office-gobmx/hwpfilter/source/solver.h
2003-10-15 13:44:37 +00:00

203 lines
6.7 KiB
C++

/*************************************************************************
*
* $RCSfile: solver.h,v $
*
* $Revision: 1.1 $
*
* last change: $Author: dvo $ $Date: 2003-10-15 14:38:29 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2001 by Mizi Research Inc.
* Copyright 2003 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Mizi Research Inc.
*
* Copyright: 2001 by Mizi Research Inc.
* Copyright: 2003 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#ifndef _SOLVER_H_
#define _SOLVER_H_
class mgcLinearSystem
{
public:
mgcLinearSystem() {;}
float** NewMatrix (int N);
void DeleteMatrix (int N, float** A);
float* NewVector (int N);
void DeleteVector (int N, float* B);
int Inverse (int N, float** A);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N], inverse matrix
int Solve (int N, float** A, float* b);
// Input:
// A[N][N] coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N] is inverse matrix
// b[N] is solution x to Ax = b
int SolveTri (int N, float* a, float* b, float* c, float* r, float* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal a[N-1]
// Main diagonal b[N]
// Upper diagonal c[N-1]
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveConstTri (int N, float a, float b, float c, float* r, float* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal is constant, a
// Main diagonal is constant, b
// Upper diagonal is constant, c
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveSymmetric (int N, float** A, float* b);
// Input:
// A[N][N] symmetric coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if (nearly) singular
// decomposition A = L D L^t (diagonal terms of L are all 1)
// A[i][i] = entries of diagonal D
// A[i][j] for i > j = lower triangular part of L
// b[N] is solution to x to Ax = b
int SymmetricInverse (int N, float** A, float** Ainv);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if algorithm failed
// Ainv[N][N], inverse matrix
};
class mgcLinearSystemD
{
public:
mgcLinearSystemD() {;}
double** NewMatrix (int N);
void DeleteMatrix (int N, double** A);
double* NewVector (int N);
void DeleteVector (int N, double* B);
int Inverse (int N, double** A);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N], inverse matrix
int Solve (int N, double** A, double* b);
// Input:
// A[N][N] coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[N][N] is inverse matrix
// b[N] is solution x to Ax = b
int SolveTri (int N, double* a, double* b, double* c, double* r,
double* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal a[N-1]
// Main diagonal b[N]
// Upper diagonal c[N-1]
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveConstTri (int N, double a, double b, double c, double* r,
double* u);
// Input:
// Matrix is tridiagonal.
// Lower diagonal is constant, a
// Main diagonal is constant, b
// Upper diagonal is constant, c
// Right-hand side r[N]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// u[N] is solution
int SolveSymmetric (int N, double** A, double* b);
// Input:
// A[N][N] symmetric coefficient matrix, entries are A[row][col]
// b[N] vector, entries are b[row]
// Output:
// return value is TRUE if successful, FALSE if (nearly) singular
// decomposition A = L D L^t (diagonal terms of L are all 1)
// A[i][i] = entries of diagonal D
// A[i][j] for i > j = lower triangular part of L
// b[N] is solution to x to Ax = b
int SymmetricInverse (int N, double** A, double** Ainv);
// Input:
// A[N][N], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if algorithm failed
// Ainv[N][N], inverse matrix
};
#endif