office-gobmx/drawinglayer/source/processor2d/vclprocessor2d.cxx
Thomas Arnhold f5ca04caca Related to fdo#60724: correct spelling
Using the autocorrect list of LibreOffice
extras/source/autotext/lang/en-US/acor/DocumentList.xml

Change-Id: I8b93969bc0742c2e95b8b7db3c4c37691e8d3657
Script: http://pastebin.ca/2327716
2013-03-03 17:14:16 +01:00

1651 lines
77 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <comphelper/string.hxx>
#include <drawinglayer/processor2d/vclprocessor2d.hxx>
#include <drawinglayer/primitive2d/textprimitive2d.hxx>
#include <drawinglayer/primitive2d/textdecoratedprimitive2d.hxx>
#include <tools/debug.hxx>
#include <vcl/outdev.hxx>
#include <drawinglayer/primitive2d/polygonprimitive2d.hxx>
#include <drawinglayer/primitive2d/bitmapprimitive2d.hxx>
#include <vclhelperbitmaptransform.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <vclhelperbitmaprender.hxx>
#include <drawinglayer/attribute/sdrfillbitmapattribute.hxx>
#include <drawinglayer/primitive2d/fillbitmapprimitive2d.hxx>
#include <drawinglayer/primitive2d/polypolygonprimitive2d.hxx>
#include <vclhelpergradient.hxx>
#include <drawinglayer/primitive2d/metafileprimitive2d.hxx>
#include <drawinglayer/primitive2d/maskprimitive2d.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <vclhelperbufferdevice.hxx>
#include <drawinglayer/primitive2d/modifiedcolorprimitive2d.hxx>
#include <drawinglayer/primitive2d/unifiedtransparenceprimitive2d.hxx>
#include <drawinglayer/primitive2d/transparenceprimitive2d.hxx>
#include <drawinglayer/primitive2d/transformprimitive2d.hxx>
#include <drawinglayer/primitive2d/markerarrayprimitive2d.hxx>
#include <drawinglayer/primitive2d/pointarrayprimitive2d.hxx>
#include <drawinglayer/primitive2d/wrongspellprimitive2d.hxx>
#include <drawinglayer/primitive2d/pagepreviewprimitive2d.hxx>
#include <tools/diagnose_ex.h>
#include <rtl/ustrbuf.hxx>
#include <vcl/metric.hxx>
#include <drawinglayer/primitive2d/textenumsprimitive2d.hxx>
#include <drawinglayer/primitive2d/epsprimitive2d.hxx>
#include <drawinglayer/primitive2d/svggradientprimitive2d.hxx>
#include <basegfx/color/bcolor.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include "getdigitlanguage.hxx"
//////////////////////////////////////////////////////////////////////////////
// control support
#include <com/sun/star/awt/XWindow2.hpp>
#include <com/sun/star/awt/PosSize.hpp>
#include <com/sun/star/awt/XView.hpp>
#include <drawinglayer/primitive2d/controlprimitive2d.hxx>
#include <drawinglayer/primitive2d/textlayoutdevice.hxx>
//////////////////////////////////////////////////////////////////////////////
// for test, can be removed again
#include <basegfx/polygon/b2dpolygonclipper.hxx>
#include <basegfx/polygon/b2dtrapezoid.hxx>
//////////////////////////////////////////////////////////////////////////////
using namespace com::sun::star;
//////////////////////////////////////////////////////////////////////////////
namespace
{
sal_uInt32 calculateStepsForSvgGradient(const basegfx::BColor& rColorA, const basegfx::BColor& rColorB, double fDelta, double fDiscreteUnit)
{
// use color distance, assume to do every color step
sal_uInt32 nSteps(basegfx::fround(rColorA.getDistance(rColorB) * 255.0));
if(nSteps)
{
// calc discrete length to change color each disctete unit (pixel)
const sal_uInt32 nDistSteps(basegfx::fround(fDelta / fDiscreteUnit));
nSteps = std::min(nSteps, nDistSteps);
}
// reduce quality to 3 discrete units or every 3rd color step for rendering
nSteps /= 2;
// roughly cut when too big or too small (not full quality, reduce complexity)
nSteps = std::min(nSteps, sal_uInt32(255));
nSteps = std::max(nSteps, sal_uInt32(1));
return nSteps;
}
} // end of anonymous namespace
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace processor2d
{
//////////////////////////////////////////////////////////////////////////////
// UNO class usages
using ::com::sun::star::uno::Reference;
using ::com::sun::star::uno::UNO_QUERY;
using ::com::sun::star::uno::UNO_QUERY_THROW;
using ::com::sun::star::uno::Exception;
using ::com::sun::star::awt::XView;
using ::com::sun::star::awt::XGraphics;
using ::com::sun::star::awt::XWindow;
using ::com::sun::star::awt::PosSize::POSSIZE;
//////////////////////////////////////////////////////////////////////////////
// rendering support
// directdraw of text simple portion or decorated portion primitive. When decorated, all the extra
// information is translated to VCL parameters and set at the font.
// Acceptance is restricted to no shearing and positive scaling in X and Y (no font mirroring
// for VCL)
void VclProcessor2D::RenderTextSimpleOrDecoratedPortionPrimitive2D(const primitive2d::TextSimplePortionPrimitive2D& rTextCandidate)
{
// decompose matrix to have position and size of text
basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rTextCandidate.getTextTransform());
basegfx::B2DVector aFontScaling, aTranslate;
double fRotate, fShearX;
aLocalTransform.decompose(aFontScaling, aTranslate, fRotate, fShearX);
bool bPrimitiveAccepted(false);
if(basegfx::fTools::equalZero(fShearX))
{
if(basegfx::fTools::less(aFontScaling.getX(), 0.0) && basegfx::fTools::less(aFontScaling.getY(), 0.0))
{
// handle special case: If scale is negative in (x,y) (3rd quadrant), it can
// be expressed as rotation by PI. Use this since the Font rendering will not
// apply the negative scales in any form
aFontScaling = basegfx::absolute(aFontScaling);
fRotate += F_PI;
}
if(basegfx::fTools::more(aFontScaling.getX(), 0.0) && basegfx::fTools::more(aFontScaling.getY(), 0.0))
{
// Get the VCL font (use FontHeight as FontWidth)
Font aFont(primitive2d::getVclFontFromFontAttribute(
rTextCandidate.getFontAttribute(),
aFontScaling.getX(),
aFontScaling.getY(),
fRotate,
rTextCandidate.getLocale()));
// Don't draw fonts without height
if( aFont.GetHeight() <= 0 )
return;
// handle additional font attributes
const primitive2d::TextDecoratedPortionPrimitive2D* pTCPP =
dynamic_cast<const primitive2d::TextDecoratedPortionPrimitive2D*>( &rTextCandidate );
if( pTCPP != NULL )
{
// set the color of text decorations
const basegfx::BColor aTextlineColor = maBColorModifierStack.getModifiedColor(pTCPP->getTextlineColor());
mpOutputDevice->SetTextLineColor( Color(aTextlineColor) );
// set Overline attribute
const FontUnderline eFontOverline(primitive2d::mapTextLineToFontUnderline( pTCPP->getFontOverline() ));
if( eFontOverline != UNDERLINE_NONE )
{
aFont.SetOverline( eFontOverline );
const basegfx::BColor aOverlineColor = maBColorModifierStack.getModifiedColor(pTCPP->getOverlineColor());
mpOutputDevice->SetOverlineColor( Color(aOverlineColor) );
if( pTCPP->getWordLineMode() )
aFont.SetWordLineMode( true );
}
// set Underline attribute
const FontUnderline eFontUnderline(primitive2d::mapTextLineToFontUnderline( pTCPP->getFontUnderline() ));
if( eFontUnderline != UNDERLINE_NONE )
{
aFont.SetUnderline( eFontUnderline );
