if needed
SkBitmap alphaBitmap;
if (mBuffer && mBitCount <= 8)
{
assert(mBuffer.get());
verify();
std::unique_ptr<sal_uInt8[]> data
= convertDataBitCount(mBuffer.get(), mSize.Width(), mSize.Height(), mBitCount,
mScanlineSize, mPalette, BitConvert::A8);
if (!alphaBitmap.installPixels(
SkImageInfo::MakeA8(mSize.Width(), mSize.Height()), data.release(), mSize.Width(),
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
alphaBitmap.setImmutable();
sk_sp<SkImage> image = createSkImage(alphaBitmap);
assert(image);
const_cast<sk_sp<SkImage>&>(mAlphaImage) = image;
}
else
{
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
// Move the R channel value to the alpha channel. This seems to be the only
// way to reinterpret data in SkImage as an alpha SkImage without accessing the pixels.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix redToAlpha(0, 0, 0, 0, 0, // R column
0, 0, 0, 0, 0, // G column
0, 0, 0, 0, 0, // B column
1, 0, 0, 0, 0); // A column
paint.setColorFilter(SkColorFilters::Matrix(redToAlpha));
surface->getCanvas()->drawImage(GetAsSkBitmap().asImage(), 0, 0, SkSamplingOptions(),
&paint);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
}
// The data is now stored both in the SkImage and in our mBuffer, so drop the buffer
// if conserving memory and the conversion back would be simple (it'll be converted back
// by EnsureBitmapData() if needed).
if (ConserveMemory() && mBitCount == 8 && mPalette.IsGreyPalette8Bit() && mReadAccessCount == 0)
{
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << "): dropping buffer");
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mBuffer.reset();
}
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ")");
return mAlphaImage;
}
void SkiaSalBitmap::TryDirectConvertToAlphaNoScaling()
{
// This is a bit of a hack. Because of the VCL alpha hack where alpha is stored
// separately, we often convert mImage to mAlphaImage to represent the alpha
// channel. If code finds out that there is mImage but no mAlphaImage,
// this will create it from it, without checking for delayed scaling (i.e.
// it is "direct").
assert(mImage);
assert(!mAlphaImage);
// Set wanted size, trigger conversion.
Size savedSize = mSize;
mSize = imageSize(mImage);
GetAlphaSkImage();
assert(mAlphaImage);
mSize = savedSize;
}
// If the bitmap is to be erased, SkShader with the color set is more efficient
// than creating an image filled with the color.
bool SkiaSalBitmap::PreferSkShader() const { return mEraseColorSet; }
sk_sp<SkShader> SkiaSalBitmap::GetSkShader(const SkSamplingOptions& samplingOptions,
DirectImage direct) const
{
if (mEraseColorSet)
return SkShaders::Color(toSkColor(mEraseColor));
return GetSkImage(direct)->makeShader(samplingOptions);
}
sk_sp<SkShader> SkiaSalBitmap::GetAlphaSkShader(const SkSamplingOptions& samplingOptions,
DirectImage direct) const
{
if (mEraseColorSet)
return SkShaders::Color(fromEraseColorToAlphaImageColor(mEraseColor));
return GetAlphaSkImage(direct)->makeShader(samplingOptions);
}
bool SkiaSalBitmap::IsFullyOpaqueAsAlpha() const
{
if (!mEraseColorSet) // Set from Erase() or ReleaseBuffer().
return false;
// If the erase color is set so that this bitmap used as alpha would
// mean a fully opaque alpha mask (= noop), we can skip using it.
return SkColorGetA(fromEraseColorToAlphaImageColor(mEraseColor)) == 255;
}
SkAlphaType SkiaSalBitmap::alphaType() const
{
if (mEraseColorSet)
return mEraseColor.IsTransparent() ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
#if SKIA_USE_BITMAP32
// The bitmap's alpha matters only if SKIA_USE_BITMAP32 is set, otherwise
// the alpha is in a separate bitmap.
