office-gobmx/package/source/zipapi/ZipOutputStream.cxx
2001-10-02 21:08:40 +00:00

500 lines
17 KiB
C++

/*************************************************************************
*
* $RCSfile: ZipOutputStream.cxx,v $
*
* $Revision: 1.33 $
*
* last change: $Author: mtg $ $Date: 2001-10-02 22:08:40 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): Martin Gallwey (gallwey@sun.com)
*
*
************************************************************************/
#ifndef _ZIP_OUTPUT_STREAM_HXX
#include <ZipOutputStream.hxx>
#endif
#ifndef _VOS_DIAGNOSE_H_
#include <vos/diagnose.hxx>
#endif
#ifndef _COM_SUN_STAR_PACKAGES_ZIP_ZIPCONSTANTS_HPP_
#include <com/sun/star/packages/zip/ZipConstants.hpp>
#endif
#ifndef _OSL_TIME_H_
#include <osl/time.h>
#endif
#ifndef _ENCRYPTION_DATA_HXX_
#include <EncryptionData.hxx>
#endif
#ifndef _IMPL_VALID_CHARACTERS_HXX_
#include <ImplValidCharacters.hxx>
#endif
#ifndef _PACKAGE_CONSTANTS_HXX_
#include <PackageConstants.hxx>
#endif
#ifndef _ZIP_ENTRY_HXX_
#include <ZipEntry.hxx>
#endif
using namespace rtl;
using namespace com::sun::star::io;
using namespace com::sun::star::uno;
using namespace com::sun::star::packages;
using namespace com::sun::star::packages::zip;
using namespace com::sun::star::packages::zip::ZipConstants;
/** This class is used to write Zip files
*/
ZipOutputStream::ZipOutputStream( Reference < XOutputStream > &xOStream, sal_Bool bNewSpanning )
: xStream(xOStream)
, aChucker(xOStream)
, nMethod(DEFLATED)
, pCurrentEntry(NULL)
, bFinished(sal_False)
, bEncryptCurrentEntry(sal_False)
, aBuffer(n_ConstBufferSize)
, aDeflater(DEFAULT_COMPRESSION, sal_True)
, bSpanning ( bNewSpanning )
{
}
ZipOutputStream::~ZipOutputStream( void )
{
for (sal_Int32 i = 0, nEnd = aZipList.size(); i < nEnd; i++)
delete aZipList[i];
}
void SAL_CALL ZipOutputStream::setComment( const ::rtl::OUString& rComment )
throw(RuntimeException)
{
sComment = rComment;
}
void SAL_CALL ZipOutputStream::setMethod( sal_Int32 nNewMethod )
throw(RuntimeException)
{
nMethod = static_cast < sal_Int16 > (nNewMethod);
}
void SAL_CALL ZipOutputStream::setLevel( sal_Int32 nNewLevel )
throw(RuntimeException)
{
aDeflater.setLevel( nNewLevel);
}
void SAL_CALL ZipOutputStream::putNextEntry( ZipEntry& rEntry,
vos::ORef < EncryptionData > &xEncryptData,
sal_Bool bEncrypt)
throw(IOException, RuntimeException)
{
if ( bSpanning && ! aZipList.size() )
{
Sequence < sal_Int8 > aSequence ( 4 );
sal_Int8 *pNum = aSequence.getArray();
pNum[0] = 'P';
pNum[1] = 'K';
pNum[2] = 7;
pNum[3] = 8;
aChucker.writeBytes( aSequence, 4, pNum );
}
if (pCurrentEntry != NULL)
closeEntry();
if (rEntry.nTime == -1)
rEntry.nTime = getCurrentDosTime();
if (rEntry.nMethod == -1)
rEntry.nMethod = nMethod;
rEntry.nVersion = 20;
if (rEntry.nSize == -1 || rEntry.nCompressedSize == -1 ||
rEntry.nCrc == -1)
rEntry.nFlag = 8;
else if (rEntry.nSize != -1 && rEntry.nCompressedSize != -1 &&
rEntry.nCrc != -1)
rEntry.nFlag = 0;
if (bEncrypt)
{
bEncryptCurrentEntry = sal_True;
rtlCipherError aResult;
aCipher = rtl_cipher_create ( rtl_Cipher_AlgorithmBF, rtl_Cipher_ModeStream);
aResult = rtl_cipher_init( aCipher, rtl_Cipher_DirectionEncode,
reinterpret_cast < const sal_uInt8 * > (xEncryptData->aKey.getConstArray()),
xEncryptData->aKey.getLength(),
xEncryptData->aInitVector.getConstArray(),
xEncryptData->aInitVector.getLength());
OSL_ASSERT( aResult == rtl_Cipher_E_None );
aDigest = rtl_digest_createSHA1();
mnDigested = 0;
rEntry.nFlag |= 1 << 4;
xCurrentEncryptData = xEncryptData;
}
sal_Int32 nLOCLength = writeLOC(rEntry);
rEntry.nOffset = static_cast < sal_Int32 > (aChucker.getPosition()) - nLOCLength;
aZipList.push_back( &rEntry );
pCurrentEntry = &rEntry;
}
void SAL_CALL ZipOutputStream::close( )
throw(IOException, RuntimeException)
{
finish();
}
void SAL_CALL ZipOutputStream::closeEntry( )
throw(IOException, RuntimeException)
{
ZipEntry *pEntry = pCurrentEntry;
if (pEntry)
{
switch (pEntry->nMethod)
{
case DEFLATED:
aDeflater.finish();
while (!aDeflater.finished())
doDeflate();
if ((pEntry->nFlag & 8) == 0)
{
if (pEntry->nSize != aDeflater.getTotalIn())
{
VOS_DEBUG_ONLY("Invalid entry size");
}
if (pEntry->nCompressedSize != aDeflater.getTotalOut())
{
//VOS_DEBUG_ONLY("Invalid entry compressed size");
// Different compression strategies make the merit of this
// test somewhat dubious
pEntry->nCompressedSize = aDeflater.getTotalOut();
}
if (pEntry->nCrc != aCRC.getValue())
{
VOS_DEBUG_ONLY("Invalid entry CRC-32");
}
}
else
{
pEntry->nSize = aDeflater.getTotalIn();
pEntry->nCompressedSize = aDeflater.getTotalOut();
pEntry->nCrc = aCRC.getValue();
if ( bEncryptCurrentEntry )
pEntry->nSize = pEntry->nCompressedSize;
writeEXT(*pEntry);
}
aDeflater.reset();
aCRC.reset();
break;
case STORED:
if (!((pEntry->nFlag & 8) == 0))
VOS_ENSURE ( 0, "Serious error, one of compressed size, size or CRC was -1 in a STORED stream");
break;
default:
VOS_DEBUG_ONLY("Invalid compression method");
break;
}
if (bEncryptCurrentEntry)
{
rtlDigestError aDigestResult;
aEncryptionBuffer.realloc ( 0 );
bEncryptCurrentEntry = sal_False;
rtl_cipher_destroy ( aCipher );
xCurrentEncryptData->aDigest.realloc ( RTL_DIGEST_LENGTH_SHA1 );
aDigestResult = rtl_digest_getSHA1 ( aDigest, xCurrentEncryptData->aDigest.getArray(), RTL_DIGEST_LENGTH_SHA1 );
OSL_ASSERT( aDigestResult == rtl_Digest_E_None );
rtl_digest_destroySHA1 ( aDigest );
}
pCurrentEntry = NULL;
}
}
void SAL_CALL ZipOutputStream::write( const Sequence< sal_Int8 >& rBuffer, sal_Int32 nNewOffset, sal_Int32 nNewLength )
throw(IOException, RuntimeException)
{
switch (pCurrentEntry->nMethod)
{
case DEFLATED:
if (!aDeflater.finished())
{
aDeflater.setInputSegment(rBuffer, nNewOffset, nNewLength);
while (!aDeflater.needsInput())
doDeflate();
if (!bEncryptCurrentEntry)
aCRC.updateSegment(rBuffer, nNewOffset, nNewLength);
}
break;
case STORED:
{
Sequence < sal_Int8 > aTmpBuffer ( rBuffer.getConstArray(), nNewLength );
aChucker.writeBytes( aTmpBuffer );
}
break;
}
}
void SAL_CALL ZipOutputStream::rawWrite( Sequence< sal_Int8 >& rBuffer, sal_Int32 nNewOffset, sal_Int32 nNewLength )
throw(IOException, RuntimeException)
{
Sequence < sal_Int8 > aTmpBuffer ( rBuffer.getConstArray(), nNewLength );
aChucker.writeBytes( aTmpBuffer );
}
void SAL_CALL ZipOutputStream::rawCloseEntry( )
throw(IOException, RuntimeException)
{
if ( pCurrentEntry->nMethod == DEFLATED )
writeEXT(*pCurrentEntry);
pCurrentEntry = NULL;
}
void SAL_CALL ZipOutputStream::finish( )
throw(IOException, RuntimeException)
{
if (bFinished)
return;
if (pCurrentEntry != NULL)
closeEntry();
if (aZipList.size() < 1)
VOS_DEBUG_ONLY("Zip file must have at least one entry!\n");
sal_Int32 nOffset= static_cast < sal_Int32 > (aChucker.getPosition());
for (sal_Int32 i =0, nEnd = aZipList.size(); i < nEnd; i++)
writeCEN( *aZipList[i] );
writeEND( nOffset, static_cast < sal_Int32 > (aChucker.getPosition()) - nOffset);
bFinished = sal_True;
xStream->flush();
}
void ZipOutputStream::doDeflate()
{
sal_Int32 nLength = aDeflater.doDeflateSegment(aBuffer, 0, aBuffer.getLength());
sal_Int32 nOldLength = aBuffer.getLength();
if ( nLength > 0 )
{
Sequence < sal_Int8 > aTmpBuffer ( aBuffer.getConstArray(), nLength );
const void *pTmpBuffer = static_cast < const void * > ( aTmpBuffer.getConstArray() );
if (bEncryptCurrentEntry)
{
// Need to update our digest before encryption...
rtlDigestError aDigestResult = rtl_Digest_E_None;
sal_Int16 nDiff = n_ConstDigestLength - mnDigested;
if ( nDiff )
{
sal_Int16 nEat = static_cast < sal_Int16 > ( nDiff > nLength ? nLength : nDiff );
aDigestResult = rtl_digest_updateSHA1 ( aDigest, pTmpBuffer, nEat );
mnDigested += nEat;
}
OSL_ASSERT( aDigestResult == rtl_Digest_E_None );
aEncryptionBuffer.realloc ( nLength );
rtlCipherError aCipherResult;
aCipherResult = rtl_cipher_encode ( aCipher, pTmpBuffer,
nLength, reinterpret_cast < sal_uInt8 * > (aEncryptionBuffer.getArray()), nLength );
OSL_ASSERT( aCipherResult == rtl_Cipher_E_None );
aChucker.writeBytes ( aEncryptionBuffer );
aCRC.update ( aEncryptionBuffer );
aEncryptionBuffer.realloc ( nOldLength );
}
else
aChucker.writeBytes ( aTmpBuffer );
}
}
void ZipOutputStream::writeEND(sal_uInt32 nOffset, sal_uInt32 nLength)
throw(IOException, RuntimeException)
{
aChucker << ENDSIG;
aChucker << static_cast < sal_Int16 > ( 0 );
aChucker << static_cast < sal_Int16 > ( 0 );
aChucker << static_cast < sal_Int16 > ( aZipList.size() );
aChucker << static_cast < sal_Int16 > ( aZipList.size() );
aChucker << nLength;
aChucker << nOffset;
aChucker << static_cast < sal_Int16 > ( 0 );
}
void ZipOutputStream::writeCEN( const ZipEntry &rEntry )
throw(IOException, RuntimeException)
{
sal_Int16 nNameLength = static_cast < sal_Int16 > ( rEntry.sName.getLength() );
aChucker << CENSIG;
aChucker << rEntry.nVersion;
aChucker << rEntry.nVersion;
if (rEntry.nFlag & (1 << 4) )
{
// If it's an encrypted entry, we pretend its stored plain text
ZipEntry *pEntry = const_cast < ZipEntry * > ( &rEntry );
pEntry->nFlag &= ~(1 <<4 );
aChucker << rEntry.nFlag;
aChucker << static_cast < sal_Int16 > ( STORED );
}
else
{
aChucker << rEntry.nFlag;
aChucker << rEntry.nMethod;
}
aChucker << static_cast < sal_uInt32> ( rEntry.nTime );
aChucker << static_cast < sal_uInt32> ( rEntry.nCrc );
aChucker << rEntry.nCompressedSize;
aChucker << rEntry.nSize;
aChucker << nNameLength;
aChucker << static_cast < sal_Int16> (0);
aChucker << static_cast < sal_Int16> (0);
aChucker << static_cast < sal_Int16> (0);
aChucker << static_cast < sal_Int16> (0);
aChucker << static_cast < sal_Int32> (0);
aChucker << rEntry.nOffset;
const sal_Unicode *pChar = rEntry.sName.getStr();
Sequence < sal_Int8 > aSequence (nNameLength);
sal_Int8 *pArray = aSequence.getArray();
VOS_ENSURE ( Impl_IsValidChar ( pChar, nNameLength, sal_True ), "Non US ASCII character in zipentry name!");
for ( sal_Int16 i = 0; i < nNameLength; i++)
pArray[i] = static_cast < const sal_Int8 > (pChar[i]);
aChucker.writeBytes( aSequence, nNameLength, pArray );
}
void ZipOutputStream::writeEXT( const ZipEntry &rEntry )
throw(IOException, RuntimeException)
{
aChucker << EXTSIG;
aChucker << static_cast < sal_uInt32> ( rEntry.nCrc );
aChucker << rEntry.nCompressedSize;
aChucker << rEntry.nSize;
}
sal_Int32 ZipOutputStream::writeLOC( const ZipEntry &rEntry )
throw(IOException, RuntimeException)
{
sal_Int16 nNameLength = static_cast < sal_Int16 > (rEntry.sName.getLength());
Sequence < sal_Int8 > aSequence(nNameLength);
sal_Int8 *pArray = aSequence.getArray();
aChucker << LOCSIG;
aChucker << rEntry.nVersion;
if (rEntry.nFlag & (1 << 4) )
{
// If it's an encrypted entry, we pretend its stored plain text
sal_Int16 nTmpFlag = rEntry.nFlag;
nTmpFlag &= ~(1 <<4 );
aChucker << nTmpFlag;
aChucker << static_cast < sal_Int16 > ( STORED );
}
else
{
aChucker << rEntry.nFlag;
aChucker << rEntry.nMethod;
}
aChucker << static_cast < sal_uInt32 > (rEntry.nTime);
if ((rEntry.nFlag & 8) == 8 )
{
aChucker << static_cast < sal_Int32 > (0);
aChucker << static_cast < sal_Int32 > (0);
aChucker << static_cast < sal_Int32 > (0);
}
else
{
aChucker << static_cast < sal_uInt32 > (rEntry.nCrc);
aChucker << rEntry.nCompressedSize;
aChucker << rEntry.nSize;
}
aChucker << nNameLength;
aChucker << static_cast < sal_Int16 > (0);
const sal_Unicode *pChar = rEntry.sName.getStr();
VOS_ENSURE ( Impl_IsValidChar ( pChar, nNameLength, sal_True ), "Non US ASCII character in zipentry name!");
for ( sal_Int16 i = 0; i < nNameLength; i++)
pArray[i] = static_cast < const sal_Int8 > (pChar[i]);
aChucker.writeBytes( aSequence, nNameLength, pArray );
return LOCHDR + nNameLength;
}
sal_uInt32 ZipOutputStream::getCurrentDosTime( )
{
oslDateTime aDateTime;
TimeValue aTimeValue;
osl_getSystemTime ( &aTimeValue );
osl_getDateTimeFromTimeValue( &aTimeValue, &aDateTime);
sal_uInt32 nYear = static_cast <sal_uInt32> (aDateTime.Year);
if (nYear>1980)
nYear-=1980;
else if (nYear>80)
nYear-=80;
sal_uInt32 nResult = static_cast < sal_uInt32>( ( ( ( aDateTime.Day) +
( 32 * (aDateTime.Month)) +
( 512 * nYear ) ) << 16) |
( ( aDateTime.Seconds/2) +
( 32 * aDateTime.Minutes) +
( 2048 * static_cast <sal_uInt32 > (aDateTime.Hours) ) ) );
return nResult;
}
/*
This is actually never used, so I removed it, but thought that the
implementation details may be useful in the future...mtg 20010307
I stopped using the time library and used the OSL version instead, but
it might still be useful to have this code here..
void ZipOutputStream::dosDateToTMDate ( tm &rTime, sal_uInt32 nDosDate)
{
sal_uInt32 nDate = static_cast < sal_uInt32 > (nDosDate >> 16);
rTime.tm_mday = static_cast < sal_uInt32 > ( nDate & 0x1F);
rTime.tm_mon = static_cast < sal_uInt32 > ( ( ( (nDate) & 0x1E0)/0x20)-1);
rTime.tm_year = static_cast < sal_uInt32 > ( ( (nDate & 0x0FE00)/0x0200)+1980);
rTime.tm_hour = static_cast < sal_uInt32 > ( (nDosDate & 0xF800)/0x800);
rTime.tm_min = static_cast < sal_uInt32 > ( (nDosDate & 0x7E0)/0x20);
rTime.tm_sec = static_cast < sal_uInt32 > ( 2 * (nDosDate & 0x1F) );
}
*/