if( pTCPP->getWordLineMode() )
aFont.SetWordLineMode( true );
//TODO: ??? if( pTCPP->getUnderlineAbove() )
// aFont.SetUnderlineAbove( true );
}
// set Strikeout attribute
const FontStrikeout eFontStrikeout(primitive2d::mapTextStrikeoutToFontStrikeout(pTCPP->getTextStrikeout()));
if( eFontStrikeout != STRIKEOUT_NONE )
aFont.SetStrikeout( eFontStrikeout );
// set EmphasisMark attribute
FontEmphasisMark eFontEmphasisMark = EMPHASISMARK_NONE;
switch( pTCPP->getTextEmphasisMark() )
{
default:
DBG_WARNING1( "DrawingLayer: Unknown EmphasisMark style (%d)!", pTCPP->getTextEmphasisMark() );
// fall through
case primitive2d::TEXT_EMPHASISMARK_NONE: eFontEmphasisMark = EMPHASISMARK_NONE; break;
case primitive2d::TEXT_EMPHASISMARK_DOT: eFontEmphasisMark = EMPHASISMARK_DOT; break;
case primitive2d::TEXT_EMPHASISMARK_CIRCLE: eFontEmphasisMark = EMPHASISMARK_CIRCLE; break;
case primitive2d::TEXT_EMPHASISMARK_DISC: eFontEmphasisMark = EMPHASISMARK_DISC; break;
case primitive2d::TEXT_EMPHASISMARK_ACCENT: eFontEmphasisMark = EMPHASISMARK_ACCENT; break;
}
if( eFontEmphasisMark != EMPHASISMARK_NONE )
{
DBG_ASSERT( (pTCPP->getEmphasisMarkAbove() != pTCPP->getEmphasisMarkBelow()),
"DrawingLayer: Bad EmphasisMark position!" );
if( pTCPP->getEmphasisMarkAbove() )
eFontEmphasisMark |= EMPHASISMARK_POS_ABOVE;
else
eFontEmphasisMark |= EMPHASISMARK_POS_BELOW;
aFont.SetEmphasisMark( eFontEmphasisMark );
}
// set Relief attribute
FontRelief eFontRelief = RELIEF_NONE;
switch( pTCPP->getTextRelief() )
{
default:
DBG_WARNING1( "DrawingLayer: Unknown Relief style (%d)!", pTCPP->getTextRelief() );
// fall through
case primitive2d::TEXT_RELIEF_NONE: eFontRelief = RELIEF_NONE; break;
case primitive2d::TEXT_RELIEF_EMBOSSED: eFontRelief = RELIEF_EMBOSSED; break;
case primitive2d::TEXT_RELIEF_ENGRAVED: eFontRelief = RELIEF_ENGRAVED; break;
}
if( eFontRelief != RELIEF_NONE )
aFont.SetRelief( eFontRelief );
// set Shadow attribute
if( pTCPP->getShadow() )
aFont.SetShadow( true );
}
// create transformed integer DXArray in view coordinate system
::std::vector< sal_Int32 > aTransformedDXArray;
if(rTextCandidate.getDXArray().size())
{
aTransformedDXArray.reserve(rTextCandidate.getDXArray().size());
const basegfx::B2DVector aPixelVector(maCurrentTransformation * basegfx::B2DVector(1.0, 0.0));
const double fPixelVectorFactor(aPixelVector.getLength());
for(::std::vector< double >::const_iterator aStart(rTextCandidate.getDXArray().begin());
aStart != rTextCandidate.getDXArray().end(); ++aStart)
{
aTransformedDXArray.push_back(basegfx::fround((*aStart) * fPixelVectorFactor));
}
}
// set parameters and paint text snippet
const basegfx::BColor aRGBFontColor(maBColorModifierStack.getModifiedColor(rTextCandidate.getFontColor()));
const basegfx::B2DPoint aPoint(aLocalTransform * basegfx::B2DPoint(0.0, 0.0));
const Point aStartPoint(basegfx::fround(aPoint.getX()), basegfx::fround(aPoint.getY()));
const sal_uInt32 nOldLayoutMode(mpOutputDevice->GetLayoutMode());
if(rTextCandidate.getFontAttribute().getRTL())
{
sal_uInt32 nRTLLayoutMode(nOldLayoutMode & ~(TEXT_LAYOUT_COMPLEX_DISABLED));
nRTLLayoutMode |= TEXT_LAYOUT_BIDI_RTL | TEXT_LAYOUT_BIDI_STRONG | TEXT_LAYOUT_TEXTORIGIN_LEFT;
mpOutputDevice->SetLayoutMode(nRTLLayoutMode);
}
mpOutputDevice->SetFont(aFont);
mpOutputDevice->SetTextColor(Color(aRGBFontColor));
String aText( rTextCandidate.getText() );
xub_StrLen nPos = rTextCandidate.getTextPosition();
xub_StrLen nLen = rTextCandidate.getTextLength();
sal_Int32* pDXArray = aTransformedDXArray.size() ? &(aTransformedDXArray[0]) : NULL ;
if ( rTextCandidate.isFilled() )
{
basegfx::B2DVector aOldFontScaling, aOldTranslate;
double fOldRotate, fOldShearX;
rTextCandidate.getTextTransform().decompose(aOldFontScaling, aOldTranslate, fOldRotate, fOldShearX);
long nWidthToFill = static_cast<long>(rTextCandidate.getWidthToFill( ) * aFontScaling.getX() / aOldFontScaling.getX());
long nWidth = mpOutputDevice->GetTextArray(
rTextCandidate.getText(), pDXArray, 0, 1 );
long nChars = 2;
if ( nWidth )
nChars = nWidthToFill / nWidth;
rtl::OUStringBuffer aFilled;
comphelper::string::padToLength(aFilled, (sal_uInt16)nChars, aText.GetChar(0));
aText = aFilled.makeStringAndClear();
nPos = 0;
nLen = nChars;
}
if(!aTransformedDXArray.empty())
{
mpOutputDevice->DrawTextArray(
aStartPoint,
aText,
pDXArray,
nPos,
nLen);
}
else
{
mpOutputDevice->DrawText(
aStartPoint,
aText,
nPos,
nLen);
}
if(rTextCandidate.getFontAttribute().getRTL())
{
mpOutputDevice->SetLayoutMode(nOldLayoutMode);
}
bPrimitiveAccepted = true;
}
}
if(!bPrimitiveAccepted)
{
// let break down
process(rTextCandidate.get2DDecomposition(getViewInformation2D()));
}
}
// direct draw of hairline
void VclProcessor2D::RenderPolygonHairlinePrimitive2D(const primitive2d::PolygonHairlinePrimitive2D& rPolygonCandidate, bool bPixelBased)
{
const basegfx::BColor aHairlineColor(maBColorModifierStack.getModifiedColor(rPolygonCandidate.getBColor()));
mpOutputDevice->SetLineColor(Color(aHairlineColor));
mpOutputDevice->SetFillColor();
basegfx::B2DPolygon aLocalPolygon(rPolygonCandidate.getB2DPolygon());
aLocalPolygon.transform(maCurrentTransformation);
static bool bCheckTrapezoidDecomposition(false);
static bool bShowOutlinesThere(false);
if(bCheckTrapezoidDecomposition)
{
// clip against discrete ViewPort
const basegfx::B2DRange& rDiscreteViewport = getViewInformation2D().getDiscreteViewport();
basegfx::B2DPolyPolygon aLocalPolyPolygon(basegfx::tools::clipPolygonOnRange(
aLocalPolygon, rDiscreteViewport, true, false));
if(aLocalPolyPolygon.count())
{
// subdivide
aLocalPolyPolygon = basegfx::tools::adaptiveSubdivideByDistance(
aLocalPolyPolygon, 0.5);
// trapezoidize
static double fLineWidth(2.0);
basegfx::B2DTrapezoidVector aB2DTrapezoidVector;
basegfx::tools::createLineTrapezoidFromB2DPolyPolygon(aB2DTrapezoidVector, aLocalPolyPolygon, fLineWidth);
const sal_uInt32 nCount(aB2DTrapezoidVector.size());
if(nCount)
{
basegfx::BColor aInvPolygonColor(aHairlineColor);
aInvPolygonColor.invert();
for(sal_uInt32 a(0); a < nCount; a++)
{
const basegfx::B2DPolygon aTempPolygon(aB2DTrapezoidVector[a].getB2DPolygon());
if(bShowOutlinesThere)
{
mpOutputDevice->SetFillColor(Color(aHairlineColor));
mpOutputDevice->SetLineColor();
}
mpOutputDevice->DrawPolygon(aTempPolygon);
if(bShowOutlinesThere)
{
mpOutputDevice->SetFillColor();
mpOutputDevice->SetLineColor(Color(aInvPolygonColor));
mpOutputDevice->DrawPolyLine(aTempPolygon, 0.0);
}
}
}
}
}
else
{
if(bPixelBased && getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete())
{
// #i98289#
// when a Hairline is painted and AntiAliasing is on the option SnapHorVerLinesToDiscrete
// allows to suppress AntiAliasing for pure horizontal or vertical lines. This is done since
// not-AntiAliased such lines look more pleasing to the eye (e.g. 2D chart content). This
// NEEDS to be done in discrete coordinates, so only useful for pixel based rendering.
aLocalPolygon = basegfx::tools::snapPointsOfHorizontalOrVerticalEdges(aLocalPolygon);
}
mpOutputDevice->DrawPolyLine(aLocalPolygon, 0.0);
}
}
// direct draw of transformed BitmapEx primitive
void VclProcessor2D::RenderBitmapPrimitive2D(const primitive2d::BitmapPrimitive2D& rBitmapCandidate)
{
// create local transform
basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rBitmapCandidate.getTransform());
BitmapEx aBitmapEx(rBitmapCandidate.getBitmapEx());
bool bPainted(false);
if(maBColorModifierStack.count())
{
aBitmapEx = impModifyBitmapEx(maBColorModifierStack, aBitmapEx);
if(aBitmapEx.IsEmpty())
{
// color gets completely replaced, get it
const basegfx::BColor aModifiedColor(maBColorModifierStack.getModifiedColor(basegfx::BColor()));
basegfx::B2DPolygon aPolygon(basegfx::tools::createUnitPolygon());
aPolygon.transform(aLocalTransform);
mpOutputDevice->SetFillColor(Color(aModifiedColor));
mpOutputDevice->SetLineColor();
mpOutputDevice->DrawPolygon(aPolygon);
bPainted = true;
}
}
if(!bPainted)
{
static bool bForceUseOfOwnTransformer(false);
static bool bUseGraphicManager(true);
// decompose matrix to check for shear, rotate and mirroring
basegfx::B2DVector aScale, aTranslate;
double fRotate, fShearX;
aLocalTransform.decompose(aScale, aTranslate, fRotate, fShearX);
if(!bForceUseOfOwnTransformer && basegfx::fTools::equalZero(fShearX))
{
if(!bUseGraphicManager && basegfx::fTools::equalZero(fRotate))
{
RenderBitmapPrimitive2D_BitmapEx(*mpOutputDevice, aBitmapEx, aLocalTransform);
}
else
{
RenderBitmapPrimitive2D_GraphicManager(*mpOutputDevice, aBitmapEx, aLocalTransform);
}
}
else
{
if(!aBitmapEx.IsTransparent() && (!basegfx::fTools::equalZero(fShearX) || !basegfx::fTools::equalZero(fRotate)))
{
// parts will be uncovered, extend aBitmapEx with a mask bitmap
const Bitmap aContent(aBitmapEx.GetBitmap());
aBitmapEx = BitmapEx(aContent, Bitmap(aContent.GetSizePixel(), 1));
}
RenderBitmapPrimitive2D_self(*mpOutputDevice, aBitmapEx, aLocalTransform);
}
}
}
void VclProcessor2D::RenderFillBitmapPrimitive2D(const primitive2d::FillBitmapPrimitive2D& rFillBitmapCandidate)
{
const attribute::FillBitmapAttribute& rFillBitmapAttribute(rFillBitmapCandidate.getFillBitmap());
bool bPrimitiveAccepted(false);
if(rFillBitmapAttribute.getTiling())
{
// decompose matrix to check for shear, rotate and mirroring
basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rFillBitmapCandidate.getTransformation());
basegfx::B2DVector aScale, aTranslate;
double fRotate, fShearX;
aLocalTransform.decompose(aScale, aTranslate, fRotate, fShearX);
if(basegfx::fTools::equalZero(fRotate) && basegfx::fTools::equalZero(fShearX))
{
// no shear or rotate, draw direct in pixel coordinates
bPrimitiveAccepted = true;
BitmapEx aBitmapEx(rFillBitmapAttribute.getBitmapEx());
bool bPainted(false);
if(maBColorModifierStack.count())
{
aBitmapEx = impModifyBitmapEx(maBColorModifierStack, aBitmapEx);
if(aBitmapEx.IsEmpty())
{
// color gets completely replaced, get it
const basegfx::BColor aModifiedColor(maBColorModifierStack.getModifiedColor(basegfx::BColor()));
basegfx::B2DPolygon aPolygon(basegfx::tools::createUnitPolygon());
aPolygon.transform(aLocalTransform);
mpOutputDevice->SetFillColor(Color(aModifiedColor));
mpOutputDevice->SetLineColor();
mpOutputDevice->DrawPolygon(aPolygon);
bPainted = true;
}
}
if(!bPainted)
{
const basegfx::B2DPoint aObjTopLeft(aTranslate.getX(), aTranslate.getY());
const basegfx::B2DPoint aObjBottomRight(aTranslate.getX() + aScale.getX(), aTranslate.getY() + aScale.getY());
const Point aObjTL(mpOutputDevice->LogicToPixel(Point((sal_Int32)aObjTopLeft.getX(), (sal_Int32)aObjTopLeft.getY())));
const Point aObjBR(mpOutputDevice->LogicToPixel(Point((sal_Int32)aObjBottomRight.getX(), (sal_Int32)aObjBottomRight.getY())));
const basegfx::B2DPoint aBmpTopLeft(aLocalTransform * rFillBitmapAttribute.getTopLeft());
const basegfx::B2DPoint aBmpBottomRight(aLocalTransform * basegfx::B2DPoint(rFillBitmapAttribute.getTopLeft() + rFillBitmapAttribute.getSize()));
const Point aBmpTL(mpOutputDevice->LogicToPixel(Point((sal_Int32)aBmpTopLeft.getX(), (sal_Int32)aBmpTopLeft.getY())));
const Point aBmpBR(mpOutputDevice->LogicToPixel(Point((sal_Int32)aBmpBottomRight.getX(), (sal_Int32)aBmpBottomRight.getY())));
sal_Int32 nOWidth(aObjBR.X() - aObjTL.X());
sal_Int32 nOHeight(aObjBR.Y() - aObjTL.Y());
// only do something when object has a size in discrete units
if(nOWidth > 0 && nOHeight > 0)
{
sal_Int32 nBWidth(aBmpBR.X() - aBmpTL.X());
sal_Int32 nBHeight(aBmpBR.Y() - aBmpTL.Y());
// only do something when bitmap fill has a size in discrete units
if(nBWidth > 0 && nBHeight > 0)
{
sal_Int32 nBLeft(aBmpTL.X());
sal_Int32 nBTop(aBmpTL.Y());
if(nBLeft > aObjTL.X())
{
nBLeft -= ((nBLeft / nBWidth) + 1L) * nBWidth;
}
if(nBLeft + nBWidth <= aObjTL.X())
{
nBLeft -= (nBLeft / nBWidth) * nBWidth;
}
if(nBTop > aObjTL.Y())
{
nBTop -= ((nBTop / nBHeight) + 1L) * nBHeight;
}
if(nBTop + nBHeight <= aObjTL.Y())
{
nBTop -= (nBTop / nBHeight) * nBHeight;
}
// nBWidth, nBHeight is the pixel size of the neede bitmap. To not need to scale it
// in vcl many times, create a size-optimized version
const Size aNeededBitmapSizePixel(nBWidth, nBHeight);
if(aNeededBitmapSizePixel != aBitmapEx.GetSizePixel())
{
aBitmapEx.Scale(aNeededBitmapSizePixel);
}
// prepare OutDev
const Point aEmptyPoint(0, 0);
const Rectangle aVisiblePixel(aEmptyPoint, mpOutputDevice->GetOutputSizePixel());
const bool bWasEnabled(mpOutputDevice->IsMapModeEnabled());
mpOutputDevice->EnableMapMode(false);
for(sal_Int32 nXPos(nBLeft); nXPos < aObjTL.X() + nOWidth; nXPos += nBWidth)
{
for(sal_Int32 nYPos(nBTop); nYPos < aObjTL.Y() + nOHeight; nYPos += nBHeight)
{
const Rectangle aOutRectPixel(Point(nXPos, nYPos), aNeededBitmapSizePixel);
if(aOutRectPixel.IsOver(aVisiblePixel))
{
mpOutputDevice->DrawBitmapEx(aOutRectPixel.TopLeft(), aBitmapEx);
}
}
}
// restore OutDev
mpOutputDevice->EnableMapMode(bWasEnabled);
}
}
}
}
}
if(!bPrimitiveAccepted)
{
// do not accept, use decomposition
process(rFillBitmapCandidate.get2DDecomposition(getViewInformation2D()));
}
}
// direct draw of gradient
void VclProcessor2D::RenderPolyPolygonGradientPrimitive2D(const primitive2d::PolyPolygonGradientPrimitive2D& rPolygonCandidate)
{
const attribute::FillGradientAttribute& rGradient(rPolygonCandidate.getFillGradient());
basegfx::BColor aStartColor(maBColorModifierStack.getModifiedColor(rGradient.getStartColor()));
basegfx::BColor aEndColor(maBColorModifierStack.getModifiedColor(rGradient.getEndColor()));
basegfx::B2DPolyPolygon aLocalPolyPolygon(rPolygonCandidate.getB2DPolyPolygon());
if(aLocalPolyPolygon.count())
{
aLocalPolyPolygon.transform(maCurrentTransformation);
if(aStartColor == aEndColor)
{
// no gradient at all, draw as polygon in AA and non-AA case
mpOutputDevice->SetLineColor();
mpOutputDevice->SetFillColor(Color(aStartColor));
mpOutputDevice->DrawPolyPolygon(aLocalPolyPolygon);
}
else if(getOptionsDrawinglayer().IsAntiAliasing())
{
// For AA, direct render has to be avoided since it uses XOR maskings which will not
// work with AA. Instead, the decompose which uses MaskPrimitive2D with fillings is
// used
process(rPolygonCandidate.get2DDecomposition(getViewInformation2D()));
}
else
{
impDrawGradientToOutDev(
*mpOutputDevice, aLocalPolyPolygon, rGradient.getStyle(), rGradient.getSteps(),
aStartColor, aEndColor, rGradient.getBorder(),
rGradient.getAngle(), rGradient.getOffsetX(), rGradient.getOffsetY(), false);
}
}
}
// direct draw of bitmap
void VclProcessor2D::RenderPolyPolygonBitmapPrimitive2D(const primitive2d::PolyPolygonBitmapPrimitive2D& rPolygonCandidate)
{
bool bDone(false);
const basegfx::B2DPolyPolygon& rPolyPolygon = rPolygonCandidate.getB2DPolyPolygon();
if(rPolyPolygon.count())
{
const attribute::FillBitmapAttribute& rFillBitmapAttribute = rPolygonCandidate.getFillBitmap();
const BitmapEx& rBitmapEx = rFillBitmapAttribute.getBitmapEx();
if(rBitmapEx.IsEmpty())
{
// empty bitmap, done
bDone = true;
}
else
{
// try to catch cases where the bitmap will be color-modified to a single
// color (e.g. shadow). This would NOT be optimizable with an transparence channel
// at the Bitmap which we do not have here. When this should change, this
// optimization has to be reworked accordingly.
const sal_uInt32 nBColorModifierStackCount(maBColorModifierStack.count());
if(nBColorModifierStackCount)
{
const basegfx::BColorModifier& rTopmostModifier = maBColorModifierStack.getBColorModifier(nBColorModifierStackCount - 1);
if(basegfx::BCOLORMODIFYMODE_REPLACE == rTopmostModifier.getMode())
{
// the bitmap fill is in unified color, so we can replace it with
// a single polygon fill. The form of the fill depends on tiling
if(rFillBitmapAttribute.getTiling())
{
// with tiling, fill the whole PolyPolygon with the modifier color
basegfx::B2DPolyPolygon aLocalPolyPolygon(rPolyPolygon);
aLocalPolyPolygon.transform(maCurrentTransformation);
mpOutputDevice->SetLineColor();
mpOutputDevice->SetFillColor(Color(rTopmostModifier.getBColor()));
mpOutputDevice->DrawPolyPolygon(aLocalPolyPolygon);
}
else
{
// without tiling, only the area common to the bitmap tile and the
// PolyPolygon is filled. Create the bitmap tile area in object
// coordinates. For this, the object transformation needs to be created
// from the already scaled PolyPolygon. The tile area in object
// coordinates wil always be non-rotated, so it's not necessary to
// work with a polygon here
basegfx::B2DRange aTileRange(rFillBitmapAttribute.getTopLeft(),
rFillBitmapAttribute.getTopLeft() + rFillBitmapAttribute.getSize());
const basegfx::B2DRange aPolyPolygonRange(rPolyPolygon.getB2DRange());
basegfx::B2DHomMatrix aNewObjectTransform;
aNewObjectTransform.set(0, 0, aPolyPolygonRange.getWidth());
aNewObjectTransform.set(1, 1, aPolyPolygonRange.getHeight());
aNewObjectTransform.set(0, 2, aPolyPolygonRange.getMinX());
aNewObjectTransform.set(1, 2, aPolyPolygonRange.getMinY());
aTileRange.transform(aNewObjectTransform);
// now clip the object polyPolygon against the tile range
// to get the common area (OR)
basegfx::B2DPolyPolygon aTarget = basegfx::tools::clipPolyPolygonOnRange(rPolyPolygon, aTileRange, true, false);
if(aTarget.count())
{
aTarget.transform(maCurrentTransformation);
mpOutputDevice->SetLineColor();
mpOutputDevice->SetFillColor(Color(rTopmostModifier.getBColor()));
mpOutputDevice->DrawPolyPolygon(aTarget);
}
}
bDone = true;
}
}
}
}
else
{
// empty polyPolygon, done
bDone = true;
}
if(!bDone)
{
// use default decomposition
process(rPolygonCandidate.get2DDecomposition(getViewInformation2D()));
}
}
// direct draw of PolyPolygon with color
void VclProcessor2D::RenderPolyPolygonColorPrimitive2D(const primitive2d::PolyPolygonColorPrimitive2D& rPolygonCandidate)
{
const basegfx::BColor aPolygonColor(maBColorModifierStack.getModifiedColor(rPolygonCandidate.getBColor()));
mpOutputDevice->SetFillColor(Color(aPolygonColor));
mpOutputDevice->SetLineColor();
basegfx::B2DPolyPolygon aLocalPolyPolygon(rPolygonCandidate.getB2DPolyPolygon());
aLocalPolyPolygon.transform(maCurrentTransformation);
static bool bCheckTrapezoidDecomposition(false);
static bool bShowOutlinesThere(false);
if(bCheckTrapezoidDecomposition)
{
// clip against discrete ViewPort
const basegfx::B2DRange& rDiscreteViewport = getViewInformation2D().getDiscreteViewport();
aLocalPolyPolygon = basegfx::tools::clipPolyPolygonOnRange(
aLocalPolyPolygon, rDiscreteViewport, true, false);
if(aLocalPolyPolygon.count())
{
// subdivide
aLocalPolyPolygon = basegfx::tools::adaptiveSubdivideByDistance(
aLocalPolyPolygon, 0.5);
// trapezoidize
basegfx::B2DTrapezoidVector aB2DTrapezoidVector;
basegfx::tools::trapezoidSubdivide(aB2DTrapezoidVector, aLocalPolyPolygon);
const sal_uInt32 nCount(aB2DTrapezoidVector.size());
if(nCount)
{
basegfx::BColor aInvPolygonColor(aPolygonColor);
aInvPolygonColor.invert();
for(sal_uInt32 a(0); a < nCount; a++)
{
const basegfx::B2DPolygon aTempPolygon(aB2DTrapezoidVector[a].getB2DPolygon());
if(bShowOutlinesThere)
{
mpOutputDevice->SetFillColor(Color(aPolygonColor));
mpOutputDevice->SetLineColor();
}
mpOutputDevice->DrawPolygon(aTempPolygon);
if(bShowOutlinesThere)
{
mpOutputDevice->SetFillColor();
mpOutputDevice->SetLineColor(Color(aInvPolygonColor));
mpOutputDevice->DrawPolyLine(aTempPolygon, 0.0);
}
}
}
}
}
else
{
mpOutputDevice->DrawPolyPolygon(aLocalPolyPolygon);
if(mnPolygonStrokePrimitive2D
&& getOptionsDrawinglayer().IsAntiAliasing()
&& (mpOutputDevice->GetAntialiasing() & ANTIALIASING_ENABLE_B2DDRAW))
{
// when AA is on and this filled polygons are the result of stroked line geometry,
// draw the geometry once extra as lines to avoid AA 'gaps' between partial polygons
mpOutputDevice->SetFillColor();
mpOutputDevice->SetLineColor(Color(aPolygonColor));
const sal_uInt32 nCount(aLocalPolyPolygon.count());
for(sal_uInt32 a(0); a < nCount; a++)
{
mpOutputDevice->DrawPolyLine(aLocalPolyPolygon.getB2DPolygon(a), 0.0);
}
}
}
}
// direct draw of MetaFile
void VclProcessor2D::RenderMetafilePrimitive2D(const primitive2d::MetafilePrimitive2D& rMetaCandidate)
{
// decompose matrix to check for shear, rotate and mirroring
basegfx::B2DHomMatrix aLocalTransform(maCurrentTransformation * rMetaCandidate.getTransform());
basegfx::B2DVector aScale, aTranslate;
double fRotate, fShearX;
aLocalTransform.decompose(aScale, aTranslate, fRotate, fShearX);
if(basegfx::fTools::less(aScale.getX(), 0.0) && basegfx::fTools::less(aScale.getY(), 0.0))
{
// #i102175# handle special case: If scale is negative in (x,y) (3rd quadrant), it can
// be expressed as rotation by PI. This needs to be done for Metafiles since
// these can be rotated, but not really mirrored
aScale = basegfx::absolute(aScale);
fRotate += F_PI;
}
// get BoundRect
basegfx::B2DRange aOutlineRange(rMetaCandidate.getB2DRange(getViewInformation2D()));
aOutlineRange.transform(maCurrentTransformation);
// Due to the integer MapModes used from VCL aind inside MetaFiles errors of up to three
// pixels in size may happen. As long as there is no better way (e.g. convert the MetaFile
// to primitives) it is necessary to reduce maximum pixel size by 1 in X and Y and to use
// the inner pixel bounds accordingly (ceil resp. floor). This will also be done for logic
// units e.g. when creating a new MetaFile, but since much huger value ranges are used
// there typically will be okay for this compromize.
Rectangle aDestRectView(
// !!CAUTION!! Here, ceil and floor are exchanged BY PURPOSE, do NOT copy when
// looking for a standard conversion to rectangle (!)
(sal_Int32)ceil(aOutlineRange.getMinX()), (sal_Int32)ceil(aOutlineRange.getMinY()),
(sal_Int32)floor(aOutlineRange.getMaxX()), (sal_Int32)floor(aOutlineRange.getMaxY()));
// get metafile (copy it)
GDIMetaFile aMetaFile;
if(maBColorModifierStack.count())
{
const basegfx::BColor aRGBBaseColor(0, 0, 0);
const basegfx::BColor aRGBColor(maBColorModifierStack.getModifiedColor(aRGBBaseColor));
aMetaFile = rMetaCandidate.getMetaFile().GetMonochromeMtf(Color(aRGBColor));
}
else
{
aMetaFile = rMetaCandidate.getMetaFile();
}
// rotation
if(!basegfx::fTools::equalZero(fRotate))
{
// #i103530#
// MetaFile::Rotate has no input parameter check, so the parameter needs to be
// well-aligned to the old range [0..3600] 10th degrees with inverse orientation
sal_Int16 nRotation((sal_Int16)((fRotate / F_PI180) * -10.0));
while(nRotation < 0)
nRotation += 3600;
while(nRotation >= 3600)
nRotation -= 3600;
aMetaFile.Rotate(nRotation);
}
// Prepare target output size
Size aDestSize(aDestRectView.GetSize());
if(aDestSize.getWidth() && aDestSize.getHeight())
{
// Get preferred Metafile output size. When it's very equal to the output size, it's probably
// a rounding error somewhere, so correct it to get a 1:1 output without single pixel scalings
// of the Metafile (esp. for contaned Bitmaps, e.g 3D charts)
const Size aPrefSize(mpOutputDevice->LogicToPixel(aMetaFile.GetPrefSize(), aMetaFile.GetPrefMapMode()));
if(aPrefSize.getWidth() && (aPrefSize.getWidth() - 1 == aDestSize.getWidth() || aPrefSize.getWidth() + 1 == aDestSize.getWidth()))
{
aDestSize.setWidth(aPrefSize.getWidth());
}
if(aPrefSize.getHeight() && (aPrefSize.getHeight() - 1 == aDestSize.getHeight() || aPrefSize.getHeight() + 1 == aDestSize.getHeight()))
{
aDestSize.setHeight(aPrefSize.getHeight());
}
// paint it
aMetaFile.WindStart();
aMetaFile.Play(mpOutputDevice, aDestRectView.TopLeft(), aDestSize);
}
}
// mask group. Force output to VDev and create mask from given mask
void VclProcessor2D::RenderMaskPrimitive2DPixel(const primitive2d::MaskPrimitive2D& rMaskCandidate)
{
if(rMaskCandidate.getChildren().hasElements())
{
basegfx::B2DPolyPolygon aMask(rMaskCandidate.getMask());
if(aMask.count())
{
aMask.transform(maCurrentTransformation);
const basegfx::B2DRange aRange(basegfx::tools::getRange(aMask));
impBufferDevice aBufferDevice(*mpOutputDevice, aRange, true);
if(aBufferDevice.isVisible())
{
// remember last OutDev and set to content
OutputDevice* pLastOutputDevice = mpOutputDevice;
mpOutputDevice = &aBufferDevice.getContent();
// paint to it
process(rMaskCandidate.getChildren());
// back to old OutDev
mpOutputDevice = pLastOutputDevice;
// draw mask
if(getOptionsDrawinglayer().IsAntiAliasing())
{
// with AA, use 8bit AlphaMask to get nice borders
VirtualDevice& rTransparence = aBufferDevice.getTransparence();
rTransparence.SetLineColor();
rTransparence.SetFillColor(COL_BLACK);
rTransparence.DrawPolyPolygon(aMask);
// dump buffer to outdev
aBufferDevice.paint();
}
else
{
// No AA, use 1bit mask
VirtualDevice& rMask = aBufferDevice.getMask();
rMask.SetLineColor();
rMask.SetFillColor(COL_BLACK);
rMask.DrawPolyPolygon(aMask);
// dump buffer to outdev
aBufferDevice.paint();
}
}
}
}
}
// modified color group. Force output to unified color.
void VclProcessor2D::RenderModifiedColorPrimitive2D(const primitive2d::ModifiedColorPrimitive2D& rModifiedCandidate)
{
if(rModifiedCandidate.getChildren().hasElements())
{
maBColorModifierStack.push(rModifiedCandidate.getColorModifier());
process(rModifiedCandidate.getChildren());
maBColorModifierStack.pop();
}
}
// unified sub-transparence. Draw to VDev first.
void VclProcessor2D::RenderUnifiedTransparencePrimitive2D(const primitive2d::UnifiedTransparencePrimitive2D& rTransCandidate)
{
static bool bForceToDecomposition(false);
if(rTransCandidate.getChildren().hasElements())
{
if(bForceToDecomposition)
{
// use decomposition
process(rTransCandidate.get2DDecomposition(getViewInformation2D()));
}
else
{
if(0.0 == rTransCandidate.getTransparence())
{
// no transparence used, so just use the content
process(rTransCandidate.getChildren());
}
else if(rTransCandidate.getTransparence() > 0.0 && rTransCandidate.getTransparence() < 1.0)
{
// transparence is in visible range
basegfx::B2DRange aRange(primitive2d::getB2DRangeFromPrimitive2DSequence(rTransCandidate.getChildren(), getViewInformation2D()));
aRange.transform(maCurrentTransformation);
impBufferDevice aBufferDevice(*mpOutputDevice, aRange, true);
if(aBufferDevice.isVisible())
{
// remember last OutDev and set to content
OutputDevice* pLastOutputDevice = mpOutputDevice;
mpOutputDevice = &aBufferDevice.getContent();
// paint content to it
process(rTransCandidate.getChildren());
// back to old OutDev
mpOutputDevice = pLastOutputDevice;
// dump buffer to outdev using given transparence
aBufferDevice.paint(rTransCandidate.getTransparence());
}
}
}
}
}
// sub-transparence group. Draw to VDev first.
void VclProcessor2D::RenderTransparencePrimitive2D(const primitive2d::TransparencePrimitive2D& rTransCandidate)
{
if(rTransCandidate.getChildren().hasElements())
{
basegfx::B2DRange aRange(primitive2d::getB2DRangeFromPrimitive2DSequence(rTransCandidate.getChildren(), getViewInformation2D()));
aRange.transform(maCurrentTransformation);
impBufferDevice aBufferDevice(*mpOutputDevice, aRange, true);
if(aBufferDevice.isVisible())
{
// remember last OutDev and set to content
OutputDevice* pLastOutputDevice = mpOutputDevice;
mpOutputDevice = &aBufferDevice.getContent();
// paint content to it
process(rTransCandidate.getChildren());
// set to mask
mpOutputDevice = &aBufferDevice.getTransparence();
// when painting transparence masks, reset the color stack
basegfx::BColorModifierStack aLastBColorModifierStack(maBColorModifierStack);
maBColorModifierStack = basegfx::BColorModifierStack();
// paint mask to it (always with transparence intensities, evtl. with AA)
process(rTransCandidate.getTransparence());
// back to old color stack
maBColorModifierStack = aLastBColorModifierStack;
// back to old OutDev
mpOutputDevice = pLastOutputDevice;
// dump buffer to outdev
aBufferDevice.paint();
}
}
}
// transform group.
void VclProcessor2D::RenderTransformPrimitive2D(const primitive2d::TransformPrimitive2D& rTransformCandidate)
{
// remember current transformation and ViewInformation
const basegfx::B2DHomMatrix aLastCurrentTransformation(maCurrentTransformation);
const geometry::ViewInformation2D aLastViewInformation2D(getViewInformation2D());
// create new transformations for CurrentTransformation
// and for local ViewInformation2D
maCurrentTransformation = maCurrentTransformation * rTransformCandidate.getTransformation();
const geometry::ViewInformation2D aViewInformation2D(
getViewInformation2D().getObjectTransformation() * rTransformCandidate.getTransformation(),
getViewInformation2D().getViewTransformation(),
getViewInformation2D().getViewport(),
getViewInformation2D().getVisualizedPage(),
getViewInformation2D().getViewTime(),
getViewInformation2D().getExtendedInformationSequence());
updateViewInformation(aViewInformation2D);
// proccess content
process(rTransformCandidate.getChildren());
// restore transformations
maCurrentTransformation = aLastCurrentTransformation;
updateViewInformation(aLastViewInformation2D);
}
// new XDrawPage for ViewInformation2D
void VclProcessor2D::RenderPagePreviewPrimitive2D(const primitive2d::PagePreviewPrimitive2D& rPagePreviewCandidate)
{
// remember current transformation and ViewInformation
const geometry::ViewInformation2D aLastViewInformation2D(getViewInformation2D());
// create new local ViewInformation2D
const geometry::ViewInformation2D aViewInformation2D(
getViewInformation2D().getObjectTransformation(),
getViewInformation2D().getViewTransformation(),
getViewInformation2D().getViewport(),
rPagePreviewCandidate.getXDrawPage(),
getViewInformation2D().getViewTime(),
getViewInformation2D().getExtendedInformationSequence());
updateViewInformation(aViewInformation2D);
// proccess decomposed content
process(rPagePreviewCandidate.get2DDecomposition(getViewInformation2D()));
// restore transformations
updateViewInformation(aLastViewInformation2D);
}
// marker
void VclProcessor2D::RenderMarkerArrayPrimitive2D(const primitive2d::MarkerArrayPrimitive2D& rMarkArrayCandidate)
{
static bool bCheckCompleteMarkerDecompose(false);
if(bCheckCompleteMarkerDecompose)
{
process(rMarkArrayCandidate.get2DDecomposition(getViewInformation2D()));
return;
}
// get data
const std::vector< basegfx::B2DPoint >& rPositions = rMarkArrayCandidate.getPositions();
const sal_uInt32 nCount(rPositions.size());
if(nCount && !rMarkArrayCandidate.getMarker().IsEmpty())
{
// get pixel size
const BitmapEx& rMarker(rMarkArrayCandidate.getMarker());
const Size aBitmapSize(rMarker.GetSizePixel());
if(aBitmapSize.Width() && aBitmapSize.Height())
{
// get discrete half size
const basegfx::B2DVector aDiscreteHalfSize(
(aBitmapSize.getWidth() - 1.0) * 0.5,
(aBitmapSize.getHeight() - 1.0) * 0.5);
const bool bWasEnabled(mpOutputDevice->IsMapModeEnabled());
// do not forget evtl. moved origin in target device MapMode when
// switching it off; it would be missing and lead to wrong positions.
// All his could be done using logic sizes and coordinates, too, but
// we want a 1:1 bitmap rendering here, so it's more safe and faster
// to work with switching off MapMode usage completely.
const Point aOrigin(mpOutputDevice->GetMapMode().GetOrigin());
mpOutputDevice->EnableMapMode(false);
for(std::vector< basegfx::B2DPoint >::const_iterator aIter(rPositions.begin()); aIter != rPositions.end(); ++aIter)
{
const basegfx::B2DPoint aDiscreteTopLeft((maCurrentTransformation * (*aIter)) - aDiscreteHalfSize);
const Point aDiscretePoint(basegfx::fround(aDiscreteTopLeft.getX()), basegfx::fround(aDiscreteTopLeft.getY()));
mpOutputDevice->DrawBitmapEx(aDiscretePoint + aOrigin, rMarker);
}
mpOutputDevice->EnableMapMode(bWasEnabled);
}
}
}
// point
void VclProcessor2D::RenderPointArrayPrimitive2D(const primitive2d::PointArrayPrimitive2D& rPointArrayCandidate)
{
const std::vector< basegfx::B2DPoint >& rPositions = rPointArrayCandidate.getPositions();
const basegfx::BColor aRGBColor(maBColorModifierStack.getModifiedColor(rPointArrayCandidate.getRGBColor()));
const Color aVCLColor(aRGBColor);
for(std::vector< basegfx::B2DPoint >::const_iterator aIter(rPositions.begin()); aIter != rPositions.end(); ++aIter)
{
const basegfx::B2DPoint aViewPosition(maCurrentTransformation * (*aIter));
const Point aPos(basegfx::fround(aViewPosition.getX()), basegfx::fround(aViewPosition.getY()));
mpOutputDevice->DrawPixel(aPos, aVCLColor);
}
}
void VclProcessor2D::RenderPolygonStrokePrimitive2D(const primitive2d::PolygonStrokePrimitive2D& rPolygonStrokeCandidate)
{
// #i101491# method restructured to clearly use the DrawPolyLine
// calls starting from a deined line width
const attribute::LineAttribute& rLineAttribute = rPolygonStrokeCandidate.getLineAttribute();
const double fLineWidth(rLineAttribute.getWidth());
bool bDone(false);
if(basegfx::fTools::more(fLineWidth, 0.0))
{
const basegfx::B2DVector aDiscreteUnit(maCurrentTransformation * basegfx::B2DVector(fLineWidth, 0.0));
const double fDiscreteLineWidth(aDiscreteUnit.getLength());
const attribute::StrokeAttribute& rStrokeAttribute = rPolygonStrokeCandidate.getStrokeAttribute();
const basegfx::BColor aHairlineColor(maBColorModifierStack.getModifiedColor(rLineAttribute.getColor()));
basegfx::B2DPolyPolygon aHairlinePolyPolygon;
mpOutputDevice->SetLineColor(Color(aHairlineColor));
mpOutputDevice->SetFillColor();
if(0.0 == rStrokeAttribute.getFullDotDashLen())
{
// no line dashing, just copy
aHairlinePolyPolygon.append(rPolygonStrokeCandidate.getB2DPolygon());
}
else
{
// else apply LineStyle
basegfx::tools::applyLineDashing(rPolygonStrokeCandidate.getB2DPolygon(),
rStrokeAttribute.getDotDashArray(),
&aHairlinePolyPolygon, 0, rStrokeAttribute.getFullDotDashLen());
}
const sal_uInt32 nCount(aHairlinePolyPolygon.count());
if(nCount)
{
const bool bAntiAliased(getOptionsDrawinglayer().IsAntiAliasing());
aHairlinePolyPolygon.transform(maCurrentTransformation);
if(bAntiAliased)
{
if(basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 1.0))
{
// line in range ]0.0 .. 1.0[
// paint as simple hairline
for(sal_uInt32 a(0); a < nCount; a++)
{
mpOutputDevice->DrawPolyLine(aHairlinePolyPolygon.getB2DPolygon(a), 0.0);
}
bDone = true;
}
else if(basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 2.0))
{
// line in range [1.0 .. 2.0[
// paint as 2x2 with dynamic line distance
basegfx::B2DHomMatrix aMat;
const double fDistance(fDiscreteLineWidth - 1.0);
const double fHalfDistance(fDistance * 0.5);
for(sal_uInt32 a(0); a < nCount; a++)
{
basegfx::B2DPolygon aCandidate(aHairlinePolyPolygon.getB2DPolygon(a));
aMat.set(0, 2, -fHalfDistance);
aMat.set(1, 2, -fHalfDistance);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, fDistance);
aMat.set(1, 2, 0.0);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, 0.0);
aMat.set(1, 2, fDistance);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, -fDistance);
aMat.set(1, 2, 0.0);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
}
bDone = true;
}
else if(basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 3.0))
{
// line in range [2.0 .. 3.0]
// paint as cross in a 3x3 with dynamic line distance
basegfx::B2DHomMatrix aMat;
const double fDistance((fDiscreteLineWidth - 1.0) * 0.5);
for(sal_uInt32 a(0); a < nCount; a++)
{
basegfx::B2DPolygon aCandidate(aHairlinePolyPolygon.getB2DPolygon(a));
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, -fDistance);
aMat.set(1, 2, 0.0);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, fDistance);
aMat.set(1, 2, -fDistance);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, fDistance);
aMat.set(1, 2, fDistance);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, -fDistance);
aMat.set(1, 2, fDistance);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
}
bDone = true;
}
else
{
// #i101491# line width above 3.0
}
}
else
{
if(basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 1.5))
{
// line width below 1.5, draw the basic hairline polygon
for(sal_uInt32 a(0); a < nCount; a++)
{
mpOutputDevice->DrawPolyLine(aHairlinePolyPolygon.getB2DPolygon(a), 0.0);
}
bDone = true;
}
else if(basegfx::fTools::lessOrEqual(fDiscreteLineWidth, 2.5))
{
// line width is in range ]1.5 .. 2.5], use four hairlines
// drawn in a square
for(sal_uInt32 a(0); a < nCount; a++)
{
basegfx::B2DPolygon aCandidate(aHairlinePolyPolygon.getB2DPolygon(a));
basegfx::B2DHomMatrix aMat;
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, 1.0);
aMat.set(1, 2, 0.0);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, 0.0);
aMat.set(1, 2, 1.0);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
aMat.set(0, 2, -1.0);
aMat.set(1, 2, 0.0);
aCandidate.transform(aMat);
mpOutputDevice->DrawPolyLine(aCandidate, 0.0);
}
bDone = true;
}
else
{
// #i101491# line width is above 2.5
}
}
if(!bDone && rPolygonStrokeCandidate.getB2DPolygon().count() > 1000)
{
// #i101491# If the polygon complexity uses more than a given amount, do
// use OuputDevice::DrawPolyLine directly; this will avoid buffering all
// decompositions in primtives (memory) and fallback to old line painting
// for very complex polygons, too
for(sal_uInt32 a(0); a < nCount; a++)
{
mpOutputDevice->DrawPolyLine(
aHairlinePolyPolygon.getB2DPolygon(a),
fDiscreteLineWidth,
rLineAttribute.getLineJoin(),
rLineAttribute.getLineCap());
}
bDone = true;
}
}
}
if(!bDone)
{
// remember that we enter a PolygonStrokePrimitive2D decomposition,
// used for AA thick line drawing
mnPolygonStrokePrimitive2D++;
// line width is big enough for standard filled polygon visualisation or zero
process(rPolygonStrokeCandidate.get2DDecomposition(getViewInformation2D()));
// leave PolygonStrokePrimitive2D
mnPolygonStrokePrimitive2D--;
}
}
void VclProcessor2D::RenderEpsPrimitive2D(const primitive2d::EpsPrimitive2D& rEpsPrimitive2D)
{
// The new decomposition of Metafiles made it necessary to add an Eps
// primitive to handle embedded Eps data. On some devices, this can be
// painted directly (mac, printer).
// To be able to handle the replacement correctly, i need to handle it myself
// since DrawEPS will not be able e.g. to rotate the replacement. To be able
// to do that, i added a boolean return to OutputDevice::DrawEPS(..)