if (mBitCount == 32)
return kPremul_SkAlphaType;
#endif
return kOpaque_SkAlphaType;
}
void SkiaSalBitmap::PerformErase()
{
if (mPixelsSize.IsEmpty())
return;
BitmapBuffer* bitmapBuffer = AcquireBuffer(BitmapAccessMode::Write);
if (bitmapBuffer == nullptr)
abort();
Color fastColor = mEraseColor;
if (!!mPalette)
fastColor = Color(ColorAlpha, mPalette.GetBestIndex(fastColor));
if (!ImplFastEraseBitmap(*bitmapBuffer, fastColor))
{
FncSetPixel setPixel = BitmapReadAccess::SetPixelFunction(bitmapBuffer->meFormat);
assert(bitmapBuffer->meDirection == ScanlineDirection::TopDown);
// Set first scanline, copy to others.
Scanline scanline = bitmapBuffer->mpBits;
for (tools::Long x = 0; x < bitmapBuffer->mnWidth; ++x)
setPixel(scanline, x, mEraseColor, bitmapBuffer->maColorMask);
for (tools::Long y = 1; y < bitmapBuffer->mnHeight; ++y)
memcpy(scanline + y * bitmapBuffer->mnScanlineSize, scanline,
bitmapBuffer->mnScanlineSize);
}
ReleaseBuffer(bitmapBuffer, BitmapAccessMode::Write, true);
}
void SkiaSalBitmap::EnsureBitmapData()
{
if (mEraseColorSet)
{
SkiaZone zone;
assert(mPixelsSize == mSize);
assert(!mBuffer);
CreateBitmapData();
// Unset now, so that repeated call will return mBuffer.
mEraseColorSet = false;
PerformErase();
verify();
SAL_INFO("vcl.skia.trace",
"ensurebitmapdata(" << this << ") from erase color " << mEraseColor);
return;
}
if (mBuffer)
{
if (mSize == mPixelsSize)
return;
// Pending scaling. Create raster SkImage from the bitmap data
// at the pixel size and then the code below will scale at the correct
// bpp from the image.
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): pixels to be scaled "
<< mPixelsSize << "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
Size savedSize = mSize;
mSize = mPixelsSize;
ResetToSkImage(SkImages::RasterFromBitmap(GetAsSkBitmap()));
mSize = savedSize;
}
// Convert from alpha image, if the conversion is simple.
if (mAlphaImage && imageSize(mAlphaImage) == mSize && mBitCount == 8
&& mPalette.IsGreyPalette8Bit())
{
assert(mAlphaImage->colorType() == kAlpha_8_SkColorType);
SkiaZone zone;
SkBitmap bitmap;
SkPixmap pixmap;
if (mAlphaImage->peekPixels(&pixmap))
bitmap.installPixels(pixmap);
else
{
if (!bitmap.tryAllocPixels(SkImageInfo::MakeA8(mSize.Width(), mSize.Height())))
abort();
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
canvas.drawImage(mAlphaImage, 0, 0, SkSamplingOptions(), &paint);
canvas.flush();
}
bitmap.setImmutable();
ResetPendingScaling();
CreateBitmapData();
assert(mBuffer != nullptr);
assert(mPixelsSize == mSize);
if (int(bitmap.rowBytes()) == mScanlineSize)
memcpy(mBuffer.get(), bitmap.getPixels(), mSize.Height() * mScanlineSize);
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
memcpy(dest, src, mScanlineSize);
}
}
verify();
// We've created the bitmap data from mAlphaImage, drop the image if conserving memory,
// it'll be converted back if needed.
if (ConserveMemory())
{
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): dropping images");
ResetToBuffer();
}
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): from alpha image");
return;
}
if (!mImage)
{
// No data at all, create uninitialized data.
CreateBitmapData();
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): uninitialized");
return;
}
// Try to fill mBuffer from mImage.
assert(mImage->colorType() == kN32_SkColorType);
SkiaZone zone;
// If the source image has no alpha, then use no alpha (faster to convert), otherwise
// use kUnpremul_SkAlphaType to make Skia convert from premultiplied alpha when reading
// from the SkImage (the alpha will be ignored if converting to bpp<32 formats, but
// the color channels must be unpremultiplied. Unless bpp==32 and SKIA_USE_BITMAP32,
// in which case use kPremul_SkAlphaType, since SKIA_USE_BITMAP32 implies premultiplied alpha.
