430 lines
15 KiB
C++
430 lines
15 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*************************************************************************
|
|
*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* Copyright 2000, 2010 Oracle and/or its affiliates.
|
|
*
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
|
*
|
|
* This file is part of OpenOffice.org.
|
|
*
|
|
* OpenOffice.org is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 3
|
|
* only, as published by the Free Software Foundation.
|
|
*
|
|
* OpenOffice.org is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License version 3 for more details
|
|
* (a copy is included in the LICENSE file that accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* version 3 along with OpenOffice.org. If not, see
|
|
* <http://www.openoffice.org/license.html>
|
|
* for a copy of the LGPLv3 License.
|
|
*
|
|
************************************************************************/
|
|
|
|
#include "oox/core/binarycodec.hxx"
|
|
|
|
#include <algorithm>
|
|
#include <string.h>
|
|
#include "oox/helper/attributelist.hxx"
|
|
|
|
#include <comphelper/sequenceashashmap.hxx>
|
|
#include <comphelper/docpasswordhelper.hxx>
|
|
|
|
using namespace ::com::sun::star;
|
|
|
|
namespace oox {
|
|
namespace core {
|
|
|
|
// ============================================================================
|
|
|
|
namespace {
|
|
|
|
/** Rotates rnValue left by nBits bits. */
|
|
template< typename Type >
|
|
inline void lclRotateLeft( Type& rnValue, size_t nBits )
|
|
{
|
|
OSL_ENSURE( nBits < sizeof( Type ) * 8, "lclRotateLeft - rotation count overflow" );
|
|
rnValue = static_cast< Type >( (rnValue << nBits) | (rnValue >> (sizeof( Type ) * 8 - nBits)) );
|
|
}
|
|
|
|
/** Rotates the lower nWidth bits of rnValue left by nBits bits. */
|
|
template< typename Type >
|
|
inline void lclRotateLeft( Type& rnValue, size_t nBits, size_t nWidth )
|
|
{
|
|
OSL_ENSURE( (nBits < nWidth) && (nWidth < sizeof( Type ) * 8), "lclRotateLeft - rotation count overflow" );
|
|
Type nMask = static_cast< Type >( (1UL << nWidth) - 1 );
|
|
rnValue = static_cast< Type >(
|
|
((rnValue << nBits) | ((rnValue & nMask) >> (nWidth - nBits))) & nMask );
|
|
}
|
|
|
|
sal_Int32 lclGetLen( const sal_uInt8* pnPassData, sal_Int32 nBufferSize )
|
|
{
|
|
sal_Int32 nLen = 0;
|
|
while( (nLen < nBufferSize) && pnPassData[ nLen ] ) ++nLen;
|
|
return nLen;
|
|
}
|
|
|
|
sal_uInt16 lclGetKey( const sal_uInt8* pnPassData, sal_Int32 nBufferSize )
|
|
{
|
|
sal_Int32 nLen = lclGetLen( pnPassData, nBufferSize );
|
|
if( nLen <= 0 ) return 0;
|
|
|
|
sal_uInt16 nKey = 0;
|
|
sal_uInt16 nKeyBase = 0x8000;
|
|
sal_uInt16 nKeyEnd = 0xFFFF;
|
|
const sal_uInt8* pnChar = pnPassData + nLen - 1;
|
|
for( sal_Int32 nIndex = 0; nIndex < nLen; ++nIndex, --pnChar )
|
|
{
|
|
sal_uInt8 cChar = *pnChar & 0x7F;
|
|
for( size_t nBit = 0; nBit < 8; ++nBit )
|
|
{
|
|
lclRotateLeft( nKeyBase, 1 );
|
|
if( nKeyBase & 1 ) nKeyBase ^= 0x1020;
|
|
if( cChar & 1 ) nKey ^= nKeyBase;
|
|
cChar >>= 1;
|
|
lclRotateLeft( nKeyEnd, 1 );
|
|
if( nKeyEnd & 1 ) nKeyEnd ^= 0x1020;
|
|
}
|
|
}
|
|
return nKey ^ nKeyEnd;
|
|
}
|
|
|
|
sal_uInt16 lclGetHash( const sal_uInt8* pnPassData, sal_Int32 nBufferSize )
|
|
{
|
|
sal_Int32 nLen = lclGetLen( pnPassData, nBufferSize );
|
|
|
|
sal_uInt16 nHash = static_cast< sal_uInt16 >( nLen );
|
|
if( nLen > 0 )
|
|
nHash ^= 0xCE4B;
|
|
|
|
const sal_uInt8* pnChar = pnPassData;
|
|
for( sal_Int32 nIndex = 0; nIndex < nLen; ++nIndex, ++pnChar )
|
|
{
|
|
sal_uInt16 cChar = *pnChar;
|
|
size_t nRot = static_cast< size_t >( (nIndex + 1) % 15 );
|
|
lclRotateLeft( cChar, nRot, 15 );
|
|
nHash ^= cChar;
|
|
}
|
|
return nHash;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// ============================================================================
|
|
|
|
/*static*/ sal_uInt16 CodecHelper::getPasswordHash( const AttributeList& rAttribs, sal_Int32 nElement )
|
|
{
|
|
sal_Int32 nPasswordHash = rAttribs.getIntegerHex( nElement, 0 );
|
|
OSL_ENSURE( (0 <= nPasswordHash) && (nPasswordHash <= SAL_MAX_UINT16), "CodecHelper::getPasswordHash - invalid password hash" );
|
|
return static_cast< sal_uInt16 >( ((0 <= nPasswordHash) && (nPasswordHash <= SAL_MAX_UINT16)) ? nPasswordHash : 0 );
|
|
}
|
|
|
|
// ============================================================================
|
|
|
|
BinaryCodec_XOR::BinaryCodec_XOR( CodecType eCodecType ) :
|
|
meCodecType( eCodecType ),
|
|
mnOffset( 0 ),
|
|
mnBaseKey( 0 ),
|
|
mnHash( 0 )
|
|
{
|
|
(void)memset( mpnKey, 0, sizeof( mpnKey ) );
|
|
}
|
|
|
|
BinaryCodec_XOR::~BinaryCodec_XOR()
|
|
{
|
|
(void)memset( mpnKey, 0, sizeof( mpnKey ) );
|
|
mnBaseKey = mnHash = 0;
|
|
}
|
|
|
|
void BinaryCodec_XOR::initKey( const sal_uInt8 pnPassData[ 16 ] )
|
|
{
|
|
// calculate base key and hash from passed password
|
|
mnBaseKey = lclGetKey( pnPassData, 16 );
|
|
mnHash = lclGetHash( pnPassData, 16 );
|
|
|
|
static const sal_uInt8 spnFillChars[] =
|
|
{
|
|
0xBB, 0xFF, 0xFF, 0xBA,
|
|
0xFF, 0xFF, 0xB9, 0x80,
|
|
0x00, 0xBE, 0x0F, 0x00,
|
|
0xBF, 0x0F, 0x00
|
|
};
|
|
|
|
(void)memcpy( mpnKey, pnPassData, 16 );
|
|
sal_Int32 nIndex;
|
|
sal_Int32 nLen = lclGetLen( pnPassData, 16 );
|
|
const sal_uInt8* pnFillChar = spnFillChars;
|
|
for( nIndex = nLen; nIndex < static_cast< sal_Int32 >( sizeof( mpnKey ) ); ++nIndex, ++pnFillChar )
|
|
mpnKey[ nIndex ] = *pnFillChar;
|
|
|
|
// rotation of key values is application dependent
|
|
size_t nRotateSize = 0;
|
|
switch( meCodecType )
|
|
{
|
|
case CODEC_WORD: nRotateSize = 7; break;
|
|
case CODEC_EXCEL: nRotateSize = 2; break;
|
|
// compiler will warn, if new codec type is introduced and not handled here
|
|
}
|
|
|
|
// use little-endian base key to create key array
|
|
sal_uInt8 pnBaseKeyLE[ 2 ];
|
|
pnBaseKeyLE[ 0 ] = static_cast< sal_uInt8 >( mnBaseKey );
|
|
pnBaseKeyLE[ 1 ] = static_cast< sal_uInt8 >( mnBaseKey >> 8 );
|
|
sal_uInt8* pnKeyChar = mpnKey;
|
|
for( nIndex = 0; nIndex < static_cast< sal_Int32 >( sizeof( mpnKey ) ); ++nIndex, ++pnKeyChar )
|
|
{
|
|
*pnKeyChar ^= pnBaseKeyLE[ nIndex & 1 ];
|
|
lclRotateLeft( *pnKeyChar, nRotateSize );
|
|
}
|
|
}
|
|
|
|
bool BinaryCodec_XOR::initCodec( const uno::Sequence< beans::NamedValue >& aData )
|
|
{
|
|
bool bResult = sal_False;
|
|
|
|
::comphelper::SequenceAsHashMap aHashData( aData );
|
|
uno::Sequence< sal_Int8 > aKey = aHashData.getUnpackedValueOrDefault( ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "XOR95EncryptionKey" ) ), uno::Sequence< sal_Int8 >() );
|
|
|
|
if ( aKey.getLength() == 16 )
|
|
{
|
|
(void)memcpy( mpnKey, aKey.getConstArray(), 16 );
|
|
bResult = sal_True;
|
|
|
|
mnBaseKey = (sal_uInt16)aHashData.getUnpackedValueOrDefault( ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "XOR95BaseKey" ) ), (sal_Int16)0 );
|
|
mnHash = (sal_uInt16)aHashData.getUnpackedValueOrDefault( ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "XOR95PasswordHash" ) ), (sal_Int16)0 );
|
|
}
|
|
else
|
|
OSL_FAIL( "Unexpected key size!\n" );
|
|
|
|
return bResult;
|
|
}
|
|
|
|
uno::Sequence< beans::NamedValue > BinaryCodec_XOR::getEncryptionData()
|
|
{
|
|
::comphelper::SequenceAsHashMap aHashData;
|
|
aHashData[ ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "XOR95EncryptionKey" ) ) ] <<= uno::Sequence<sal_Int8>( (sal_Int8*)mpnKey, 16 );
|
|
aHashData[ ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "XOR95BaseKey" ) ) ] <<= (sal_Int16)mnBaseKey;
|
|
aHashData[ ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "XOR95PasswordHash" ) ) ] <<= (sal_Int16)mnHash;
|
|
|
|
return aHashData.getAsConstNamedValueList();
|
|
}
|
|
|
|
bool BinaryCodec_XOR::verifyKey( sal_uInt16 nKey, sal_uInt16 nHash ) const
|
|
{
|
|
return (nKey == mnBaseKey) && (nHash == mnHash);
|
|
}
|
|
|
|
void BinaryCodec_XOR::startBlock()
|
|
{
|
|
mnOffset = 0;
|
|
}
|
|
|
|
bool BinaryCodec_XOR::decode( sal_uInt8* pnDestData, const sal_uInt8* pnSrcData, sal_Int32 nBytes )
|
|
{
|
|
const sal_uInt8* pnCurrKey = mpnKey + mnOffset;
|
|
const sal_uInt8* pnKeyLast = mpnKey + 0x0F;
|
|
|
|
// switch/case outside of the for loop (performance)
|
|
const sal_uInt8* pnSrcDataEnd = pnSrcData + nBytes;
|
|
switch( meCodecType )
|
|
{
|
|
case CODEC_WORD:
|
|
{
|
|
for( ; pnSrcData < pnSrcDataEnd; ++pnSrcData, ++pnDestData )
|
|
{
|
|
sal_uInt8 nData = *pnSrcData ^ *pnCurrKey;
|
|
if( (*pnSrcData != 0) && (nData != 0) )
|
|
*pnDestData = nData;
|
|
if( pnCurrKey < pnKeyLast ) ++pnCurrKey; else pnCurrKey = mpnKey;
|
|
}
|
|
}
|
|
break;
|
|
case CODEC_EXCEL:
|
|
{
|
|
for( ; pnSrcData < pnSrcDataEnd; ++pnSrcData, ++pnDestData )
|
|
{
|
|
*pnDestData = *pnSrcData;
|
|
lclRotateLeft( *pnDestData, 3 );
|
|
*pnDestData ^= *pnCurrKey;
|
|
if( pnCurrKey < pnKeyLast ) ++pnCurrKey; else pnCurrKey = mpnKey;
|
|
}
|
|
}
|
|
break;
|
|
// compiler will warn, if new codec type is introduced and not handled here
|
|
}
|
|
|
|
// update offset and leave
|
|
return skip( nBytes );
|
|
}
|
|
|
|
bool BinaryCodec_XOR::skip( sal_Int32 nBytes )
|
|
{
|
|
mnOffset = static_cast< sal_Int32 >( (mnOffset + nBytes) & 0x0F );
|
|
return true;
|
|
}
|
|
|
|
// ============================================================================
|
|
|
|
BinaryCodec_RCF::BinaryCodec_RCF()
|
|
{
|
|
mhCipher = rtl_cipher_create( rtl_Cipher_AlgorithmARCFOUR, rtl_Cipher_ModeStream );
|
|
OSL_ENSURE( mhCipher != 0, "BinaryCodec_RCF::BinaryCodec_RCF - cannot create cipher" );
|
|
|
|
mhDigest = rtl_digest_create( rtl_Digest_AlgorithmMD5 );
|
|
OSL_ENSURE( mhDigest != 0, "BinaryCodec_RCF::BinaryCodec_RCF - cannot create digest" );
|
|
|
|
(void)memset( mpnDigestValue, 0, sizeof( mpnDigestValue ) );
|
|
(void)memset (mpnUnique, 0, sizeof(mpnUnique));
|
|
}
|
|
|
|
BinaryCodec_RCF::~BinaryCodec_RCF()
|
|
{
|
|
(void)memset( mpnDigestValue, 0, sizeof( mpnDigestValue ) );
|
|
(void)memset (mpnUnique, 0, sizeof(mpnUnique));
|
|
rtl_digest_destroy( mhDigest );
|
|
rtl_cipher_destroy( mhCipher );
|
|
}
|
|
|
|
bool BinaryCodec_RCF::initCodec( const uno::Sequence< beans::NamedValue >& aData )
|
|
{
|
|
bool bResult = sal_False;
|
|
|
|
::comphelper::SequenceAsHashMap aHashData( aData );
|
|
uno::Sequence< sal_Int8 > aKey = aHashData.getUnpackedValueOrDefault( ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "STD97EncryptionKey" ) ), uno::Sequence< sal_Int8 >() );
|
|
|
|
if ( aKey.getLength() == RTL_DIGEST_LENGTH_MD5 )
|
|
{
|
|
(void)memcpy( mpnDigestValue, aKey.getConstArray(), RTL_DIGEST_LENGTH_MD5 );
|
|
uno::Sequence< sal_Int8 > aUniqueID = aHashData.getUnpackedValueOrDefault( ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "STD97UniqueID" ) ), uno::Sequence< sal_Int8 >() );
|
|
if ( aUniqueID.getLength() == 16 )
|
|
{
|
|
(void)memcpy( mpnUnique, aUniqueID.getConstArray(), 16 );
|
|
bResult = sal_False;
|
|
}
|
|
else
|
|
OSL_FAIL( "Unexpected document ID!\n" );
|
|
}
|
|
else
|
|
OSL_FAIL( "Unexpected key size!\n" );
|
|
|
|
return bResult;
|
|
}
|
|
|
|
uno::Sequence< beans::NamedValue > BinaryCodec_RCF::getEncryptionData()
|
|
{
|
|
::comphelper::SequenceAsHashMap aHashData;
|
|
aHashData[ ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "STD97EncryptionKey" ) ) ] <<= uno::Sequence< sal_Int8 >( (sal_Int8*)mpnDigestValue, RTL_DIGEST_LENGTH_MD5 );
|
|
aHashData[ ::rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "STD97UniqueID" ) ) ] <<= uno::Sequence< sal_Int8 >( (sal_Int8*)mpnUnique, 16 );
|
|
|
|
return aHashData.getAsConstNamedValueList();
|
|
}
|
|
|
|
void BinaryCodec_RCF::initKey( const sal_uInt16 pnPassData[ 16 ], const sal_uInt8 pnSalt[ 16 ] )
|
|
{
|
|
uno::Sequence< sal_Int8 > aKey = ::comphelper::DocPasswordHelper::GenerateStd97Key( pnPassData, uno::Sequence< sal_Int8 >( (sal_Int8*)pnSalt, 16 ) );
|
|
// Fill raw digest of above updates into DigestValue.
|
|
|
|
if ( aKey.getLength() == sizeof(mpnDigestValue) )
|
|
(void)memcpy ( mpnDigestValue, (const sal_uInt8*)aKey.getConstArray(), sizeof(mpnDigestValue) );
|
|
else
|
|
memset( mpnDigestValue, 0, sizeof(mpnDigestValue) );
|
|
|
|
(void)memcpy( mpnUnique, pnSalt, 16 );
|
|
}
|
|
|
|
bool BinaryCodec_RCF::verifyKey( const sal_uInt8 pnVerifier[ 16 ], const sal_uInt8 pnVerifierHash[ 16 ] )
|
|
{
|
|
if( !startBlock( 0 ) )
|
|
return false;
|
|
|
|
sal_uInt8 pnDigest[ RTL_DIGEST_LENGTH_MD5 ];
|
|
sal_uInt8 pnBuffer[ 64 ];
|
|
|
|
// decode salt data into buffer
|
|
rtl_cipher_decode( mhCipher, pnVerifier, 16, pnBuffer, sizeof( pnBuffer ) );
|
|
|
|
pnBuffer[ 16 ] = 0x80;
|
|
(void)memset( pnBuffer + 17, 0, sizeof( pnBuffer ) - 17 );
|
|
pnBuffer[ 56 ] = 0x80;
|
|
|
|
// fill raw digest of buffer into digest
|
|
rtl_digest_updateMD5( mhDigest, pnBuffer, sizeof( pnBuffer ) );
|
|
rtl_digest_rawMD5( mhDigest, pnDigest, sizeof( pnDigest ) );
|
|
|
|
// decode original salt digest into buffer
|
|
rtl_cipher_decode( mhCipher, pnVerifierHash, 16, pnBuffer, sizeof( pnBuffer ) );
|
|
|
|
// compare buffer with computed digest
|
|
bool bResult = memcmp( pnBuffer, pnDigest, sizeof( pnDigest ) ) == 0;
|
|
|
|
// erase buffer and digest arrays and leave
|
|
(void)memset( pnBuffer, 0, sizeof( pnBuffer ) );
|
|
(void)memset( pnDigest, 0, sizeof( pnDigest ) );
|
|
return bResult;
|
|
}
|
|
|
|
bool BinaryCodec_RCF::startBlock( sal_Int32 nCounter )
|
|
{
|
|
// initialize key data array
|
|
sal_uInt8 pnKeyData[ 64 ];
|
|
(void)memset( pnKeyData, 0, sizeof( pnKeyData ) );
|
|
|
|
// fill 40 bit of digest value into [0..4]
|
|
(void)memcpy( pnKeyData, mpnDigestValue, 5 );
|
|
|
|
// fill little-endian counter into [5..8], static_cast masks out unneeded bits
|
|
pnKeyData[ 5 ] = static_cast< sal_uInt8 >( nCounter );
|
|
pnKeyData[ 6 ] = static_cast< sal_uInt8 >( nCounter >> 8 );
|
|
pnKeyData[ 7 ] = static_cast< sal_uInt8 >( nCounter >> 16 );
|
|
pnKeyData[ 8 ] = static_cast< sal_uInt8 >( nCounter >> 24 );
|
|
|
|
pnKeyData[ 9 ] = 0x80;
|
|
pnKeyData[ 56 ] = 0x48;
|
|
|
|
// fill raw digest of key data into key data
|
|
(void)rtl_digest_updateMD5( mhDigest, pnKeyData, sizeof( pnKeyData ) );
|
|
(void)rtl_digest_rawMD5( mhDigest, pnKeyData, RTL_DIGEST_LENGTH_MD5 );
|
|
|
|
// initialize cipher with key data (for decoding)
|
|
rtlCipherError eResult =
|
|
rtl_cipher_init( mhCipher, rtl_Cipher_DirectionDecode, pnKeyData, RTL_DIGEST_LENGTH_MD5, 0, 0 );
|
|
|
|
// rrase key data array and leave
|
|
(void)memset( pnKeyData, 0, sizeof( pnKeyData ) );
|
|
return eResult == rtl_Cipher_E_None;
|
|
}
|
|
|
|
bool BinaryCodec_RCF::decode( sal_uInt8* pnDestData, const sal_uInt8* pnSrcData, sal_Int32 nBytes )
|
|
{
|
|
rtlCipherError eResult = rtl_cipher_decode( mhCipher,
|
|
pnSrcData, static_cast< sal_Size >( nBytes ),
|
|
pnDestData, static_cast< sal_Size >( nBytes ) );
|
|
return eResult == rtl_Cipher_E_None;
|
|
}
|
|
|
|
bool BinaryCodec_RCF::skip( sal_Int32 nBytes )
|
|
{
|
|
// decode dummy data in memory to update internal state of RC4 cipher
|
|
sal_uInt8 pnDummy[ 1024 ];
|
|
sal_Int32 nBytesLeft = nBytes;
|
|
bool bResult = true;
|
|
while( bResult && (nBytesLeft > 0) )
|
|
{
|
|
sal_Int32 nBlockLen = ::std::min( nBytesLeft, static_cast< sal_Int32 >( sizeof( pnDummy ) ) );
|
|
bResult = decode( pnDummy, pnDummy, nBlockLen );
|
|
nBytesLeft -= nBlockLen;
|
|
}
|
|
return bResult;
|
|
}
|
|
|
|
// ============================================================================
|
|
|
|
} // namespace core
|
|
} // namespace oox
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|