1245 lines
39 KiB
C++
1245 lines
39 KiB
C++
/*************************************************************************
|
|
*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* Copyright 2000, 2010 Oracle and/or its affiliates.
|
|
*
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
|
*
|
|
* This file is part of OpenOffice.org.
|
|
*
|
|
* OpenOffice.org is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 3
|
|
* only, as published by the Free Software Foundation.
|
|
*
|
|
* OpenOffice.org is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License version 3 for more details
|
|
* (a copy is included in the LICENSE file that accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* version 3 along with OpenOffice.org. If not, see
|
|
* <http://www.openoffice.org/license.html>
|
|
* for a copy of the LGPLv3 License.
|
|
*
|
|
************************************************************************/
|
|
|
|
// MARKER(update_precomp.py): autogen include statement, do not remove
|
|
#include "precompiled_sal.hxx"
|
|
|
|
#include "rtl/math.h"
|
|
|
|
#include "osl/diagnose.h"
|
|
#include "rtl/alloc.h"
|
|
#include "rtl/math.hxx"
|
|
#include "rtl/strbuf.h"
|
|
#include "rtl/string.h"
|
|
#include "rtl/ustrbuf.h"
|
|
#include "rtl/ustring.h"
|
|
#include "sal/mathconf.h"
|
|
#include "sal/types.h"
|
|
|
|
#include <algorithm>
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
|
|
static int const n10Count = 16;
|
|
static double const n10s[2][n10Count] = {
|
|
{ 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8,
|
|
1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 },
|
|
{ 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
|
|
1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 }
|
|
};
|
|
|
|
// return pow(10.0,nExp) optimized for exponents in the interval [-16,16]
|
|
static double getN10Exp( int nExp )
|
|
{
|
|
if ( nExp < 0 )
|
|
{
|
|
if ( -nExp <= n10Count )
|
|
return n10s[1][-nExp-1];
|
|
else
|
|
return pow( 10.0, static_cast<double>( nExp ) );
|
|
}
|
|
else if ( nExp > 0 )
|
|
{
|
|
if ( nExp <= n10Count )
|
|
return n10s[0][nExp-1];
|
|
else
|
|
return pow( 10.0, static_cast<double>( nExp ) );
|
|
}
|
|
else // ( nExp == 0 )
|
|
return 1.0;
|
|
}
|
|
|
|
/** Approximation algorithm for erf for 0 < x < 0.65. */
|
|
void lcl_Erf0065( double x, double& fVal )
|
|
{
|
|
static const double pn[] = {
|
|
1.12837916709551256,
|
|
1.35894887627277916E-1,
|
|
4.03259488531795274E-2,
|
|
1.20339380863079457E-3,
|
|
6.49254556481904354E-5
|
|
};
|
|
static const double qn[] = {
|
|
1.00000000000000000,
|
|
4.53767041780002545E-1,
|
|
8.69936222615385890E-2,
|
|
8.49717371168693357E-3,
|
|
3.64915280629351082E-4
|
|
};
|
|
double fPSum = 0.0;
|
|
double fQSum = 0.0;
|
|
double fXPow = 1.0;
|
|
for ( unsigned int i = 0; i <= 4; ++i )
|
|
{
|
|
fPSum += pn[i]*fXPow;
|
|
fQSum += qn[i]*fXPow;
|
|
fXPow *= x*x;
|
|
}
|
|
fVal = x * fPSum / fQSum;
|
|
}
|
|
|
|
/** Approximation algorithm for erfc for 0.65 < x < 6.0. */
|
|
void lcl_Erfc0600( double x, double& fVal )
|
|
{
|
|
double fPSum = 0.0;
|
|
double fQSum = 0.0;
|
|
double fXPow = 1.0;
|
|
const double *pn;
|
|
const double *qn;
|
|
|
|
if ( x < 2.2 )
|
|
{
|
|
static const double pn22[] = {
|
|
9.99999992049799098E-1,
|
|
1.33154163936765307,
|
|
8.78115804155881782E-1,
|
|
3.31899559578213215E-1,
|
|
7.14193832506776067E-2,
|
|
7.06940843763253131E-3
|
|
};
|
|
static const double qn22[] = {
|
|
1.00000000000000000,
|
|
2.45992070144245533,
|
|
2.65383972869775752,
|
|
1.61876655543871376,
|
|
5.94651311286481502E-1,
|
|
1.26579413030177940E-1,
|
|
1.25304936549413393E-2
|
|
};
|
|
pn = pn22;
|
|
qn = qn22;
|
|
}
|
|
else /* if ( x < 6.0 ) this is true, but the compiler does not know */
|
|
{
|
|
static const double pn60[] = {
|
|
9.99921140009714409E-1,
|
|
1.62356584489366647,
|
|
1.26739901455873222,
|
|
5.81528574177741135E-1,
|
|
1.57289620742838702E-1,
|
|
2.25716982919217555E-2
|
|
};
|
|
static const double qn60[] = {
|
|
1.00000000000000000,
|
|
2.75143870676376208,
|
|
3.37367334657284535,
|
|
2.38574194785344389,
|
|
1.05074004614827206,
|
|
2.78788439273628983E-1,
|
|
4.00072964526861362E-2
|
|
};
|
|
pn = pn60;
|
|
qn = qn60;
|
|
}
|
|
|
|
for ( unsigned int i = 0; i < 6; ++i )
|
|
{
|
|
fPSum += pn[i]*fXPow;
|
|
fQSum += qn[i]*fXPow;
|
|
fXPow *= x;
|
|
}
|
|
fQSum += qn[6]*fXPow;
|
|
fVal = exp( -1.0*x*x )* fPSum / fQSum;
|
|
}
|
|
|
|
/** Approximation algorithm for erfc for 6.0 < x < 26.54 (but used for all
|
|
x > 6.0). */
|
|
void lcl_Erfc2654( double x, double& fVal )
|
|
{
|
|
static const double pn[] = {
|
|
5.64189583547756078E-1,
|
|
8.80253746105525775,
|
|
3.84683103716117320E1,
|
|
4.77209965874436377E1,
|
|
8.08040729052301677
|
|
};
|
|
static const double qn[] = {
|
|
1.00000000000000000,
|
|
1.61020914205869003E1,
|
|
7.54843505665954743E1,
|
|
1.12123870801026015E2,
|
|
3.73997570145040850E1
|
|
};
|
|
|
|
double fPSum = 0.0;
|
|
double fQSum = 0.0;
|
|
double fXPow = 1.0;
|
|
|
|
for ( unsigned int i = 0; i <= 4; ++i )
|
|
{
|
|
fPSum += pn[i]*fXPow;
|
|
fQSum += qn[i]*fXPow;
|
|
fXPow /= x*x;
|
|
}
|
|
fVal = exp(-1.0*x*x)*fPSum / (x*fQSum);
|
|
}
|
|
|
|
namespace {
|
|
|
|
double const nKorrVal[] = {
|
|
0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8,
|
|
9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15
|
|
};
|
|
|
|
struct StringTraits
|
|
{
|
|
typedef sal_Char Char;
|
|
|
|
typedef rtl_String String;
|
|
|
|
static inline void createString(rtl_String ** pString,
|
|
sal_Char const * pChars, sal_Int32 nLen)
|
|
{
|
|
rtl_string_newFromStr_WithLength(pString, pChars, nLen);
|
|
}
|
|
|
|
static inline void createBuffer(rtl_String ** pBuffer,
|
|
sal_Int32 * pCapacity)
|
|
{
|
|
rtl_string_new_WithLength(pBuffer, *pCapacity);
|
|
}
|
|
|
|
static inline void appendChar(rtl_String ** pBuffer, sal_Int32 * pCapacity,
|
|
sal_Int32 * pOffset, sal_Char cChar)
|
|
{
|
|
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, &cChar, 1);
|
|
++*pOffset;
|
|
}
|
|
|
|
static inline void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity,
|
|
sal_Int32 * pOffset, sal_Char const * pChars,
|
|
sal_Int32 nLen)
|
|
{
|
|
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
|
|
static inline void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity,
|
|
sal_Int32 * pOffset, sal_Char const * pStr,
|
|
sal_Int32 nLen)
|
|
{
|
|
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
};
|
|
|
|
struct UStringTraits
|
|
{
|
|
typedef sal_Unicode Char;
|
|
|
|
typedef rtl_uString String;
|
|
|
|
static inline void createString(rtl_uString ** pString,
|
|
sal_Unicode const * pChars, sal_Int32 nLen)
|
|
{
|
|
rtl_uString_newFromStr_WithLength(pString, pChars, nLen);
|
|
}
|
|
|
|
static inline void createBuffer(rtl_uString ** pBuffer,
|
|
sal_Int32 * pCapacity)
|
|
{
|
|
rtl_uString_new_WithLength(pBuffer, *pCapacity);
|
|
}
|
|
|
|
static inline void appendChar(rtl_uString ** pBuffer, sal_Int32 * pCapacity,
|
|
sal_Int32 * pOffset, sal_Unicode cChar)
|
|
{
|
|
rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, &cChar, 1);
|
|
++*pOffset;
|
|
}
|
|
|
|
static inline void appendChars(rtl_uString ** pBuffer,
|
|
sal_Int32 * pCapacity, sal_Int32 * pOffset,
|
|
sal_Unicode const * pChars, sal_Int32 nLen)
|
|
{
|
|
rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
|
|
static inline void appendAscii(rtl_uString ** pBuffer,
|
|
sal_Int32 * pCapacity, sal_Int32 * pOffset,
|
|
sal_Char const * pStr, sal_Int32 nLen)
|
|
{
|
|
rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr,
|
|
nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
};
|
|
|
|
|
|
// Solaris C++ 5.2 compiler has problems when "StringT ** pResult" is
|
|
// "typename T::String ** pResult" instead:
|
|
template< typename T, typename StringT >
|
|
inline void doubleToString(StringT ** pResult,
|
|
sal_Int32 * pResultCapacity, sal_Int32 nResultOffset,
|
|
double fValue, rtl_math_StringFormat eFormat,
|
|
sal_Int32 nDecPlaces, typename T::Char cDecSeparator,
|
|
sal_Int32 const * pGroups,
|
|
typename T::Char cGroupSeparator,
|
|
bool bEraseTrailingDecZeros)
|
|
{
|
|
static double const nRoundVal[] = {
|
|
5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6,
|
|
0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14
|
|
};
|
|
|
|
// sign adjustment, instead of testing for fValue<0.0 this will also fetch
|
|
// -0.0
|
|
bool bSign = rtl::math::isSignBitSet( fValue );
|
|
if( bSign )
|
|
fValue = -fValue;
|
|
|
|
if ( rtl::math::isNan( fValue ) )
|
|
{
|
|
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-1.#NAN");
|
|
if (pResultCapacity == 0)
|
|
{
|
|
pResultCapacity = &nCapacity;
|
|
T::createBuffer(pResult, pResultCapacity);
|
|
nResultOffset = 0;
|
|
}
|
|
|
|
if ( bSign )
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("-"));
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("1"));
|
|
T::appendChar(pResult, pResultCapacity, &nResultOffset, cDecSeparator);
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("#NAN"));
|
|
return;
|
|
}
|
|
|
|
bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way...
|
|
if ( bHuge || rtl::math::isInf( fValue ) )
|
|
{
|
|
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-1.#INF");
|
|
if (pResultCapacity == 0)
|
|
{
|
|
pResultCapacity = &nCapacity;
|
|
T::createBuffer(pResult, pResultCapacity);
|
|
nResultOffset = 0;
|
|
}
|
|
|
|
if ( bSign )
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("-"));
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("1"));
|
|
T::appendChar(pResult, pResultCapacity, &nResultOffset, cDecSeparator);
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("#INF"));
|
|
return;
|
|
}
|
|
|
|
// find the exponent
|
|
int nExp = 0;
|
|
if ( fValue > 0.0 )
|
|
{
|
|
nExp = static_cast< int >( floor( log10( fValue ) ) );
|
|
fValue /= getN10Exp( nExp );
|
|
}
|
|
|
|
switch ( eFormat )
|
|
{
|
|
case rtl_math_StringFormat_Automatic :
|
|
{ // E or F depending on exponent magnitude
|
|
int nPrec;
|
|
if ( nExp <= -15 || nExp >= 15 ) // #58531# was <-16, >16
|
|
{
|
|
nPrec = 14;
|
|
eFormat = rtl_math_StringFormat_E;
|
|
}
|
|
else
|
|
{
|
|
if ( nExp < 14 )
|
|
{
|
|
nPrec = 15 - nExp - 1;
|
|
eFormat = rtl_math_StringFormat_F;
|
|
}
|
|
else
|
|
{
|
|
nPrec = 15;
|
|
eFormat = rtl_math_StringFormat_F;
|
|
}
|
|
}
|
|
if ( nDecPlaces == rtl_math_DecimalPlaces_Max )
|
|
nDecPlaces = nPrec;
|
|
}
|
|
break;
|
|
case rtl_math_StringFormat_G :
|
|
{ // G-Point, similar to sprintf %G
|
|
if ( nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance )
|
|
nDecPlaces = 6;
|
|
if ( nExp < -4 || nExp >= nDecPlaces )
|
|
{
|
|
nDecPlaces = std::max< sal_Int32 >( 1, nDecPlaces - 1 );
|
|
eFormat = rtl_math_StringFormat_E;
|
|
}
|
|
else
|
|
{
|
|
nDecPlaces = std::max< sal_Int32 >( 0, nDecPlaces - nExp - 1 );
|
|
eFormat = rtl_math_StringFormat_F;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
sal_Int32 nDigits = nDecPlaces + 1;
|
|
|
|
if( eFormat == rtl_math_StringFormat_F )
|
|
nDigits += nExp;
|
|
|
|
// Round the number
|
|
if( nDigits >= 0 )
|
|
{
|
|
if( ( fValue += nRoundVal[ nDigits > 15 ? 15 : nDigits ] ) >= 10 )
|
|
{
|
|
fValue = 1.0;
|
|
nExp++;
|
|
if( eFormat == rtl_math_StringFormat_F )
|
|
nDigits++;
|
|
}
|
|
}
|
|
|
|
static sal_Int32 const nBufMax = 256;
|
|
typename T::Char aBuf[nBufMax];
|
|
typename T::Char * pBuf;
|
|
sal_Int32 nBuf = static_cast< sal_Int32 >
|
|
( nDigits <= 0 ? std::max< sal_Int32 >( nDecPlaces, abs(nExp) )
|
|
: nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0);
|
|
if ( nBuf > nBufMax )
|
|
{
|
|
pBuf = reinterpret_cast< typename T::Char * >(
|
|
rtl_allocateMemory(nBuf * sizeof (typename T::Char)));
|
|
OSL_ENSURE(pBuf != 0, "Out of memory");
|
|
}
|
|
else
|
|
pBuf = aBuf;
|
|
typename T::Char * p = pBuf;
|
|
if ( bSign )
|
|
*p++ = static_cast< typename T::Char >('-');
|
|
|
|
bool bHasDec = false;
|
|
|
|
int nDecPos;
|
|
// Check for F format and number < 1
|
|
if( eFormat == rtl_math_StringFormat_F )
|
|
{
|
|
if( nExp < 0 )
|
|
{
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
if ( nDecPlaces > 0 )
|
|
{
|
|
*p++ = cDecSeparator;
|
|
bHasDec = true;
|
|
}
|
|
sal_Int32 i = ( nDigits <= 0 ? nDecPlaces : -nExp - 1 );
|
|
while( (i--) > 0 )
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
nDecPos = 0;
|
|
}
|
|
else
|
|
nDecPos = nExp + 1;
|
|
}
|
|
else
|
|
nDecPos = 1;
|
|
|
|
int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0;
|
|
if ( nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator )
|
|
{
|
|
while ( nGrouping + pGroups[nGroupSelector] < nDecPos )
|
|
{
|
|
nGrouping += pGroups[ nGroupSelector ];
|
|
if ( pGroups[nGroupSelector+1] )
|
|
{
|
|
if ( nGrouping + pGroups[nGroupSelector+1] >= nDecPos )
|
|
break; // while
|
|
++nGroupSelector;
|
|
}
|
|
else if ( !nGroupExceed )
|
|
nGroupExceed = nGrouping;
|
|
}
|
|
}
|
|
|
|
// print the number
|
|
if( nDigits > 0 )
|
|
{
|
|
for ( int i = 0; ; i++ )
|
|
{
|
|
if( i < 15 )
|
|
{
|
|
int nDigit;
|
|
if (nDigits-1 == 0 && i > 0 && i < 14)
|
|
nDigit = static_cast< int >( floor( fValue
|
|
+ nKorrVal[15-i] ) );
|
|
else
|
|
nDigit = static_cast< int >( fValue + 1E-15 );
|
|
if (nDigit >= 10)
|
|
{ // after-treatment of up-rounding to the next decade
|
|
sal_Int32 sLen = static_cast< long >(p-pBuf)-1;
|
|
if (sLen == -1)
|
|
{
|
|
p = pBuf;
|
|
if ( eFormat == rtl_math_StringFormat_F )
|
|
{
|
|
*p++ = static_cast< typename T::Char >('1');
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
else
|
|
{
|
|
*p++ = static_cast< typename T::Char >('1');
|
|
*p++ = cDecSeparator;
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
nExp++;
|
|
bHasDec = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (sal_Int32 j = sLen; j >= 0; j--)
|
|
{
|
|
typename T::Char cS = pBuf[j];
|
|
if (cS != cDecSeparator)
|
|
{
|
|
if ( cS != static_cast< typename T::Char >('9'))
|
|
{
|
|
pBuf[j] = ++cS;
|
|
j = -1; // break loop
|
|
}
|
|
else
|
|
{
|
|
pBuf[j]
|
|
= static_cast< typename T::Char >('0');
|
|
if (j == 0)
|
|
{
|
|
if ( eFormat == rtl_math_StringFormat_F)
|
|
{ // insert '1'
|
|
typename T::Char * px = p++;
|
|
while ( pBuf < px )
|
|
{
|
|
*px = *(px-1);
|
|
px--;
|
|
}
|
|
pBuf[0] = static_cast<
|
|
typename T::Char >('1');
|
|
}
|
|
else
|
|
{
|
|
pBuf[j] = static_cast<
|
|
typename T::Char >('1');
|
|
nExp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
fValue = 0.0;
|
|
}
|
|
else
|
|
{
|
|
*p++ = static_cast< typename T::Char >(
|
|
nDigit + static_cast< typename T::Char >('0') );
|
|
fValue = ( fValue - nDigit ) * 10.0;
|
|
}
|
|
}
|
|
else
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
if( !--nDigits )
|
|
break; // for
|
|
if( nDecPos )
|
|
{
|
|
if( !--nDecPos )
|
|
{
|
|
*p++ = cDecSeparator;
|
|
bHasDec = true;
|
|
}
|
|
else if ( nDecPos == nGrouping )
|
|
{
|
|
*p++ = cGroupSeparator;
|
|
nGrouping -= pGroups[ nGroupSelector ];
|
|
if ( nGroupSelector && nGrouping < nGroupExceed )
|
|
--nGroupSelector;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( !bHasDec && eFormat == rtl_math_StringFormat_F )
|
|
{ // nDecPlaces < 0 did round the value
|
|
while ( --nDecPos > 0 )
|
|
{ // fill before decimal point
|
|
if ( nDecPos == nGrouping )
|
|
{
|
|
*p++ = cGroupSeparator;
|
|
nGrouping -= pGroups[ nGroupSelector ];
|
|
if ( nGroupSelector && nGrouping < nGroupExceed )
|
|
--nGroupSelector;
|
|
}
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
}
|
|
|
|
if ( bEraseTrailingDecZeros && bHasDec && p > pBuf )
|
|
{
|
|
while ( *(p-1) == static_cast< typename T::Char >('0') )
|
|
p--;
|
|
if ( *(p-1) == cDecSeparator )
|
|
p--;
|
|
}
|
|
|
|
// Print the exponent ('E', followed by '+' or '-', followed by exactly
|
|
// three digits). The code in rtl_[u]str_valueOf{Float|Double} relies on
|
|
// this format.
|
|
if( eFormat == rtl_math_StringFormat_E )
|
|
{
|
|
if ( p == pBuf )
|
|
*p++ = static_cast< typename T::Char >('1');
|
|
// maybe no nDigits if nDecPlaces < 0
|
|
*p++ = static_cast< typename T::Char >('E');
|
|
if( nExp < 0 )
|
|
{
|
|
nExp = -nExp;
|
|
*p++ = static_cast< typename T::Char >('-');
|
|
}
|
|
else
|
|
*p++ = static_cast< typename T::Char >('+');
|
|
// if (nExp >= 100 )
|
|
*p++ = static_cast< typename T::Char >(
|
|
nExp / 100 + static_cast< typename T::Char >('0') );
|
|
nExp %= 100;
|
|
*p++ = static_cast< typename T::Char >(
|
|
nExp / 10 + static_cast< typename T::Char >('0') );
|
|
*p++ = static_cast< typename T::Char >(
|
|
nExp % 10 + static_cast< typename T::Char >('0') );
|
|
}
|
|
|
|
if (pResultCapacity == 0)
|
|
T::createString(pResult, pBuf, p - pBuf);
|
|
else
|
|
T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf,
|
|
p - pBuf);
|
|
|
|
if ( pBuf != &aBuf[0] )
|
|
rtl_freeMemory(pBuf);
|
|
}
|
|
|
|
}
|
|
|
|
void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
|
|
sal_Int32 * pResultCapacity,
|
|
sal_Int32 nResultOffset, double fValue,
|
|
rtl_math_StringFormat eFormat,
|
|
sal_Int32 nDecPlaces,
|
|
sal_Char cDecSeparator,
|
|
sal_Int32 const * pGroups,
|
|
sal_Char cGroupSeparator,
|
|
sal_Bool bEraseTrailingDecZeros)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
doubleToString< StringTraits, StringTraits::String >(
|
|
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
|
|
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
|
|
}
|
|
|
|
void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
|
|
sal_Int32 * pResultCapacity,
|
|
sal_Int32 nResultOffset, double fValue,
|
|
rtl_math_StringFormat eFormat,
|
|
sal_Int32 nDecPlaces,
|
|
sal_Unicode cDecSeparator,
|
|
sal_Int32 const * pGroups,
|
|
sal_Unicode cGroupSeparator,
|
|
sal_Bool bEraseTrailingDecZeros)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
doubleToString< UStringTraits, UStringTraits::String >(
|
|
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
|
|
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// if nExp * 10 + nAdd would result in overflow
|
|
inline bool long10Overflow( long& nExp, int nAdd )
|
|
{
|
|
if ( nExp > (LONG_MAX/10)
|
|
|| (nExp == (LONG_MAX/10) && nAdd > (LONG_MAX%10)) )
|
|
{
|
|
nExp = LONG_MAX;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// We are only concerned about ASCII arabic numerical digits here
|
|
template< typename CharT >
|
|
inline bool isDigit( CharT c )
|
|
{
|
|
return 0x30 <= c && c <= 0x39;
|
|
}
|
|
|
|
template< typename CharT >
|
|
inline double stringToDouble(CharT const * pBegin, CharT const * pEnd,
|
|
CharT cDecSeparator, CharT cGroupSeparator,
|
|
rtl_math_ConversionStatus * pStatus,
|
|
CharT const ** pParsedEnd)
|
|
{
|
|
double fVal = 0.0;
|
|
rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
|
|
|
|
CharT const * p0 = pBegin;
|
|
while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
|
|
++p0;
|
|
bool bSign;
|
|
if (p0 != pEnd && *p0 == CharT('-'))
|
|
{
|
|
bSign = true;
|
|
++p0;
|
|
}
|
|
else
|
|
{
|
|
bSign = false;
|
|
if (p0 != pEnd && *p0 == CharT('+'))
|
|
++p0;
|
|
}
|
|
CharT const * p = p0;
|
|
|
|
// leading zeros and group separators may be safely ignored
|
|
while (p != pEnd && (*p == CharT('0') || *p == cGroupSeparator))
|
|
++p;
|
|
|
|
long nValExp = 0; // carry along exponent of mantissa
|
|
|
|
// integer part of mantissa
|
|
for (; p != pEnd; ++p)
|
|
{
|
|
CharT c = *p;
|
|
if (isDigit(c))
|
|
{
|
|
fVal = fVal * 10.0 + static_cast< double >( c - CharT('0') );
|
|
++nValExp;
|
|
}
|
|
else if (c != cGroupSeparator)
|
|
break;
|
|
}
|
|
|
|
// fraction part of mantissa
|
|
if (p != pEnd && *p == cDecSeparator)
|
|
{
|
|
++p;
|
|
double fFrac = 0.0;
|
|
long nFracExp = 0;
|
|
while (p != pEnd && *p == CharT('0'))
|
|
{
|
|
--nFracExp;
|
|
++p;
|
|
}
|
|
if ( nValExp == 0 )
|
|
nValExp = nFracExp - 1; // no integer part => fraction exponent
|
|
// one decimal digit needs ld(10) ~= 3.32 bits
|
|
static const int nSigs = (DBL_MANT_DIG / 3) + 1;
|
|
int nDigs = 0;
|
|
for (; p != pEnd; ++p)
|
|
{
|
|
CharT c = *p;
|
|
if (!isDigit(c))
|
|
break;
|
|
if ( nDigs < nSigs )
|
|
{ // further digits (more than nSigs) don't have any significance
|
|
fFrac = fFrac * 10.0 + static_cast< double >( c - CharT('0') );
|
|
--nFracExp;
|
|
++nDigs;
|
|
}
|
|
}
|
|
if ( fFrac != 0.0 )
|
|
fVal += rtl::math::pow10Exp( fFrac, nFracExp );
|
|
else if ( nValExp < 0 )
|
|
nValExp = 0; // no digit other than 0 after decimal point
|
|
}
|
|
|
|
if ( nValExp > 0 )
|
|
--nValExp; // started with offset +1 at the first mantissa digit
|
|
|
|
// Exponent
|
|
if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
|
|
{
|
|
++p;
|
|
bool bExpSign;
|
|
if (p != pEnd && *p == CharT('-'))
|
|
{
|
|
bExpSign = true;
|
|
++p;
|
|
}
|
|
else
|
|
{
|
|
bExpSign = false;
|
|
if (p != pEnd && *p == CharT('+'))
|
|
++p;
|
|
}
|
|
if ( fVal == 0.0 )
|
|
{ // no matter what follows, zero stays zero, but carry on the offset
|
|
while (p != pEnd && isDigit(*p))
|
|
++p;
|
|
}
|
|
else
|
|
{
|
|
bool bOverFlow = false;
|
|
long nExp = 0;
|
|
for (; p != pEnd; ++p)
|
|
{
|
|
CharT c = *p;
|
|
if (!isDigit(c))
|
|
break;
|
|
int i = c - CharT('0');
|
|
if ( long10Overflow( nExp, i ) )
|
|
bOverFlow = true;
|
|
else
|
|
nExp = nExp * 10 + i;
|
|
}
|
|
if ( nExp )
|
|
{
|
|
if ( bExpSign )
|
|
nExp = -nExp;
|
|
long nAllExp = ( bOverFlow ? 0 : nExp + nValExp );
|
|
if ( nAllExp > DBL_MAX_10_EXP || (bOverFlow && !bExpSign) )
|
|
{ // overflow
|
|
fVal = HUGE_VAL;
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
}
|
|
else if ( nAllExp < DBL_MIN_10_EXP || (bOverFlow && bExpSign) )
|
|
{ // underflow
|
|
fVal = 0.0;
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
}
|
|
else if ( nExp > DBL_MAX_10_EXP || nExp < DBL_MIN_10_EXP )
|
|
{ // compensate exponents
|
|
fVal = rtl::math::pow10Exp( fVal, -nValExp );
|
|
fVal = rtl::math::pow10Exp( fVal, nAllExp );
|
|
}
|
|
else
|
|
fVal = rtl::math::pow10Exp( fVal, nExp ); // normal
|
|
}
|
|
}
|
|
}
|
|
else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
|
|
&& p[-1] == cDecSeparator && p[-2] == CharT('1'))
|
|
{
|
|
if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
|
|
&& p[3] == CharT('F'))
|
|
{
|
|
// "1.#INF", "+1.#INF", "-1.#INF"
|
|
p += 4;
|
|
fVal = HUGE_VAL;
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
// Eat any further digits:
|
|
while (p != pEnd && isDigit(*p))
|
|
++p;
|
|
}
|
|
else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
|
|
&& p[3] == CharT('N'))
|
|
{
|
|
// "1.#NAN", "+1.#NAN", "-1.#NAN"
|
|
p += 4;
|
|
rtl::math::setNan( &fVal );
|
|
if (bSign)
|
|
{
|
|
union {
|
|
double sd;
|
|
sal_math_Double md;
|
|
} m;
|
|
m.sd = fVal;
|
|
m.md.w32_parts.msw |= 0x80000000; // create negative NaN
|
|
fVal = m.sd;
|
|
bSign = false; // don't negate again
|
|
}
|
|
// Eat any further digits:
|
|
while (p != pEnd && isDigit(*p))
|
|
++p;
|
|
}
|
|
}
|
|
|
|
// overflow also if more than DBL_MAX_10_EXP digits without decimal
|
|
// separator, or 0. and more than DBL_MIN_10_EXP digits, ...
|
|
bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
|
|
if ( bHuge )
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
|
|
if ( bSign )
|
|
fVal = -fVal;
|
|
|
|
if (pStatus != 0)
|
|
*pStatus = eStatus;
|
|
if (pParsedEnd != 0)
|
|
*pParsedEnd = p;
|
|
|
|
return fVal;
|
|
}
|
|
|
|
}
|
|
|
|
double SAL_CALL rtl_math_stringToDouble(sal_Char const * pBegin,
|
|
sal_Char const * pEnd,
|
|
sal_Char cDecSeparator,
|
|
sal_Char cGroupSeparator,
|
|
rtl_math_ConversionStatus * pStatus,
|
|
sal_Char const ** pParsedEnd)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
|
|
pParsedEnd);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
|
|
sal_Unicode const * pEnd,
|
|
sal_Unicode cDecSeparator,
|
|
sal_Unicode cGroupSeparator,
|
|
rtl_math_ConversionStatus * pStatus,
|
|
sal_Unicode const ** pParsedEnd)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
|
|
pParsedEnd);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
|
|
enum rtl_math_RoundingMode eMode)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20);
|
|
|
|
if ( fValue == 0.0 )
|
|
return fValue;
|
|
|
|
// sign adjustment
|
|
bool bSign = rtl::math::isSignBitSet( fValue );
|
|
if ( bSign )
|
|
fValue = -fValue;
|
|
|
|
double fFac = 0;
|
|
if ( nDecPlaces != 0 )
|
|
{
|
|
// max 20 decimals, we don't have unlimited precision
|
|
// #38810# and no overflow on fValue*=fFac
|
|
if ( nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20) )
|
|
return bSign ? -fValue : fValue;
|
|
|
|
fFac = getN10Exp( nDecPlaces );
|
|
fValue *= fFac;
|
|
}
|
|
//else //! uninitialized fFac, not needed
|
|
|
|
switch ( eMode )
|
|
{
|
|
case rtl_math_RoundingMode_Corrected :
|
|
{
|
|
int nExp; // exponent for correction
|
|
if ( fValue > 0.0 )
|
|
nExp = static_cast<int>( floor( log10( fValue ) ) );
|
|
else
|
|
nExp = 0;
|
|
int nIndex = 15 - nExp;
|
|
if ( nIndex > 15 )
|
|
nIndex = 15;
|
|
else if ( nIndex <= 1 )
|
|
nIndex = 0;
|
|
fValue = floor( fValue + 0.5 + nKorrVal[nIndex] );
|
|
}
|
|
break;
|
|
case rtl_math_RoundingMode_Down :
|
|
fValue = rtl::math::approxFloor( fValue );
|
|
break;
|
|
case rtl_math_RoundingMode_Up :
|
|
fValue = rtl::math::approxCeil( fValue );
|
|
break;
|
|
case rtl_math_RoundingMode_Floor :
|
|
fValue = bSign ? rtl::math::approxCeil( fValue )
|
|
: rtl::math::approxFloor( fValue );
|
|
break;
|
|
case rtl_math_RoundingMode_Ceiling :
|
|
fValue = bSign ? rtl::math::approxFloor( fValue )
|
|
: rtl::math::approxCeil( fValue );
|
|
break;
|
|
case rtl_math_RoundingMode_HalfDown :
|
|
{
|
|
double f = floor( fValue );
|
|
fValue = ((fValue - f) <= 0.5) ? f : ceil( fValue );
|
|
}
|
|
break;
|
|
case rtl_math_RoundingMode_HalfUp :
|
|
{
|
|
double f = floor( fValue );
|
|
fValue = ((fValue - f) < 0.5) ? f : ceil( fValue );
|
|
}
|
|
break;
|
|
case rtl_math_RoundingMode_HalfEven :
|
|
#if defined FLT_ROUNDS
|
|
/*
|
|
Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
|
|
|
|
DBL_EPSILON is the smallest fractional number which can be represented,
|
|
its reciprocal is therefore the smallest number that cannot have a
|
|
fractional part. Once you add this reciprocal to `x', its fractional part
|
|
is stripped off. Simply subtracting the reciprocal back out returns `x'
|
|
without its fractional component.
|
|
Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
|
|
who placed it into public domain.
|
|
|
|
volatile: prevent compiler from being too smart
|
|
*/
|
|
if ( FLT_ROUNDS == 1 )
|
|
{
|
|
volatile double x = fValue + 1.0 / DBL_EPSILON;
|
|
fValue = x - 1.0 / DBL_EPSILON;
|
|
}
|
|
else
|
|
#endif // FLT_ROUNDS
|
|
{
|
|
double f = floor( fValue );
|
|
if ( (fValue - f) != 0.5 )
|
|
fValue = floor( fValue + 0.5 );
|
|
else
|
|
{
|
|
double g = f / 2.0;
|
|
fValue = (g == floor( g )) ? f : (f + 1.0);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
OSL_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
if ( nDecPlaces != 0 )
|
|
fValue /= fFac;
|
|
|
|
return bSign ? -fValue : fValue;
|
|
}
|
|
|
|
|
|
double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
|
|
{
|
|
return fValue * getN10Exp( nExp );
|
|
}
|
|
|
|
|
|
double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
|
|
{
|
|
if (fValue == 0.0 || fValue == HUGE_VAL || !::rtl::math::isFinite( fValue))
|
|
// We don't handle these conditions. Bail out.
|
|
return fValue;
|
|
|
|
double fOrigValue = fValue;
|
|
|
|
bool bSign = ::rtl::math::isSignBitSet( fValue);
|
|
if (bSign)
|
|
fValue = -fValue;
|
|
|
|
int nExp = static_cast<int>( floor( log10( fValue)));
|
|
nExp = 14 - nExp;
|
|
double fExpValue = getN10Exp( nExp);
|
|
|
|
fValue *= fExpValue;
|
|
// If the original value was near DBL_MIN we got an overflow. Restore and
|
|
// bail out.
|
|
if (!rtl::math::isFinite( fValue))
|
|
return fOrigValue;
|
|
fValue = rtl_math_round( fValue, 0, rtl_math_RoundingMode_Corrected);
|
|
fValue /= fExpValue;
|
|
// If the original value was near DBL_MAX we got an overflow. Restore and
|
|
// bail out.
|
|
if (!rtl::math::isFinite( fValue))
|
|
return fOrigValue;
|
|
|
|
return bSign ? -fValue : fValue;
|
|
}
|
|
|
|
|
|
double SAL_CALL rtl_math_expm1( double fValue ) SAL_THROW_EXTERN_C()
|
|
{
|
|
double fe = exp( fValue );
|
|
if (fe == 1.0)
|
|
return fValue;
|
|
if (fe-1.0 == -1.0)
|
|
return -1.0;
|
|
return (fe-1.0) * fValue / log(fe);
|
|
}
|
|
|
|
|
|
double SAL_CALL rtl_math_log1p( double fValue ) SAL_THROW_EXTERN_C()
|
|
{
|
|
// Use volatile because a compiler may be too smart "optimizing" the
|
|
// condition such that in certain cases the else path was called even if
|
|
// (fp==1.0) was true, where the term (fp-1.0) then resulted in 0.0 and
|
|
// hence the entire expression resulted in NaN.
|
|
// Happened with g++ 3.4.1 and an input value of 9.87E-18
|
|
volatile double fp = 1.0 + fValue;
|
|
if (fp == 1.0)
|
|
return fValue;
|
|
else
|
|
return log(fp) * fValue / (fp-1.0);
|
|
}
|
|
|
|
|
|
double SAL_CALL rtl_math_atanh( double fValue ) SAL_THROW_EXTERN_C()
|
|
{
|
|
return 0.5 * rtl_math_log1p( 2.0 * fValue / (1.0-fValue) );
|
|
}
|
|
|
|
|
|
/** Parent error function (erf) that calls different algorithms based on the
|
|
value of x. It takes care of cases where x is negative as erf is an odd
|
|
function i.e. erf(-x) = -erf(x).
|
|
|
|
Kramer, W., and Blomquist, F., 2000, Algorithms with Guaranteed Error Bounds
|
|
for the Error Function and the Complementary Error Function
|
|
|
|
http://www.math.uni-wuppertal.de/wrswt/literatur_en.html
|
|
|
|
@author Kohei Yoshida <kohei@openoffice.org>
|
|
|
|
@see #i55735#
|
|
*/
|
|
double SAL_CALL rtl_math_erf( double x ) SAL_THROW_EXTERN_C()
|
|
{
|
|
if( x == 0.0 )
|
|
return 0.0;
|
|
|
|
bool bNegative = false;
|
|
if ( x < 0.0 )
|
|
{
|
|
x = fabs( x );
|
|
bNegative = true;
|
|
}
|
|
|
|
double fErf = 1.0;
|
|
if ( x < 1.0e-10 )
|
|
fErf = (double) (x*1.1283791670955125738961589031215452L);
|
|
else if ( x < 0.65 )
|
|
lcl_Erf0065( x, fErf );
|
|
else
|
|
fErf = 1.0 - rtl_math_erfc( x );
|
|
|
|
if ( bNegative )
|
|
fErf *= -1.0;
|
|
|
|
return fErf;
|
|
}
|
|
|
|
|
|
/** Parent complementary error function (erfc) that calls different algorithms
|
|
based on the value of x. It takes care of cases where x is negative as erfc
|
|
satisfies relationship erfc(-x) = 2 - erfc(x). See the comment for Erf(x)
|
|
for the source publication.
|
|
|
|
@author Kohei Yoshida <kohei@openoffice.org>
|
|
|
|
@see #i55735#, moved from module scaddins (#i97091#)
|
|
|
|
*/
|
|
double SAL_CALL rtl_math_erfc( double x ) SAL_THROW_EXTERN_C()
|
|
{
|
|
if ( x == 0.0 )
|
|
return 1.0;
|
|
|
|
bool bNegative = false;
|
|
if ( x < 0.0 )
|
|
{
|
|
x = fabs( x );
|
|
bNegative = true;
|
|
}
|
|
|
|
double fErfc = 0.0;
|
|
if ( x >= 0.65 )
|
|
{
|
|
if ( x < 6.0 )
|
|
lcl_Erfc0600( x, fErfc );
|
|
else
|
|
lcl_Erfc2654( x, fErfc );
|
|
}
|
|
else
|
|
fErfc = 1.0 - rtl_math_erf( x );
|
|
|
|
if ( bNegative )
|
|
fErfc = 2.0 - fErfc;
|
|
|
|
return fErfc;
|
|
}
|
|
|
|
/** improved accuracy of asinh for |x| large and for x near zero
|
|
@see #i97605#
|
|
*/
|
|
double SAL_CALL rtl_math_asinh( double fX ) SAL_THROW_EXTERN_C()
|
|
{
|
|
double fSign = 1.0;
|
|
if ( fX == 0.0 )
|
|
return 0.0;
|
|
else
|
|
{
|
|
if ( fX < 0.0 )
|
|
{
|
|
fX = - fX;
|
|
fSign = -1.0;
|
|
}
|
|
if ( fX < 0.125 )
|
|
return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
|
|
else if ( fX < 1.25e7 )
|
|
return fSign * log( fX + sqrt( 1.0 + fX*fX));
|
|
else
|
|
return fSign * log( 2.0*fX);
|
|
}
|
|
}
|
|
|
|
/** improved accuracy of acosh for x large and for x near 1
|
|
@see #i97605#
|
|
*/
|
|
double SAL_CALL rtl_math_acosh( double fX ) SAL_THROW_EXTERN_C()
|
|
{
|
|
volatile double fZ = fX - 1.0;
|
|
if ( fX < 1.0 )
|
|
{
|
|
double fResult;
|
|
::rtl::math::setNan( &fResult );
|
|
return fResult;
|
|
}
|
|
else if ( fX == 1.0 )
|
|
return 0.0;
|
|
else if ( fX < 1.1 )
|
|
return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
|
|
else if ( fX < 1.25e7 )
|
|
return log( fX + sqrt( fX*fX - 1.0));
|
|
else
|
|
return log( 2.0*fX);
|
|
}
|