SkAlphaType alphaType = kUnpremul_SkAlphaType;
if (mImage->imageInfo().alphaType() == kOpaque_SkAlphaType)
alphaType = kOpaque_SkAlphaType;
#if SKIA_USE_BITMAP32
if (mBitCount == 32)
alphaType = kPremul_SkAlphaType;
#endif
SkBitmap bitmap;
SkPixmap pixmap;
if (imageSize(mImage) == mSize && mImage->imageInfo().alphaType() == alphaType
&& mImage->peekPixels(&pixmap))
{
bitmap.installPixels(pixmap);
}
else
{
if (!bitmap.tryAllocPixels(SkImageInfo::MakeS32(mSize.Width(), mSize.Height(), alphaType)))
abort();
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
if (imageSize(mImage) != mSize) // pending scaling?
{
canvas.drawImageRect(mImage, SkRect::MakeWH(mSize.getWidth(), mSize.getHeight()),
makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1),
&paint);
SAL_INFO("vcl.skia.trace",
"ensurebitmapdata(" << this << "): image scaled " << imageSize(mImage) << "->"
<< mSize << ":" << static_cast<int>(mScaleQuality));
}
else
canvas.drawImage(mImage, 0, 0, SkSamplingOptions(), &paint);
canvas.flush();
}
bitmap.setImmutable();
ResetPendingScaling();
CreateBitmapData();
assert(mBuffer != nullptr);
assert(mPixelsSize == mSize);
if (mBitCount == 32)
{
if (int(bitmap.rowBytes()) == mScanlineSize)
memcpy(mBuffer.get(), bitmap.getPixels(), mSize.Height() * mScanlineSize);
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
memcpy(dest, src, mScanlineSize);
}
}
}
else if (mBitCount == 24) // non-paletted
{
if (int(bitmap.rowBytes()) == mSize.Width() * 4 && mSize.Width() * 3 == mScanlineSize)
{
SkConvertRGBAToRGB(mBuffer.get(), bitmap.getAddr32(0, 0),
mSize.Height() * mSize.Width());
}
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint32_t* src = bitmap.getAddr32(0, y);
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
SkConvertRGBAToRGB(dest, src, mSize.Width());
}
}
}
else if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
{ // no actual data conversion, use one color channel as the gray value
if (int(bitmap.rowBytes()) == mSize.Width() * 4 && mSize.Width() * 1 == mScanlineSize)
{
SkConvertRGBAToR(mBuffer.get(), bitmap.getAddr32(0, 0), mSize.Height() * mSize.Width());
}
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint32_t* src = bitmap.getAddr32(0, y);
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
SkConvertRGBAToR(dest, src, mSize.Width());
}
}
}
else
{
std::unique_ptr<vcl::ScanlineWriter> pWriter
= vcl::ScanlineWriter::Create(mBitCount, mPalette);
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
pWriter->nextLine(dest);
for (tools::Long x = 0; x < mSize.Width(); ++x)
{
sal_uInt8 r = *src++;
sal_uInt8 g = *src++;
sal_uInt8 b = *src++;
++src; // skip alpha
pWriter->writeRGB(r, g, b);
}
}
}
verify();
// We've created the bitmap data from mImage, drop the image if conserving memory,
// it'll be converted back if needed.
if (ConserveMemory())
{
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): dropping images");
ResetToBuffer();
}
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << ")");
}
void SkiaSalBitmap::EnsureBitmapUniqueData()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
EnsureBitmapData();
assert(mPixelsSize == mSize);
if (mBuffer.use_count() > 1)
{
sal_uInt32 allocate = mScanlineSize * mSize.Height();
#ifdef DBG_UTIL
assert(memcmp(mBuffer.get() + allocate, CANARY, sizeof(CANARY)) == 0);
allocate += sizeof(CANARY);
#endif
boost::shared_ptr<sal_uInt8[]> newBuffer = boost::make_shared_noinit<sal_uInt8[]>(allocate);
memcpy(newBuffer.get(), mBuffer.get(), allocate);
mBuffer = newBuffer;
}
}
void SkiaSalBitmap::ResetToBuffer()
{
SkiaZone zone;
// This should never be called to drop mImage if that's the only data we have.
assert(mBuffer || !mImage);
mImage.reset();
mImageImmutable = false;
mAlphaImage.reset();
mEraseColorSet = false;
}
void SkiaSalBitmap::ResetToSkImage(sk_sp<SkImage> image)
{
assert(mReadAccessCount == 0); // can't reset mBuffer if there's a read access pointing to it
SkiaZone zone;
mBuffer.reset();
// Just to be safe, assume mutability of the image does not change
mImage = image;
mAlphaImage.reset();
mEraseColorSet = false;
}
void SkiaSalBitmap::ResetAllData()
{
assert(mReadAccessCount == 0);
SkiaZone zone;
mBuffer.reset();
mImage.reset();
mImageImmutable = false;
mAlphaImage.reset();
mEraseColorSet = false;
mPixelsSize = mSize;
ComputeScanlineSize();
DataChanged();
}
void SkiaSalBitmap::DataChanged() { InvalidateChecksum(); }
void SkiaSalBitmap::ResetPendingScaling()
{
if (mPixelsSize == mSize)
return;
SkiaZone zone;
mScaleQuality = BmpScaleFlag::BestQuality;
mPixelsSize = mSize;
ComputeScanlineSize();
// Information about the pending scaling has been discarded, so make sure we do not
// keep around any cached images that would still need scaling.
if (mImage && imageSize(mImage) != mSize)
{
mImage.reset();
mImageImmutable = false;
}
if (mAlphaImage && imageSize(mAlphaImage) != mSize)
mAlphaImage.reset();
}
OString SkiaSalBitmap::GetImageKey(DirectImage direct) const
{
if (mEraseColorSet)
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(6)
<< static_cast<sal_uInt32>(mEraseColor.GetRGBColor()) << std::setw(2)
<< static_cast<int>(mEraseColor.GetAlpha());
return OString::Concat("E") + ss.str().c_str();
}
assert(direct == DirectImage::No || mImage);
sk_sp<SkImage> image = GetSkImage(direct);
// In some cases drawing code may try to draw the same content but using
// different bitmaps (even underlying bitmaps), for example canvas apparently
// copies the same things around in tdf#146095. For pixel-based images
// it should be still cheaper to compute a checksum and avoid re-caching.
if (!image->isTextureBacked())
return OString::Concat("C") + OString::number(getSkImageChecksum(image));
return OString::Concat("I") + OString::number(image->uniqueID());
}
OString SkiaSalBitmap::GetAlphaImageKey(DirectImage direct) const
{
if (mEraseColorSet)
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(2)
<< static_cast<int>(SkColorGetA(fromEraseColorToAlphaImageColor(mEraseColor)));
return OString::Concat("E") + ss.str().c_str();
}
assert(direct == DirectImage::No || mAlphaImage);
sk_sp<SkImage> image = GetAlphaSkImage(direct);
if (!image->isTextureBacked())
return OString::Concat("C") + OString::number(getSkImageChecksum(image));
return OString::Concat("I") + OString::number(image->uniqueID());
}
void SkiaSalBitmap::dump(const char* file) const
{
// Use a copy, so that debugging doesn't affect this instance.
SkiaSalBitmap copy;
copy.Create(*this);
SkiaHelper::dump(copy.GetSkImage(), file);
}
#ifdef DBG_UTIL
void SkiaSalBitmap::verify() const
{
if (!mBuffer)
return;
// Use mPixelsSize, that describes the size of the actual data.
assert(memcmp(mBuffer.get() + mScanlineSize * mPixelsSize.Height(), CANARY, sizeof(CANARY))
== 0);
}
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */