office-gobmx/soltools/ldump/hashtbl.cxx

458 lines
11 KiB
C++
Raw Blame History

/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_soltools.hxx"
#include "hashtbl.hxx"
#include <string.h>
// -------------------------------------------------------------
// class HashItem
//
class HashItem
{
enum ETag { TAG_EMPTY, TAG_USED, TAG_DELETED };
void* m_pObject;
ETag m_Tag;
char* m_Key;
public:
HashItem() { m_Tag = TAG_EMPTY; m_Key = NULL; m_pObject = NULL; }
~HashItem() { delete [] m_Key; }
bool IsDeleted() const
{ return m_Tag == TAG_DELETED; }
bool IsEmpty() const
{ return m_Tag == TAG_DELETED || m_Tag == TAG_EMPTY; }
bool IsFree() const
{ return m_Tag == TAG_EMPTY; }
bool IsUsed() const
{ return m_Tag == TAG_USED; }
void Delete()
{ m_Tag = TAG_DELETED; delete [] m_Key; m_Key = new char[ 1 ]; m_Key[ 0 ] = 0; m_pObject = NULL; }
const char *GetKey() const
{ return m_Key; }
void* GetObject() const
{ return m_pObject; }
void SetObject(const char * Key, void *pObject)
{ m_Tag = TAG_USED; delete [] m_Key; m_Key = new char[ strlen( Key ) + 1 ]; strcpy( m_Key, Key ); m_pObject = pObject; }
};
#define MIN(a,b) (a)<(b)?(a):(b)
#define MAX(a,b) (a)>(b)?(a):(b)
// -------------------------------------------------------------
// class HashTable
//
/*static*/ double HashTable::m_defMaxLoadFactor = 0.5;
/*static*/ double HashTable::m_defDefGrowFactor = 2.0;
HashTable::HashTable(unsigned long lSize, bool bOwner, double dMaxLoadFactor, double dGrowFactor)
{
m_lSize = lSize;
m_bOwner = bOwner;
m_lElem = 0;
m_dMaxLoadFactor = MAX(0.5,MIN(1.0,dMaxLoadFactor)); // 0.5 ... 1.0
m_dGrowFactor = MAX(2.0,MIN(5.0,dGrowFactor)); // 1.3 ... 5.0
m_pData = new HashItem [lSize];
}
HashTable::~HashTable()
{
// Wenn die HashTable der Owner der Objecte ist,
// m<>ssen die Destruktoren separat gerufen werden.
// Dies geschieht <20>ber die virtuelle Methode OnDeleteObject()
//
// Problem: Virtuelle Funktionen sind im Destructor nicht virtuell!!
// Der Code mu<6D> deshalb ins Macro
/*
if (m_bOwner)
{
for (ULONG i=0; i<GetSize(); i++)
{
void *pObject = GetObjectAt(i);
if (pObject != NULL)
OnDeleteObject(pObject());
}
}
*/
// Speicher f<>r HashItems freigeben
delete [] m_pData;
}
void* HashTable::GetObjectAt(unsigned long lPos) const
// Gibt Objekt zur<75>ck, wenn es eines gibt, sonst NULL;
{
HashItem *pItem = &m_pData[lPos];
return pItem->IsUsed() ? pItem->GetObject() : NULL;
}
void HashTable::OnDeleteObject(void*)
{
}
unsigned long HashTable::Hash(const char *Key) const
{
// Hashfunktion von P.J. Weinberger
// aus dem "Drachenbuch" von Aho/Sethi/Ullman
unsigned long i,n;
unsigned long h = 0;
unsigned long g = 0;
for (i=0,n=strlen( Key ); i<n; i++)
{
h = (h<<4) + (unsigned long)(unsigned short)Key[i];
g = h & 0xf0000000;
if (g != 0)
{
h = h ^ (g >> 24);
h = h ^ g;
}
}
return h % m_lSize;
}
unsigned long HashTable::DHash(const char* Key, unsigned long lOldHash) const
{
unsigned long lHash = lOldHash;
unsigned long i,n;
for (i=0,n=strlen( Key ); i<n; i++)
{
lHash *= 256L;
lHash += (unsigned long)(unsigned short)Key[i];
lHash %= m_lSize;
}
return lHash;
}
unsigned long HashTable::Probe(unsigned long lPos) const
// gibt den Folgewert von lPos zur<75>ck
{
lPos++; if (lPos==m_lSize) lPos=0;
return lPos;
}
bool HashTable::IsFull() const
{
return m_lElem>=m_lSize;
}
bool HashTable::Insert(const char * Key, void* pObject)
// pre: Key ist nicht im Dictionary enthalten, sonst return FALSE
// Dictionary ist nicht voll, sonst return FALSE
// post: pObject ist unter Key im Dictionary; m_nElem wurde erh<72>ht
{
SmartGrow();
if (IsFull())
{
return false;
}
if (FindPos(Key) != NULL )
return false;
unsigned long lPos = Hash(Key);
HashItem *pItem = &m_pData[lPos];
// first hashing
//
if (pItem->IsEmpty())
{
pItem->SetObject(Key, pObject);
m_lElem++;
return true;
}
// double hashing
//
lPos = DHash(Key,lPos);
pItem = &m_pData[lPos];
if (pItem->IsEmpty())
{
pItem->SetObject(Key, pObject);
m_lElem++;
return true;
}
// linear probing
//
do
{
lPos = Probe(lPos);
pItem = &m_pData[lPos];
}
while(!pItem->IsEmpty());
pItem->SetObject(Key, pObject);
m_lElem++;
return true;
}
HashItem* HashTable::FindPos(const char * Key) const
// sucht den Key; gibt Refrenz auf den Eintrag (gefunden)
// oder NULL (nicht gefunden) zur<75>ck
//
// pre: -
// post: -
{
// first hashing
//
unsigned long lPos = Hash(Key);
HashItem *pItem = &m_pData[lPos];
if (pItem->IsUsed()
&& !(strcmp( pItem->GetKey(), Key )))
{
return pItem;
}
// double hashing
//
if (pItem->IsDeleted() || pItem->IsUsed())
{
lPos = DHash(Key,lPos);
pItem = &m_pData[lPos];
if (pItem->IsUsed()
&& (!strcmp( pItem->GetKey(), Key)))
{
return pItem;
}
// linear probing
//
if (pItem->IsDeleted() || pItem->IsUsed())
{
unsigned long n = 0;
bool bFound = false;
bool bEnd = false;
do
{
n++;
lPos = Probe(lPos);
pItem = &m_pData[lPos];
bFound = pItem->IsUsed()
&& !( strcmp( pItem->GetKey(), Key ));
bEnd = !(n<m_lSize || pItem->IsFree());
}
while(!bFound && !bEnd);
return bFound ? pItem : NULL;
}
}
// nicht gefunden
//
return NULL;
}
void* HashTable::Find(const char *Key) const
// Gibt Verweis des Objektes zur<75>ck, das unter Key abgespeichert ist,
// oder NULL wenn nicht vorhanden.
//
// pre: -
// post: -
{
HashItem *pItem = FindPos(Key);
if (pItem != NULL
&& ( !strcmp( pItem->GetKey(), Key )))
return pItem->GetObject();
else
return NULL;
}
void* HashTable::Delete( const char * Key)
// L<>scht Objekt, das unter Key abgespeichert ist und gibt Verweis
// darauf zur<75>ck.
// Gibt NULL zur<75>ck, wenn Key nicht vorhanden ist.
//
// pre: -
// post: Objekt ist nicht mehr enthalten; m_lElem dekrementiert
// Wenn die HashTable der Owner ist, wurde das Object gel<65>scht
{
HashItem *pItem = FindPos(Key);
if (pItem != NULL
&& ( !strcmp( pItem->GetKey(), Key )))
{
void* pObject = pItem->GetObject();
if (m_bOwner)
OnDeleteObject(pObject);
pItem->Delete();
m_lElem--;
return pObject;
}
else
{
return NULL;
}
}
double HashTable::CalcLoadFactor() const
// prozentuale Belegung der Hashtabelle berechnen
{
return double(m_lElem) / double(m_lSize);
}
void HashTable::SmartGrow()
// Achtung: da die Objekte umkopiert werden, darf die OnDeleteObject-Methode
// nicht gerufen werden
{
double dLoadFactor = CalcLoadFactor();
if (dLoadFactor <= m_dMaxLoadFactor)
return; // nothing to grow
unsigned long lOldSize = m_lSize; // alte Daten sichern
HashItem* pOldData = m_pData;
m_lSize = (unsigned long) (m_dGrowFactor * m_lSize); // neue Gr<47><72>e
m_pData = new HashItem[m_lSize]; // neue Daten holen
// kein Speicher:
// Zustand "Tabelle voll" wird in Insert abgefangen
//
if (m_pData == NULL)
{
m_lSize = lOldSize;
m_pData = pOldData;
return;
}
m_lElem = 0; // noch keine neuen Daten
// Umkopieren der Daten
//
for (unsigned long i=0; i<lOldSize; i++)
{
HashItem *pItem = &pOldData[i];
if (pItem->IsUsed())
Insert(pItem->GetKey(),pItem->GetObject());
}
delete [] pOldData;
}
// Iterator ---------------------------------------------------------
//
HashTableIterator::HashTableIterator(HashTable const& aTable)
: m_aTable(aTable)
{
m_lAt = 0;
}
void* HashTableIterator::GetFirst()
{
m_lAt = 0;
return FindValidObject(true /* forward */);
}
void* HashTableIterator::GetLast()
{
m_lAt = m_aTable.GetSize() -1;
return FindValidObject(false /* backward */);
}
void* HashTableIterator::GetNext()
{
if (m_lAt+1 >= m_aTable.GetSize())
return NULL;
m_lAt++;
return FindValidObject(true /* forward */);
}
void* HashTableIterator::GetPrev()
{
if (m_lAt <= 0)
return NULL;
m_lAt--;
return FindValidObject(false /* backward */);
}
void* HashTableIterator::FindValidObject(bool bForward)
// Sucht nach einem vorhandenen Objekt ab der aktuellen
// Position.
//
// pre: ab inkl. m_lAt soll die Suche beginnen
// post: if not found then
// if bForward == TRUE then
// m_lAt == m_aTable.GetSize() -1
// else
// m_lAt == 0
// else
// m_lAt ist die gefundene Position
{
void *pObject = m_aTable.GetObjectAt(m_lAt);
if (pObject != NULL)
return pObject;
while (pObject == NULL
&& (bForward ? ((m_lAt+1) < m_aTable.GetSize())
: m_lAt > 0))
{
if (bForward)
m_lAt++;
else
m_lAt--;
pObject = m_aTable.GetObjectAt(m_lAt);
}
return pObject;
}