// to know when EPS was handled directly already.
basegfx::B2DRange aRange(0.0, 0.0, 1.0, 1.0);
aRange.transform(maCurrentTransformation * rEpsPrimitive2D.getEpsTransform());
if(!aRange.isEmpty())
{
const Rectangle aRectangle(
(sal_Int32)floor(aRange.getMinX()), (sal_Int32)floor(aRange.getMinY()),
(sal_Int32)ceil(aRange.getMaxX()), (sal_Int32)ceil(aRange.getMaxY()));
if(!aRectangle.IsEmpty())
{
// try to paint EPS directly without fallback visualisation
const bool bEPSPaintedDirectly(mpOutputDevice->DrawEPS(
aRectangle.TopLeft(),
aRectangle.GetSize(),
rEpsPrimitive2D.getGfxLink(),
0));
if(!bEPSPaintedDirectly)
{
// use the decomposition which will correctly handle the
// fallback visualisation using full transformation (e.g. rotation)
process(rEpsPrimitive2D.get2DDecomposition(getViewInformation2D()));
}
}
}
}
void VclProcessor2D::RenderSvgLinearAtomPrimitive2D(const primitive2d::SvgLinearAtomPrimitive2D& rCandidate)
{
const double fDelta(rCandidate.getOffsetB() - rCandidate.getOffsetA());
if(basegfx::fTools::more(fDelta, 0.0))
{
const basegfx::BColor aColorA(maBColorModifierStack.getModifiedColor(rCandidate.getColorA()));
const basegfx::BColor aColorB(maBColorModifierStack.getModifiedColor(rCandidate.getColorB()));
const double fDiscreteUnit((getViewInformation2D().getInverseObjectToViewTransformation() * basegfx::B2DVector(1.0, 0.0)).getLength());
// use color distance and discrete lengths to calculate step count
const sal_uInt32 nSteps(calculateStepsForSvgGradient(aColorA, aColorB, fDelta, fDiscreteUnit));
// prepare loop and polygon
double fStart(0.0);
double fStep(fDelta / nSteps);
const basegfx::B2DPolygon aPolygon(
basegfx::tools::createPolygonFromRect(
basegfx::B2DRange(
rCandidate.getOffsetA() - fDiscreteUnit,
0.0,
rCandidate.getOffsetA() + fStep + fDiscreteUnit,
1.0)));
// switch off line painting
mpOutputDevice->SetLineColor();
// loop and paint
for(sal_uInt32 a(0); a < nSteps; a++, fStart += fStep)
{
basegfx::B2DPolygon aNew(aPolygon);
aNew.transform(maCurrentTransformation * basegfx::tools::createTranslateB2DHomMatrix(fStart, 0.0));
mpOutputDevice->SetFillColor(Color(basegfx::interpolate(aColorA, aColorB, fStart/fDelta)));
mpOutputDevice->DrawPolyPolygon(basegfx::B2DPolyPolygon(aNew));
}
}
}
void VclProcessor2D::RenderSvgRadialAtomPrimitive2D(const primitive2d::SvgRadialAtomPrimitive2D& rCandidate)
{
const double fDeltaScale(rCandidate.getScaleB() - rCandidate.getScaleA());
if(basegfx::fTools::more(fDeltaScale, 0.0))
{
const basegfx::BColor aColorA(maBColorModifierStack.getModifiedColor(rCandidate.getColorA()));
const basegfx::BColor aColorB(maBColorModifierStack.getModifiedColor(rCandidate.getColorB()));
const double fDiscreteUnit((getViewInformation2D().getInverseObjectToViewTransformation() * basegfx::B2DVector(1.0, 0.0)).getLength());
// use color distance and discrete lengths to calculate step count
const sal_uInt32 nSteps(calculateStepsForSvgGradient(aColorA, aColorB, fDeltaScale, fDiscreteUnit));
// switch off line painting
mpOutputDevice->SetLineColor();
// prepare loop (outside to inside)
double fEndScale(rCandidate.getScaleB());
double fStepScale(fDeltaScale / nSteps);
for(sal_uInt32 a(0); a < nSteps; a++, fEndScale -= fStepScale)
{
const double fUnitScale(fEndScale/fDeltaScale);
basegfx::B2DHomMatrix aTransform;
if(rCandidate.isTranslateSet())
{
const basegfx::B2DVector aTranslate(
basegfx::interpolate(
rCandidate.getTranslateA(),
rCandidate.getTranslateB(),
fUnitScale));
aTransform = basegfx::tools::createScaleTranslateB2DHomMatrix(
fEndScale,
fEndScale,
aTranslate.getX(),
aTranslate.getY());
}
else
{
aTransform = basegfx::tools::createScaleB2DHomMatrix(
fEndScale,
fEndScale);
}
basegfx::B2DPolygon aNew(basegfx::tools::createPolygonFromUnitCircle());
aNew.transform(maCurrentTransformation * aTransform);
mpOutputDevice->SetFillColor(Color(basegfx::interpolate(aColorA, aColorB, fUnitScale)));
mpOutputDevice->DrawPolyPolygon(basegfx::B2DPolyPolygon(aNew));
}
}
}
void VclProcessor2D::adaptLineToFillDrawMode() const
{
const sal_uInt32 nOriginalDrawMode(mpOutputDevice->GetDrawMode());
if(nOriginalDrawMode & (DRAWMODE_BLACKLINE|DRAWMODE_GRAYLINE|DRAWMODE_GHOSTEDLINE|DRAWMODE_WHITELINE|DRAWMODE_SETTINGSLINE))
{
sal_uInt32 nAdaptedDrawMode(nOriginalDrawMode);
if(nOriginalDrawMode & DRAWMODE_BLACKLINE)
{
nAdaptedDrawMode |= DRAWMODE_BLACKFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_BLACKFILL;
}
if(nOriginalDrawMode & DRAWMODE_GRAYLINE)
{
nAdaptedDrawMode |= DRAWMODE_GRAYFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_GRAYFILL;
}
if(nOriginalDrawMode & DRAWMODE_GHOSTEDLINE)
{
nAdaptedDrawMode |= DRAWMODE_GHOSTEDFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_GHOSTEDFILL;
}
if(nOriginalDrawMode & DRAWMODE_WHITELINE)
{
nAdaptedDrawMode |= DRAWMODE_WHITEFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_WHITEFILL;
}
if(nOriginalDrawMode & DRAWMODE_SETTINGSLINE)
{
nAdaptedDrawMode |= DRAWMODE_SETTINGSFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_SETTINGSFILL;
}
mpOutputDevice->SetDrawMode(nAdaptedDrawMode);
}
}
void VclProcessor2D::adaptTextToFillDrawMode() const
{
const sal_uInt32 nOriginalDrawMode(mpOutputDevice->GetDrawMode());
if(nOriginalDrawMode & (DRAWMODE_BLACKTEXT|DRAWMODE_GRAYTEXT|DRAWMODE_GHOSTEDTEXT|DRAWMODE_WHITETEXT|DRAWMODE_SETTINGSTEXT))
{
sal_uInt32 nAdaptedDrawMode(nOriginalDrawMode);
if(nOriginalDrawMode & DRAWMODE_BLACKTEXT)
{
nAdaptedDrawMode |= DRAWMODE_BLACKFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_BLACKFILL;
}
if(nOriginalDrawMode & DRAWMODE_GRAYTEXT)
{
nAdaptedDrawMode |= DRAWMODE_GRAYFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_GRAYFILL;
}
if(nOriginalDrawMode & DRAWMODE_GHOSTEDTEXT)
{
nAdaptedDrawMode |= DRAWMODE_GHOSTEDFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_GHOSTEDFILL;
}
if(nOriginalDrawMode & DRAWMODE_WHITETEXT)
{
nAdaptedDrawMode |= DRAWMODE_WHITEFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_WHITEFILL;
}
if(nOriginalDrawMode & DRAWMODE_SETTINGSTEXT)
{
nAdaptedDrawMode |= DRAWMODE_SETTINGSFILL;
}
else
{
nAdaptedDrawMode &= ~DRAWMODE_SETTINGSFILL;
}
mpOutputDevice->SetDrawMode(nAdaptedDrawMode);
}
}
//////////////////////////////////////////////////////////////////////////////
// process support
VclProcessor2D::VclProcessor2D(
const geometry::ViewInformation2D& rViewInformation,
OutputDevice& rOutDev)
: BaseProcessor2D(rViewInformation),
mpOutputDevice(&rOutDev),
maBColorModifierStack(),
maCurrentTransformation(),
maDrawinglayerOpt(),
mnPolygonStrokePrimitive2D(0)
{
// set digit language, derived from SvtCTLOptions to have the correct
// number display for arabic/hindi numerals
rOutDev.SetDigitLanguage(drawinglayer::detail::getDigitLanguage());
}
VclProcessor2D::~VclProcessor2D()
{
}
} // end of namespace processor2d
} // end of namespace drawinglayer
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */