office-gobmx/testtools/source/bridgetest/bridgetest.cxx
Stephan Bergmann 35e471bb4d Adapt the remaining OUString functions to std string_view
...for LIBO_INTERNAL_ONLY.  These had been missed by
1b43cceaea "Make many OUString functions take
std::u16string_view parameters" because they did not match the multi-overload
pattern that was addressed there, but they nevertheless benefit from being
changed just as well (witness e.g. the various resulting changes from copy() to
subView()).

This showed a conversion from OStringChar to std::string_view to be missing
(while the corresponding conversion form OUStringChar to std::u16string_view was
already present).

The improvement to loplugin:stringadd became necessary to fix

> [CPT] compilerplugins/clang/test/stringadd.cxx
> error: 'error' diagnostics expected but not seen:
>   File ~/lo/core/compilerplugins/clang/test/stringadd.cxx Line 43 (directive at ~/lo/core/compilerplugins/clang/test/stringadd.cxx:42): simplify by merging with the preceding assignment [loplugin:stringadd]
>   File ~/lo/core/compilerplugins/clang/test/stringadd.cxx Line 61 (directive at ~/lo/core/compilerplugins/clang/test/stringadd.cxx:60): simplify by merging with the preceding assignment [loplugin:stringadd]
> 2 errors generated.

Change-Id: Ie40de0616a66e60e289c1af0ca60aed6f9ecc279
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/107602
Tested-by: Jenkins
Reviewed-by: Stephan Bergmann <sbergman@redhat.com>
2020-12-11 21:25:10 +01:00

1317 lines
49 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <stdio.h>
#include <string.h>
#include <string_view>
#include <o3tl/any.hxx>
#include <osl/diagnose.h>
#include <osl/diagnose.hxx>
#include <osl/time.h>
#include <sal/types.h>
#include <typelib/typedescription.hxx>
#include <uno/dispatcher.hxx>
#include <uno/lbnames.h>
#include <uno/mapping.hxx>
#include <uno/data.h>
#include <uno/environment.hxx>
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implbase.hxx>
#include <cppuhelper/supportsservice.hxx>
#include <com/sun/star/lang/XServiceInfo.hpp>
#include <com/sun/star/lang/XComponent.hpp>
#include <com/sun/star/lang/XMain.hpp>
#include <com/sun/star/lang/XSingleComponentFactory.hpp>
#include <com/sun/star/bridge/UnoUrlResolver.hpp>
#include <com/sun/star/bridge/XUnoUrlResolver.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/Type.hxx>
#include <test/testtools/bridgetest/BadConstructorArguments.hpp>
#include <test/testtools/bridgetest/TestPolyStruct.hpp>
#include <test/testtools/bridgetest/XBridgeTest.hpp>
#include <test/testtools/bridgetest/XBridgeTest2.hpp>
#include <test/testtools/bridgetest/XMulti.hpp>
#include "currentcontextchecker.hxx"
#include "multi.hxx"
#include <memory>
using namespace osl;
using namespace cppu;
using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::registry;
using namespace com::sun::star::bridge;
using namespace test::testtools::bridgetest;
#define SERVICENAME "com.sun.star.test.bridge.BridgeTest"
#define IMPLNAME "com.sun.star.comp.bridge.BridgeTest"
#define STRING_TEST_CONSTANT "\" paco\' chorizo\\\' \"\'"
namespace bridge_test
{
template<typename T, typename U = T>
static Sequence<T> cloneSequence(const Sequence<T>& val);
static Sequence< OUString > getSupportedServiceNames()
{
return { SERVICENAME };
}
static bool check( bool b , char const * message )
{
if ( ! b )
fprintf( stderr, "%s failed\n" , message );
return b;
}
namespace {
bool checkEmpty(std::u16string_view string, char const * message) {
bool ok = string.empty();
if (!ok) {
fprintf(
stderr, "%s failed: %s\n", message,
OUStringToOString(string, RTL_TEXTENCODING_UTF8).getStr());
}
return ok;
}
class TestBridgeImpl : public osl::DebugBase<TestBridgeImpl>,
public WeakImplHelper< XMain, XServiceInfo >
{
Reference< XComponentContext > m_xContext;
public:
explicit TestBridgeImpl( const Reference< XComponentContext > & xContext )
: m_xContext( xContext )
{}
// XServiceInfo
virtual OUString SAL_CALL getImplementationName() override;
virtual sal_Bool SAL_CALL supportsService( const OUString & rServiceName ) override;
virtual Sequence< OUString > SAL_CALL getSupportedServiceNames() override;
// XMain
virtual sal_Int32 SAL_CALL run( const Sequence< OUString > & rArgs ) override;
};
}
static bool equals( const TestElement & rData1, const TestElement & rData2 )
{
check( rData1.Bool == rData2.Bool, "### bool does not match!" );
check( rData1.Char == rData2.Char, "### char does not match!" );
check( rData1.Byte == rData2.Byte, "### byte does not match!" );
check( rData1.Short == rData2.Short, "### short does not match!" );
check( rData1.UShort == rData2.UShort, "### unsigned short does not match!" );
check( rData1.Long == rData2.Long, "### long does not match!" );
check( rData1.ULong == rData2.ULong, "### unsigned long does not match!" );
check( rData1.Hyper == rData2.Hyper, "### hyper does not match!" );
check( rData1.UHyper == rData2.UHyper, "### unsigned hyper does not match!" );
check( rData1.Float == rData2.Float, "### float does not match!" );
check( rData1.Double == rData2.Double, "### double does not match!" );
check( rData1.Enum == rData2.Enum, "### enum does not match!" );
check( rData1.String == rData2.String, "### string does not match!" );
check( rData1.Byte2 == rData2.Byte2, "### byte2 does not match!" );
check( rData1.Short2 == rData2.Short2, "### short2 does not match!" );
check( rData1.Interface == rData2.Interface, "### interface does not match!" );
check( rData1.Any == rData2.Any, "### any does not match!" );
return (rData1.Bool == rData2.Bool &&
rData1.Char == rData2.Char &&
rData1.Byte == rData2.Byte &&
rData1.Short == rData2.Short &&
rData1.UShort == rData2.UShort &&
rData1.Long == rData2.Long &&
rData1.ULong == rData2.ULong &&
rData1.Hyper == rData2.Hyper &&
rData1.UHyper == rData2.UHyper &&
rData1.Float == rData2.Float &&
rData1.Double == rData2.Double &&
rData1.Enum == rData2.Enum &&
rData1.String == rData2.String &&
rData1.Byte2 == rData2.Byte2 &&
rData1.Short2 == rData2.Short2 &&
rData1.Interface == rData2.Interface &&
rData1.Any == rData2.Any);
}
static bool equals( const TestData & rData1, const TestData & rData2 )
{
sal_Int32 nLen;
if (rData1.Sequence != rData2.Sequence)
return false;
if (!equals( static_cast<const TestElement &>(rData1), static_cast<const TestElement &>(rData2) ))
return false;
nLen = rData1.Sequence.getLength();
if (nLen == rData2.Sequence.getLength())
{
// once again by hand sequence ==
const TestElement * pElements1 = rData1.Sequence.getConstArray();
const TestElement * pElements2 = rData2.Sequence.getConstArray();
for ( ; nLen--; )
{
if (! equals( pElements1[nLen], pElements2[nLen] ))
{
check( false, "### sequence element did not match!" );
return false;
}
}
return true;
}
return false;
}
static void assign( TestElement & rData,
bool bBool, sal_Unicode cChar, sal_Int8 nByte,
sal_Int16 nShort, sal_uInt16 nUShort,
sal_Int32 nLong, sal_uInt32 nULong,
sal_Int64 nHyper, sal_uInt64 nUHyper,
float fFloat, double fDouble,
TestEnum eEnum, const OUString& rStr,
sal_Int8 nByte2, sal_Int16 nShort2,
const css::uno::Reference< css::uno::XInterface >& xTest,
const css::uno::Any& rAny )
{
rData.Bool = bBool;
rData.Char = cChar;
rData.Byte = nByte;
rData.Short = nShort;
rData.UShort = nUShort;
rData.Long = nLong;
rData.ULong = nULong;
rData.Hyper = nHyper;
rData.UHyper = nUHyper;
rData.Float = fFloat;
rData.Double = fDouble;
rData.Enum = eEnum;
rData.String = rStr;
rData.Byte2 = nByte2;
rData.Short2 = nShort2;
rData.Interface = xTest;
rData.Any = rAny;
}
namespace {
template < typename T >
bool testAny(
T const & value, Reference< XBridgeTest > const & xLBT,
char const * typeName = nullptr)
{
Any any;
any <<= value;
Any any2 = xLBT->transportAny(any);
bool success = true;
if (any != any2) {
fprintf(
stderr, "any is different after roundtrip: in %s, out %s\n",
OUStringToOString(
any.getValueType().getTypeName(),
RTL_TEXTENCODING_ASCII_US).getStr(),
OUStringToOString(
any2.getValueType().getTypeName(),
RTL_TEXTENCODING_ASCII_US).getStr());
success = false;
}
if (typeName != nullptr
&& !any2.getValueType().getTypeName().equalsAscii(typeName))
{
fprintf(
stderr, "any has wrong type after roundtrip: %s instead of %s\n",
OUStringToOString(
any2.getValueType().getTypeName(),
RTL_TEXTENCODING_ASCII_US).getStr(),
typeName);
success = false;
}
return success;
}
}
static bool performAnyTest( const Reference< XBridgeTest > &xLBT, const TestData &data)
{
bool bReturn = true;
bReturn = testAny( data.Byte ,xLBT ) && bReturn;
bReturn = testAny( data.Short,xLBT ) && bReturn;
bReturn = testAny( data.UShort,xLBT ) && bReturn;
bReturn = testAny( data.Long,xLBT ) && bReturn;
bReturn = testAny( data.ULong,xLBT ) && bReturn;
bReturn = testAny( data.Hyper,xLBT ) && bReturn;
bReturn = testAny( data.UHyper,xLBT ) && bReturn;
bReturn = testAny( data.Float,xLBT ) && bReturn;
bReturn = testAny( data.Double,xLBT ) && bReturn;
bReturn = testAny( data.Enum,xLBT ) && bReturn;
bReturn = testAny( data.String,xLBT ) && bReturn;
bReturn = testAny( data.Byte2 ,xLBT ) && bReturn;
bReturn = testAny( data.Short2,xLBT ) && bReturn;
bReturn = testAny( data.Interface,xLBT ) && bReturn;
bReturn = testAny( data, xLBT ) && bReturn;
bReturn &= testAny(
TestPolyStruct< sal_Unicode >(' '), xLBT,
"test.testtools.bridgetest.TestPolyStruct<char>");
Any a;
{
a <<= data.Bool;
OSL_ASSERT( xLBT->transportAny( a ) == a );
}
{
a <<= data.Char;
OSL_ASSERT( xLBT->transportAny( a ) == a );
}
return bReturn;
}
static bool performSequenceOfCallTest( const Reference < XBridgeTest > &xLBT )
{
sal_Int32 i,nRounds;
sal_Int32 nGlobalIndex = 0;
const sal_Int32 nWaitTimeSpanMUSec = 10000;
for( nRounds = 0 ; nRounds < 10 ; nRounds ++ )
{
for( i = 0 ; i < nRounds ; i ++ )
{
// fire oneways
xLBT->callOneway( nGlobalIndex , nWaitTimeSpanMUSec );
nGlobalIndex ++;
}
// call synchron
xLBT->call( nGlobalIndex , nWaitTimeSpanMUSec );
nGlobalIndex ++;
}
return xLBT->sequenceOfCallTestPassed();
}
namespace {
class ORecursiveCall : public WeakImplHelper< XRecursiveCall >
{
private:
Mutex m_mutex;
public:
void SAL_CALL callRecursivly(
const css::uno::Reference< XRecursiveCall >& xCall,
sal_Int32 nToCall ) override
{
MutexGuard guard( m_mutex );
if( nToCall )
{
nToCall --;
xCall->callRecursivly( this , nToCall );
}
}
};
}
static bool performRecursiveCallTest( const Reference < XBridgeTest > & xLBT )
{
xLBT->startRecursiveCall( new ORecursiveCall , 50 );
// on failure, the test would lock up or crash
return true;
}
namespace {
class MyClass : public osl::DebugBase<MyClass>, public OWeakObject
{
public:
MyClass();
};
}
MyClass::MyClass()
{
}
static bool performTest(
const Reference<XComponentContext> & xContext,
const Reference<XBridgeTest > & xLBT,
bool noCurrentContext )
{
check(xLBT.is(), "### no test interface!");
bool bRet = true;
if (xLBT.is()) {
// this data is never ever granted access to by calls other than
// equals(), assign()!
TestData aData; // test against this data
Reference< XInterface > xI(new MyClass);
assign(
static_cast<TestElement &>(aData), true, '@', 17, 0x1234, 0xFEDC,
0x12345678, 0xFEDCBA98, SAL_CONST_INT64(0x123456789ABCDEF0),
SAL_CONST_UINT64(0xFEDCBA9876543210), 17.0815f, 3.1415926359,
TestEnum_LOLA, STRING_TEST_CONSTANT, 18, 0x5678, xI,
Any(&xI, cppu::UnoType<XInterface>::get()));
bRet &= check(aData.Any == xI, "### unexpected any!");
bRet &= check(!(aData.Any != xI), "### unexpected any!");
aData.Sequence.realloc(2);
aData.Sequence[0] = *static_cast<TestElement const *>(&aData);
// aData.Sequence[1] is empty
// aSetData is a manually copy of aData for first setting:
TestData aSetData;
assign(
static_cast<TestElement &>(aSetData), aData.Bool, aData.Char,
aData.Byte, aData.Short, aData.UShort, aData.Long, aData.ULong,
aData.Hyper, aData.UHyper, aData.Float, aData.Double, aData.Enum,
aData.String, aData.Byte2, aData.Short2, xI, Any(&xI, cppu::UnoType<XInterface>::get()));
aSetData.Sequence.realloc(2);
aSetData.Sequence[0] = *static_cast<TestElement const *>(&aSetData);
// aSetData.Sequence[1] is empty
xLBT->setValues(
aSetData.Bool,
aSetData.Char,
aSetData.Byte,
aSetData.Short,
aSetData.UShort,
aSetData.Long,
aSetData.ULong,
aSetData.Hyper,
aSetData.UHyper,
aSetData.Float,
aSetData.Double,
aSetData.Enum,
aSetData.String,
aSetData.Byte2,
aSetData.Short2,
aSetData.Interface,
aSetData.Any,
aSetData.Sequence,
aSetData);
{
TestData aRet;
TestData aRet2;
xLBT->getValues(
aRet.Bool,
aRet.Char,
aRet.Byte,
aRet.Short,
aRet.UShort,
aRet.Long,
aRet.ULong,
aRet.Hyper,
aRet.UHyper,
aRet.Float,
aRet.Double,
aRet.Enum,
aRet.String,
aRet.Byte2,
aRet.Short2,
aRet.Interface,
aRet.Any,
aRet.Sequence,
aRet2);
bRet &= check(
equals(aData, aRet) && equals(aData, aRet2), "getValues test");
// Set last retrieved values:
TestData aSV2ret(
xLBT->setValues2(
aRet.Bool,
aRet.Char,
aRet.Byte,
aRet.Short,
aRet.UShort,
aRet.Long,
aRet.ULong,
aRet.Hyper,
aRet.UHyper,
aRet.Float,
aRet.Double,
aRet.Enum,
aRet.String,
aRet.Byte2,
aRet.Short2,
aRet.Interface,
aRet.Any,
aRet.Sequence,
aRet2));
// Check inout sequence order (=> inout sequence parameter was
// switched by test objects):
TestElement temp(aRet.Sequence[0]);
aRet.Sequence[0] = aRet.Sequence[1];
aRet.Sequence[1] = temp;
bRet &= check(
equals(aData, aSV2ret) && equals(aData, aRet2),
"getValues2 test");
}
{
TwoFloats aIn(1.1f, 2.2f);
TwoFloats aOut = xLBT->echoTwoFloats(aIn);
bRet = check( memcmp(&aIn, &aOut, sizeof(TwoFloats)) == 0, "two floats struct test" ) && bRet;
}
{
FourFloats aIn(3.3f, 4.4f, 5.5f, 6.6f);
FourFloats aOut = xLBT->echoFourFloats(aIn);
bRet = check( memcmp(&aIn, &aOut, sizeof(FourFloats)) == 0, "four floats struct test" ) && bRet;
}
{
MixedFloatAndInteger aIn(7.7f, 8);
MixedFloatAndInteger aOut = xLBT->echoMixedFloatAndInteger(aIn);
bRet = check( memcmp(&aIn, &aOut, sizeof(MixedFloatAndInteger)) == 0, "mixed float and integer struct test" ) && bRet;
}
{
ThreeByteStruct aIn(9, 10, 11);
ThreeByteStruct aOut = xLBT->echoThreeByteStruct(aIn);
bRet = check( memcmp(&aIn, &aOut, sizeof(ThreeByteStruct)) == 0, "three byte struct test" ) && bRet;
}
{
TestData aRet;
TestData aRet2;
TestData aGVret(
xLBT->getValues(
aRet.Bool,
aRet.Char,
aRet.Byte,
aRet.Short,
aRet.UShort,
aRet.Long,
aRet.ULong,
aRet.Hyper,
aRet.UHyper,
aRet.Float,
aRet.Double,
aRet.Enum,
aRet.String,
aRet.Byte2,
aRet.Short2,
aRet.Interface,
aRet.Any,
aRet.Sequence,
aRet2));
bRet &= check(
(equals(aData, aRet) && equals(aData, aRet2) &&
equals(aData, aGVret)),
"getValues test");
// Set last retrieved values:
xLBT->setBool(aRet.Bool);
xLBT->setChar(aRet.Char);
xLBT->setByte(aRet.Byte);
xLBT->setShort(aRet.Short);
xLBT->setUShort(aRet.UShort);
xLBT->setLong(aRet.Long);
xLBT->setULong(aRet.ULong);
xLBT->setHyper(aRet.Hyper);
xLBT->setUHyper(aRet.UHyper);
xLBT->setFloat(aRet.Float);
xLBT->setDouble(aRet.Double);
xLBT->setEnum(aRet.Enum);
xLBT->setString(aRet.String);
xLBT->setByte2(aRet.Byte2);
xLBT->setShort2(aRet.Short2);
xLBT->setInterface(aRet.Interface);
xLBT->setAny(aRet.Any);
xLBT->setSequence(aRet.Sequence);
xLBT->setStruct(aRet2);
}
{
TestData aRet;
aRet.Hyper = xLBT->getHyper();
aRet.UHyper = xLBT->getUHyper();
aRet.Float = xLBT->getFloat();
aRet.Double = xLBT->getDouble();
aRet.Byte = xLBT->getByte();
aRet.Char = xLBT->getChar();
aRet.Bool = xLBT->getBool();
aRet.Short = xLBT->getShort();
aRet.UShort = xLBT->getUShort();
aRet.Long = xLBT->getLong();
aRet.ULong = xLBT->getULong();
aRet.Enum = xLBT->getEnum();
aRet.String = xLBT->getString();
aRet.Byte2 = xLBT->getByte2();
aRet.Short2 = xLBT->getShort2();
aRet.Interface = xLBT->getInterface();
aRet.Any = xLBT->getAny();
aRet.Sequence = xLBT->getSequence();
TestData aRet2(xLBT->getStruct());
bRet &= check(
equals(aData, aRet) && equals(aData, aRet2),
"struct comparison test");
{
SmallStruct aIn(1, 2);
SmallStruct aOut(xLBT->echoSmallStruct(aIn));
bRet &= check(
memcmp(&aIn, &aOut, sizeof(SmallStruct)) == 0,
"small struct test");
}
{
MediumStruct aIn(1, 2, 3, 4);
MediumStruct aOut(xLBT->echoMediumStruct(aIn));
bRet &= check(
memcmp(&aIn, &aOut, sizeof(MediumStruct)) == 0,
"medium struct test");
}
{
BigStruct aIn(1, 2, 3, 4, 5, 6, 7, 8);
BigStruct aOut(xLBT->echoBigStruct(aIn));
bRet &= check(
memcmp(&aIn, &aOut, sizeof(BigStruct)) == 0,
"big struct test");
}
{
sal_Int32 i2 = xLBT->testPPCAlignment(0, 0, 0, 0, 0xBEAF);
bRet &= check(i2 == 0xBEAF, "ppc-style alignment test");
}
{
sal_Int32 i1 = xLBT->testPPC64Alignment(1.0, 2.0, 3.0, 0xBEAF);
bRet &= check(i1 == 0xBEAF, "ppc64-style alignment test");
}
{
double d1 = xLBT->testTenDoubles(0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0);
bRet &= check(d1 == 5.5, "armhf doubles test");
}
// Test extended attributes that raise exceptions:
try {
xLBT->getRaiseAttr1();
bRet &= check(false, "getRaiseAttr1 did not throw");
} catch (const RuntimeException &) {
} catch (...) {
bRet &= check(false, "getRaiseAttr1 threw wrong type");
}
try {
xLBT->setRaiseAttr1(0);
bRet &= check(false, "setRaiseAttr1 did not throw");
} catch (const IllegalArgumentException &) {
} catch (...) {
bRet &= check(false, "setRaiseAttr1 threw wrong type");
}
try {
xLBT->getRaiseAttr2();
bRet &= check(false, "getRaiseAttr2 did not throw");
} catch (const IllegalArgumentException &) {
} catch (...) {
bRet &= check(false, "getRaiseAttr2 threw wrong type");
}
// Test instantiated polymorphic struct types:
{
bRet &= check(
(xLBT->transportPolyBoolean(
TestPolyStruct< sal_Bool >(true)).
member),
"transportPolyBoolean");
TestPolyStruct< sal_Int64 > tps1(12345);
xLBT->transportPolyHyper(tps1);
bRet &= check(tps1.member == 12345, "transportPolyHyper");
Sequence< Any > seq(2);
seq[0] <<= static_cast< sal_uInt32 >(33);
seq[1] <<= OUString("ABC");
TestPolyStruct< Sequence< Any > > tps2(seq);
TestPolyStruct< Sequence< Any > > tps3;
xLBT->transportPolySequence(tps2, tps3);
bRet &= check(
tps3.member.getLength() == 2,
"transportPolySequence, length");
sal_uInt32 v0 = sal_uInt32();
tps3.member[0] >>= v0;
bRet &= check(v0 == 33, "transportPolySequence, element 0");
OUString v1;
tps3.member[1] >>= v1;
bRet &= check( v1 == "ABC", "transportPolySequence, element 1" );
bRet &= check(
xLBT->getNullPolyLong().member == 0, "getNullPolyLong");
bRet &= check(
xLBT->getNullPolyString().member.isEmpty(),
"getNullPolyString");
bRet &= check(
xLBT->getNullPolyType().member == Type(),
"getNullPolyType");
Any nullAny(xLBT->getNullPolyAny().member);
auto ifc = o3tl::tryAccess<Reference<XInterface>>(nullAny);
bRet &= check(
!nullAny.hasValue() || (ifc && !ifc->is()),
"getNullPolyAny");
bRet &= check(
!xLBT->getNullPolySequence().member.hasElements(),
"getNullPolySequence");
bRet &= check(
xLBT->getNullPolyEnum().member == TestEnum_TEST,
"getNullPolyEnum");
bRet &= check(
xLBT->getNullPolyBadEnum().member == TestBadEnum_M,
"getNullPolyBadEnum");
bRet &= check(
xLBT->getNullPolyStruct().member.member == 0,
"getNullPolyStruct");
bRet &= check(
!xLBT->getNullPolyInterface().member.is(),
"getNullPolyInterface");
}
// Any test:
bRet &= check(performAnyTest(xLBT , aData), "any test");
// Sequence of call test:
bRet &= check(
performSequenceOfCallTest(xLBT), "sequence of call test");
// Recursive call test:
bRet &= check(performRecursiveCallTest(xLBT), "recursive test");
bRet &= check(
equals(aData, aRet) && equals(aData, aRet2),
"recursive test results");
// Multiple inheritance test:
bRet &= checkEmpty(
testtools::bridgetest::testMulti(xLBT->getMulti()),
"remote multi");
bRet &= checkEmpty(
xLBT->testMulti(new testtools::bridgetest::Multi),
"local multi");
}
}
{
Reference< XBridgeTest2 > xBT2(xLBT, UNO_QUERY);
if (!xBT2.is()) {
return bRet;
}
// Perform sequence tests (XBridgeTest2); create the sequence which is
// compared with the results:
sal_Int32 _arLong[] = {
static_cast< sal_Int32 >(0x80000000), 1, 0x7FFFFFFF };
sal_Int32 _aInt = 0xBABEBABE;
float _aFloat = 3.14f;
Any _any1(true);
Any _any2(&_aInt, cppu::UnoType<sal_Int32>::get());
Any _any3(&_aFloat, cppu::UnoType<float>::get());
Any _arAny[] = { _any1, _any2, _any3 };
Reference< XInterface > _arObj[3];
_arObj[0] = new OWeakObject();
_arObj[1] = new OWeakObject();
_arObj[2] = new OWeakObject();
TestElement _arStruct[3];
assign(
_arStruct[0], true, '@', 17, 0x1234, 0xFEDC, 0x12345678, 0xFEDCBA98,
SAL_CONST_INT64(0x123456789ABCDEF0),
SAL_CONST_UINT64(0xFEDCBA9876543210), 17.0815f, 3.1415926359,
TestEnum_LOLA, STRING_TEST_CONSTANT, 18, 0x5678, _arObj[0],
Any(&_arObj[0], cppu::UnoType<XInterface>::get()));
assign(
_arStruct[1], true, 'A', 17, 0x1234, 0xFEDC, 0x12345678, 0xFEDCBA98,
SAL_CONST_INT64(0x123456789ABCDEF0),
SAL_CONST_UINT64(0xFEDCBA9876543210), 17.0815f, 3.1415926359,
TestEnum_TWO, STRING_TEST_CONSTANT, 18, 0x5678, _arObj[1],
Any(&_arObj[1], cppu::UnoType<XInterface>::get()));
assign(
_arStruct[2], true, 'B', 17, 0x1234, 0xFEDC, 0x12345678, 0xFEDCBA98,
SAL_CONST_INT64(0x123456789ABCDEF0),
SAL_CONST_UINT64(0xFEDCBA9876543210), 17.0815f, 3.1415926359,
TestEnum_CHECK, STRING_TEST_CONSTANT, 18, 0x5678, _arObj[2],
Any(&_arObj[2], cppu::UnoType<XInterface>::get()));
{
Sequence<sal_Bool> arBool({true, false, true});
Sequence<sal_Unicode> arChar({0x0065, 0x0066, 0x0067});
Sequence<sal_Int8> arByte({1, 2, -1});
Sequence<sal_Int16> arShort({-0x8000, 1, 0x7FFF});
Sequence<sal_uInt16> arUShort({0 , 1, 0xFFFF});
Sequence<sal_Int32> arLong(_arLong, 3);
Sequence<sal_uInt32> arULong({0, 1, 0xFFFFFFFF});
Sequence<sal_Int64> arHyper({
static_cast<sal_Int64>(SAL_CONST_INT64(0x8000000000000000)), 1,
SAL_CONST_INT64(0x7FFFFFFFFFFFFFFF)});
Sequence<sal_uInt64> arUHyper({
0, 1, SAL_CONST_UINT64(0xFFFFFFFFFFFFFFFF)});
Sequence<float> arFloat({1.1f, 2.2f, 3.3f});
Sequence<double> arDouble({1.11, 2.22, 3.33});
Sequence<OUString> arString({
OUString("String 1"), OUString("String 2"),
OUString("String 3")});
Sequence<Any> arAny(_arAny, 3);
Sequence<Reference<XInterface> > arObject(_arObj, 3);
Sequence<TestEnum> arEnum({
TestEnum_ONE, TestEnum_TWO, TestEnum_CHECK});
Sequence<TestElement> arStruct(_arStruct, 3);
Sequence<Sequence<sal_Int32> > _arSeqLong2[3];
for (int j = 0; j != 3; ++j) {
Sequence< sal_Int32 > _arSeqLong[3];
for (int i = 0; i != 3; ++i) {
_arSeqLong[i] = Sequence< sal_Int32 >(_arLong, 3);
}
_arSeqLong2[j] = Sequence< Sequence< sal_Int32 > >(
_arSeqLong, 3);
}
Sequence< Sequence< Sequence< sal_Int32> > > arLong3(
_arSeqLong2, 3);
Sequence< Sequence< sal_Int32 > > seqSeqRet(
xBT2->setDim2(arLong3[0]));
bRet &= check(seqSeqRet == arLong3[0], "sequence test");
Sequence< Sequence< Sequence< sal_Int32 > > > seqSeqRet2(
xBT2->setDim3(arLong3));
bRet &= check(seqSeqRet2 == arLong3, "sequence test");
Sequence< Any > seqAnyRet(xBT2->setSequenceAny(arAny));
bRet &= check(seqAnyRet == arAny, "sequence test");
Sequence< sal_Bool > seqBoolRet(xBT2->setSequenceBool(arBool));
bRet &= check(seqBoolRet == arBool, "sequence test");
Sequence< sal_Int8 > seqByteRet(xBT2->setSequenceByte(arByte));
bRet &= check(seqByteRet == arByte, "sequence test");
Sequence< sal_Unicode > seqCharRet(xBT2->setSequenceChar(arChar));
bRet &= check(seqCharRet == arChar, "sequence test");
Sequence< sal_Int16 > seqShortRet(xBT2->setSequenceShort(arShort));
bRet &= check(seqShortRet == arShort, "sequence test");
Sequence< sal_Int32 > seqLongRet(xBT2->setSequenceLong(arLong));
bRet &= check(seqLongRet == arLong, "sequence test");
Sequence< sal_Int64 > seqHyperRet(xBT2->setSequenceHyper(arHyper));
bRet &= check(seqHyperRet == arHyper, "sequence test");
Sequence< float > seqFloatRet(xBT2->setSequenceFloat(arFloat));
bRet &= check(seqFloatRet == arFloat, "sequence test");
Sequence< double > seqDoubleRet(xBT2->setSequenceDouble(arDouble));
bRet &= check(seqDoubleRet == arDouble, "sequence test");
Sequence< TestEnum > seqEnumRet(xBT2->setSequenceEnum(arEnum));
bRet &= check(seqEnumRet == arEnum, "sequence test");
Sequence< sal_uInt16 > seqUShortRet(
xBT2->setSequenceUShort(arUShort));
bRet &= check(seqUShortRet == arUShort, "sequence test");
Sequence< sal_uInt32 > seqULongRet(xBT2->setSequenceULong(arULong));
bRet &= check(seqULongRet == arULong, "sequence test");
Sequence< sal_uInt64 > seqUHyperRet(
xBT2->setSequenceUHyper(arUHyper));
bRet &= check(seqUHyperRet == arUHyper, "sequence test");
Sequence< Reference< XInterface > > seqObjectRet(
xBT2->setSequenceXInterface(arObject));
bRet &= check(seqObjectRet == arObject, "sequence test");
Sequence< OUString > seqStringRet(
xBT2->setSequenceString(arString));
bRet &= check(seqStringRet == arString, "sequence test");
Sequence< TestElement > seqStructRet(
xBT2->setSequenceStruct(arStruct));
bRet &= check(seqStructRet == arStruct, "sequence test");
Sequence< sal_Bool > arBoolTemp(cloneSequence(arBool));
Sequence< sal_Unicode > arCharTemp(cloneSequence<sal_Unicode, cppu::UnoCharType>(arChar));
Sequence< sal_Int8 > arByteTemp(cloneSequence(arByte));
Sequence< sal_Int16 > arShortTemp(cloneSequence(arShort));
Sequence< sal_uInt16 > arUShortTemp(cloneSequence<sal_uInt16, cppu::UnoUnsignedShortType>(arUShort));
Sequence< sal_Int32 > arLongTemp(cloneSequence(arLong));
Sequence< sal_uInt32 > arULongTemp(cloneSequence(arULong));
Sequence< sal_Int64 > arHyperTemp(cloneSequence(arHyper));
Sequence< sal_uInt64 > arUHyperTemp(cloneSequence(arUHyper));
Sequence< float > arFloatTemp(cloneSequence(arFloat));
Sequence< double > arDoubleTemp(cloneSequence(arDouble));
Sequence< TestEnum > arEnumTemp(cloneSequence(arEnum));
Sequence< OUString > arStringTemp(cloneSequence(arString));
Sequence< Reference< XInterface > > arObjectTemp(
cloneSequence(arObject));
Sequence< Any > arAnyTemp(cloneSequence(arAny));
Sequence< Sequence< sal_Int32 > > arLong2Temp(arLong3[0]);
Sequence< Sequence< Sequence< sal_Int32 > > > arLong3Temp(arLong3);
xBT2->setSequencesInOut(
arBoolTemp, arCharTemp, arByteTemp, arShortTemp, arUShortTemp,
arLongTemp,arULongTemp, arHyperTemp, arUHyperTemp, arFloatTemp,
arDoubleTemp, arEnumTemp, arStringTemp, arObjectTemp, arAnyTemp,
arLong2Temp, arLong3Temp);
bRet &= check(
(arBoolTemp == arBool && arCharTemp == arChar &&
arByteTemp == arByte && arShortTemp == arShort &&
arUShortTemp == arUShort && arLongTemp == arLong &&
arULongTemp == arULong && arHyperTemp == arHyper &&
arUHyperTemp == arUHyper && arFloatTemp == arFloat &&
arDoubleTemp == arDouble && arEnumTemp == arEnum &&
arStringTemp == arString && arObjectTemp == arObject &&
arAnyTemp == arAny && arLong2Temp == arLong3[0] &&
arLong3Temp == arLong3),
"sequence test");
Sequence< sal_Bool > arBoolOut;
Sequence< sal_Unicode > arCharOut;
Sequence< sal_Int8 > arByteOut;
Sequence< sal_Int16 > arShortOut;
Sequence< sal_uInt16 > arUShortOut;
Sequence< sal_Int32 > arLongOut;
Sequence< sal_uInt32 > arULongOut;
Sequence< sal_Int64 > arHyperOut;
Sequence< sal_uInt64 > arUHyperOut;
Sequence< float > arFloatOut;
Sequence< double > arDoubleOut;
Sequence< TestEnum > arEnumOut;
Sequence< OUString > arStringOut;
Sequence< Reference< XInterface > > arObjectOut;
Sequence< Any > arAnyOut;
Sequence< Sequence< sal_Int32 > > arLong2Out;
Sequence< Sequence< Sequence< sal_Int32 > > > arLong3Out;
xBT2->setSequencesOut(
arBoolOut, arCharOut, arByteOut, arShortOut, arUShortOut,
arLongOut,arULongOut, arHyperOut, arUHyperOut, arFloatOut,
arDoubleOut, arEnumOut, arStringOut, arObjectOut, arAnyOut,
arLong2Out, arLong3Out);
bRet &= check(
(arBoolOut == arBool && arCharOut == arChar &&
arByteOut == arByte && arShortOut == arShort &&
arUShortOut == arUShort && arLongOut == arLong &&
arULongOut == arULong && arHyperOut == arHyper &&
arUHyperOut == arUHyper && arFloatOut == arFloat &&
arDoubleOut == arDouble && arEnumOut == arEnum &&
arStringOut == arString && arObjectOut == arObject &&
arAnyOut == arAny && arLong2Out == arLong3[0] &&
arLong3Out == arLong3),
"sequence test");
}
{
// Test with empty sequences:
Sequence< Sequence< sal_Int32 > > arLong2;
Sequence< Sequence< sal_Int32 > > seqSeqRet(xBT2->setDim2(arLong2));
bRet &= check(seqSeqRet == arLong2, "sequence test");
Sequence< Sequence< Sequence< sal_Int32 > > > arLong3;
Sequence< Sequence< Sequence< sal_Int32 > > > seqSeqRet2(
xBT2->setDim3(arLong3));
bRet &= check(seqSeqRet2 == arLong3, "sequence test");
Sequence< Any > arAny;
Sequence< Any > seqAnyRet(xBT2->setSequenceAny(arAny));
bRet &= check(seqAnyRet == arAny, "sequence test");
Sequence< sal_Bool > arBool;
Sequence< sal_Bool > seqBoolRet(xBT2->setSequenceBool(arBool));
bRet &= check(seqBoolRet == arBool, "sequence test");
Sequence< sal_Int8 > arByte;
Sequence< sal_Int8 > seqByteRet(xBT2->setSequenceByte(arByte));
bRet &= check(seqByteRet == arByte, "sequence test");
Sequence< sal_Unicode > arChar;
Sequence< sal_Unicode > seqCharRet(xBT2->setSequenceChar(arChar));
bRet &= check(seqCharRet == arChar, "sequence test");
Sequence< sal_Int16 > arShort;
Sequence< sal_Int16 > seqShortRet(xBT2->setSequenceShort(arShort));
bRet &= check(seqShortRet == arShort, "sequence test");
Sequence< sal_Int32 > arLong;
Sequence< sal_Int32 > seqLongRet(xBT2->setSequenceLong(arLong));
bRet &= check(seqLongRet == arLong, "sequence test");
Sequence< sal_Int64 > arHyper;
Sequence< sal_Int64 > seqHyperRet(xBT2->setSequenceHyper(arHyper));
bRet &= check(seqHyperRet == arHyper, "sequence test");
Sequence< float > arFloat;
Sequence< float > seqFloatRet(xBT2->setSequenceFloat(arFloat));
bRet &= check(seqFloatRet == arFloat, "sequence test");
Sequence< double > arDouble;
Sequence< double > seqDoubleRet(xBT2->setSequenceDouble(arDouble));
bRet &= check(seqDoubleRet == arDouble, "sequence test");
Sequence< TestEnum > arEnum;
Sequence< TestEnum > seqEnumRet(xBT2->setSequenceEnum(arEnum));
bRet &= check(seqEnumRet == arEnum, "sequence test");
Sequence< sal_uInt16 > arUShort;
Sequence< sal_uInt16 > seqUShortRet(
xBT2->setSequenceUShort(arUShort));
bRet &= check(seqUShortRet == arUShort, "sequence test");
Sequence< sal_uInt32 > arULong;
Sequence< sal_uInt32 > seqULongRet(xBT2->setSequenceULong(arULong));
bRet &= check(seqULongRet == arULong, "sequence test");
Sequence< sal_uInt64 > arUHyper;
Sequence< sal_uInt64 > seqUHyperRet(
xBT2->setSequenceUHyper(arUHyper));
bRet &= check(seqUHyperRet == arUHyper, "sequence test");
Sequence< Reference< XInterface > > arObject;
Sequence< Reference< XInterface > > seqObjectRet(
xBT2->setSequenceXInterface(arObject));
bRet &= check(seqObjectRet == arObject, "sequence test");
Sequence< OUString > arString;
Sequence< OUString > seqStringRet(
xBT2->setSequenceString(arString));
bRet &= check(seqStringRet == arString, "sequence test");
Sequence< TestElement > arStruct;
Sequence< TestElement > seqStructRet(
xBT2->setSequenceStruct(arStruct));
bRet &= check(seqStructRet == arStruct, "sequence test");
}
// Issue #i60341# shows that the most interesting case is were Java
// calls the constructors; however, since this client is currently not
// available in Java, while the server is, the logic is reversed here:
try {
xBT2->testConstructorsService(xContext);
} catch (const BadConstructorArguments &) {
bRet = false;
}
if (!noCurrentContext) {
if (!(new testtools::bridgetest::CurrentContextChecker)->perform(
xBT2->getCurrentContextChecker(), 0, 1))
{
bRet = false;
}
if (!(new testtools::bridgetest::CurrentContextChecker)->perform(
xBT2->getCurrentContextChecker(), 0, 2))
{
bRet = false;
}
if (!(new testtools::bridgetest::CurrentContextChecker)->perform(
xBT2->getCurrentContextChecker(), 1, 2))
{
bRet = false;
}
if (!(new testtools::bridgetest::CurrentContextChecker)->perform(
xBT2->getCurrentContextChecker(), 1, 3))
{
bRet = false;
}
}
}
return bRet;
}
static bool raiseOnewayException( const Reference < XBridgeTest > & xLBT )
{
bool bReturn = true;
Reference<XInterface> const x(xLBT->getInterface());
try
{
// Note : the exception may fly or not (e.g. remote scenario).
// When it flies, it must contain the correct elements.
xLBT->raiseRuntimeExceptionOneway( STRING_TEST_CONSTANT, x );
}
catch( const RuntimeException & e )
{
bReturn = (
#if OSL_DEBUG_LEVEL == 0
// java stack traces trash Message
e.Message == STRING_TEST_CONSTANT &&
#endif
xLBT->getInterface() == e.Context &&
x == e.Context );
}
return bReturn;
}
static bool raiseException( const Reference< XBridgeTest > & xLBT )
{
sal_Int32 nCount = 0;
try
{
try
{
try
{
xLBT->raiseException(
5, STRING_TEST_CONSTANT,
xLBT->getInterface() );
}
catch (const IllegalArgumentException &rExc)
{
if (rExc.ArgumentPosition == 5 &&
#if OSL_DEBUG_LEVEL == 0
// java stack traces trash Message
rExc.Message.startsWith(STRING_TEST_CONSTANT) &&
#endif
rExc.Context == xLBT->getInterface())
{
#ifdef COMPCHECK
//When we check if a new compiler still works then we must not call
//getRuntimeException because it uses cppu::getCaughtException which
//does only work if all libs are build with the same runtime.
return true;
#else
++nCount;
#endif
}
else
{
check( false, "### unexpected exception content!" );
}
/** it is certain, that the RuntimeException testing will fail, if no */
xLBT->getRuntimeException();
}
}
catch (const RuntimeException & rExc)
{
if (rExc.Context == xLBT->getInterface()
#if OSL_DEBUG_LEVEL == 0
// java stack traces trash Message
&& rExc.Message.startsWith(STRING_TEST_CONSTANT)
#endif
)
{
++nCount;
}
else
{
check( false, "### unexpected exception content!" );
}
/** it is certain, that the RuntimeException testing will fail, if no */
xLBT->setRuntimeException( 0xcafebabe );
}
}
catch (const Exception & rExc)
{
if (rExc.Context == xLBT->getInterface()
#if OSL_DEBUG_LEVEL == 0
// java stack traces trash Message
&& rExc.Message.startsWith(STRING_TEST_CONSTANT)
#endif
)
{
++nCount;
}
else
{
check( false, "### unexpected exception content!" );
}
return (nCount == 3);
}
return false;
}
/* Returns an acquired sequence
*/
static uno_Sequence* cloneSequence(const uno_Sequence* val, const Type& type)
{
TypeDescription td(type);
td.makeComplete();
typelib_TypeDescription* pTdRaw = td.get();
typelib_IndirectTypeDescription* pIndirectTd =
reinterpret_cast<typelib_IndirectTypeDescription*>(pTdRaw);
typelib_TypeDescription* pTdElem = pIndirectTd->pType->pType;
std::unique_ptr<sal_Int8[]> buf(new sal_Int8[pTdElem->nSize * val->nElements]);
sal_Int8* pBufCur = buf.get();
uno_Sequence* retSeq = nullptr;
switch (static_cast<TypeClass>(pTdElem->eTypeClass))
{
case TypeClass_SEQUENCE:
{
Type _tElem(pTdElem->pWeakRef);
for (int i = 0; i < val->nElements; i++)
{
sal_Int8 const *pValBuf = reinterpret_cast<sal_Int8 const *>(&val->elements + i * pTdElem->nSize);
uno_Sequence* seq = cloneSequence(
reinterpret_cast<uno_Sequence const *>(pValBuf),
_tElem);
*reinterpret_cast<uno_Sequence**>(pBufCur) = seq;
pBufCur += pTdElem->nSize;
}
break;
}
default:
uno_type_sequence_construct(
&retSeq, type.getTypeLibType(), const_cast<char *>(val->elements),
val->nElements, reinterpret_cast< uno_AcquireFunc >(cpp_acquire));
break;
}
return retSeq;
}
template<typename T, typename U>
Sequence<T> cloneSequence(const Sequence<T>& val)
{
Sequence<T> seq( cloneSequence(val.get(), cppu::UnoType<cppu::UnoSequenceType<U>>::get()), SAL_NO_ACQUIRE);
return seq;
}
template< class T >
static bool makeSurrogate(
Reference< T > & rOut, Reference< T > const & rOriginal )
{
rOut.clear();
if (! rOriginal.is())
return false;
Environment aCppEnv_official;
Environment aUnoEnv_ano;
Environment aCppEnv_ano;
OUString aCppEnvTypeName(
CPPU_CURRENT_LANGUAGE_BINDING_NAME );
OUString aUnoEnvTypeName(
UNO_LB_UNO );
// official:
uno_getEnvironment(
reinterpret_cast< uno_Environment ** >( &aCppEnv_official ),
aCppEnvTypeName.pData, nullptr );
// anonymous:
uno_createEnvironment(
reinterpret_cast< uno_Environment ** >( &aCppEnv_ano ),
aCppEnvTypeName.pData, nullptr );
uno_createEnvironment(
reinterpret_cast< uno_Environment ** >( &aUnoEnv_ano ),
aUnoEnvTypeName.pData, nullptr );
UnoInterfaceReference unoI;
Mapping cpp2uno( aCppEnv_official.get(), aUnoEnv_ano.get() );
Mapping uno2cpp( aUnoEnv_ano.get(), aCppEnv_ano.get() );
if (!cpp2uno.is() || !uno2cpp.is())
{
throw RuntimeException("cannot get C++-UNO mappings!" );
}
cpp2uno.mapInterface(
reinterpret_cast< void ** >( &unoI.m_pUnoI ),
rOriginal.get(), cppu::UnoType<decltype(rOriginal)>::get() );
if (! unoI.is())
{
throw RuntimeException(
"mapping C++ to binary UNO failed!" );
}
uno2cpp.mapInterface(
reinterpret_cast< void ** >( &rOut ),
unoI.get(), cppu::UnoType<decltype(rOriginal)>::get() );
if (! rOut.is())
{
throw RuntimeException(
"mapping binary UNO to C++ failed!" );
}
return rOut.is();
}
sal_Int32 TestBridgeImpl::run( const Sequence< OUString > & rArgs )
{
bool bRet = false;
try
{
if (! rArgs.hasElements())
{
throw RuntimeException( "no test object specified!\n"
"usage : ServiceName of test object | -u unourl of test object" );
}
Reference< XInterface > xOriginal;
bool remote;
sal_Int32 i;
if( rArgs.getLength() > 1 && rArgs[0] == "-u" )
{
remote = true;
i = 2;
}
else
{
remote = false;
i = 1;
}
bool noCurrentContext = false;
if ( i < rArgs.getLength() && rArgs[i] == "noCurrentContext" )
{
noCurrentContext = true;
++i;
}
bool stress = false;
if ( i < rArgs.getLength() && rArgs[i] == "stress" )
{
stress = true;
++i;
}
for (;;) {
Reference< XInterface > o;
if (remote) {
o = UnoUrlResolver::create(m_xContext)->resolve(rArgs[1]);
} else {
o = m_xContext->getServiceManager()->createInstanceWithContext(
rArgs[0], m_xContext);
}
if (!stress) {
xOriginal = o;
break;
}
}
if (! xOriginal.is())
{
throw RuntimeException( "cannot get test object!" );
}
Reference< XBridgeTest > xTest( xOriginal, UNO_QUERY_THROW );
Reference<XBridgeTest > xLBT;
bRet = check( makeSurrogate( xLBT, xTest ), "makeSurrogate" );
bRet = check(
performTest( m_xContext, xLBT, noCurrentContext ), "standard test" )
&& bRet;
bRet = check( raiseException( xLBT ) , "exception test" )&& bRet;
bRet = check( raiseOnewayException( xLBT ),
"oneway exception test" ) && bRet;
if (! bRet)
{
throw RuntimeException( "error: test failed!" );
}
}
catch (const Exception & exc)
{
OString cstr( OUStringToOString( exc.Message, RTL_TEXTENCODING_ASCII_US ) );
fprintf( stderr, "exception occurred: %s\n", cstr.getStr() );
throw;
}
return bRet ? 0 : 1;
}
// XServiceInfo
OUString TestBridgeImpl::getImplementationName()
{
return IMPLNAME;
}
sal_Bool TestBridgeImpl::supportsService( const OUString & rServiceName )
{
return cppu::supportsService(this, rServiceName);
}
Sequence< OUString > TestBridgeImpl::getSupportedServiceNames()
{
return bridge_test::getSupportedServiceNames();
}
static Reference< XInterface > TestBridgeImpl_create(
const Reference< XComponentContext > & xContext )
{
return Reference< XInterface >(
static_cast< OWeakObject * >( new TestBridgeImpl( xContext ) ) );
}
}
extern "C"
{
SAL_DLLPUBLIC_EXPORT void * component_getFactory(
const char * pImplName, void * pServiceManager,
SAL_UNUSED_PARAMETER void * )
{
void * pRet = nullptr;
if (pServiceManager && rtl_str_compare( pImplName, IMPLNAME ) == 0)
{
Reference< XInterface > xFactory(
createSingleComponentFactory(
bridge_test::TestBridgeImpl_create,
IMPLNAME,
bridge_test::getSupportedServiceNames() ) );
if (xFactory.is())
{
xFactory->acquire();
pRet = xFactory.get();
}
}
return pRet;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */