ecfcd99abd
Change-Id: I98cc25267e7a10c34179bab50d19f49436e1c48c Reviewed-on: https://gerrit.libreoffice.org/c/core/+/107929 Tested-by: Jenkins Reviewed-by: Eike Rathke <erack@redhat.com>
1447 lines
47 KiB
C++
1447 lines
47 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <rtl/math.h>
|
|
|
|
#include <o3tl/safeint.hxx>
|
|
#include <osl/diagnose.h>
|
|
#include <rtl/alloc.h>
|
|
#include <rtl/character.hxx>
|
|
#include <rtl/math.hxx>
|
|
#include <rtl/strbuf.h>
|
|
#include <rtl/string.h>
|
|
#include <rtl/ustrbuf.h>
|
|
#include <rtl/ustring.h>
|
|
#include <sal/mathconf.h>
|
|
#include <sal/types.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <float.h>
|
|
#include <limits>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <memory>
|
|
#include <stdlib.h>
|
|
|
|
#include <dtoa.h>
|
|
|
|
int const n10Count = 16;
|
|
double const n10s[2][n10Count] = {
|
|
{ 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8,
|
|
1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 },
|
|
{ 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
|
|
1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 }
|
|
};
|
|
|
|
// return pow(10.0,nExp) optimized for exponents in the interval [-16,16]
|
|
static double getN10Exp(int nExp)
|
|
{
|
|
if (nExp < 0)
|
|
{
|
|
// && -nExp > 0 necessary for std::numeric_limits<int>::min()
|
|
// because -nExp = nExp
|
|
if (-nExp <= n10Count && -nExp > 0)
|
|
return n10s[1][-nExp-1];
|
|
return pow(10.0, static_cast<double>(nExp));
|
|
}
|
|
if (nExp > 0)
|
|
{
|
|
if (nExp <= n10Count)
|
|
return n10s[0][nExp-1];
|
|
|
|
return pow(10.0, static_cast<double>(nExp));
|
|
}
|
|
return 1.0;
|
|
}
|
|
|
|
namespace {
|
|
|
|
double const nCorrVal[] = {
|
|
0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8,
|
|
9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15
|
|
};
|
|
|
|
struct StringTraits
|
|
{
|
|
typedef char Char;
|
|
|
|
typedef rtl_String String;
|
|
|
|
static void createString(rtl_String ** pString,
|
|
char const * pChars, sal_Int32 nLen)
|
|
{
|
|
rtl_string_newFromStr_WithLength(pString, pChars, nLen);
|
|
}
|
|
|
|
static void createBuffer(rtl_String ** pBuffer,
|
|
const sal_Int32 * pCapacity)
|
|
{
|
|
rtl_string_new_WithLength(pBuffer, *pCapacity);
|
|
}
|
|
|
|
static void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity,
|
|
sal_Int32 * pOffset, char const * pChars,
|
|
sal_Int32 nLen)
|
|
{
|
|
assert(pChars);
|
|
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
|
|
static void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity,
|
|
sal_Int32 * pOffset, char const * pStr,
|
|
sal_Int32 nLen)
|
|
{
|
|
assert(pStr);
|
|
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
};
|
|
|
|
struct UStringTraits
|
|
{
|
|
typedef sal_Unicode Char;
|
|
|
|
typedef rtl_uString String;
|
|
|
|
static void createString(rtl_uString ** pString,
|
|
sal_Unicode const * pChars, sal_Int32 nLen)
|
|
{
|
|
rtl_uString_newFromStr_WithLength(pString, pChars, nLen);
|
|
}
|
|
|
|
static void createBuffer(rtl_uString ** pBuffer,
|
|
const sal_Int32 * pCapacity)
|
|
{
|
|
rtl_uString_new_WithLength(pBuffer, *pCapacity);
|
|
}
|
|
|
|
static void appendChars(rtl_uString ** pBuffer,
|
|
sal_Int32 * pCapacity, sal_Int32 * pOffset,
|
|
sal_Unicode const * pChars, sal_Int32 nLen)
|
|
{
|
|
assert(pChars);
|
|
rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
|
|
static void appendAscii(rtl_uString ** pBuffer,
|
|
sal_Int32 * pCapacity, sal_Int32 * pOffset,
|
|
char const * pStr, sal_Int32 nLen)
|
|
{
|
|
rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr,
|
|
nLen);
|
|
*pOffset += nLen;
|
|
}
|
|
};
|
|
|
|
/** If value (passed as absolute value) is an integer representable as double,
|
|
which we handle explicitly at some places.
|
|
*/
|
|
bool isRepresentableInteger(double fAbsValue)
|
|
{
|
|
assert(fAbsValue >= 0.0);
|
|
const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
|
|
if (fAbsValue <= static_cast< double >(kMaxInt))
|
|
{
|
|
sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue);
|
|
// Check the integer range again because double comparison may yield
|
|
// true within the precision range.
|
|
// XXX loplugin:fpcomparison complains about floating-point comparison
|
|
// for static_cast<double>(nInt) == fAbsValue, though we actually want
|
|
// this here.
|
|
if (nInt > kMaxInt)
|
|
return false;
|
|
double fInt = static_cast< double >(nInt);
|
|
return !(fInt < fAbsValue) && !(fInt > fAbsValue);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns 1-based index of least significant bit in a number, or zero if number is zero
|
|
int findFirstSetBit(unsigned n)
|
|
{
|
|
#if defined _WIN32
|
|
unsigned long pos;
|
|
unsigned char bNonZero = _BitScanForward(&pos, n);
|
|
return (bNonZero == 0) ? 0 : pos + 1;
|
|
#else
|
|
return __builtin_ffs(n);
|
|
#endif
|
|
}
|
|
|
|
/** Returns number of binary bits for fractional part of the number
|
|
Expects a proper non-negative double value, not +-INF, not NAN
|
|
*/
|
|
int getBitsInFracPart(double fAbsValue)
|
|
{
|
|
assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
|
|
if (fAbsValue == 0.0)
|
|
return 0;
|
|
auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue);
|
|
int nExponent = pValParts->inf_parts.exponent - 1023;
|
|
if (nExponent >= 52)
|
|
return 0; // All bits in fraction are in integer part of the number
|
|
int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
|
|
if (nLeastSignificant == 0)
|
|
{
|
|
nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
|
|
if (nLeastSignificant == 0)
|
|
nLeastSignificant = 53; // the implied leading 1 is the least significant
|
|
else
|
|
nLeastSignificant += 32;
|
|
}
|
|
int nFracSignificant = 53 - nLeastSignificant;
|
|
int nBitsInFracPart = nFracSignificant - nExponent;
|
|
|
|
return std::max(nBitsInFracPart, 0);
|
|
}
|
|
|
|
template< typename T >
|
|
void doubleToString(typename T::String ** pResult,
|
|
sal_Int32 * pResultCapacity, sal_Int32 nResultOffset,
|
|
double fValue, rtl_math_StringFormat eFormat,
|
|
sal_Int32 nDecPlaces, typename T::Char cDecSeparator,
|
|
sal_Int32 const * pGroups,
|
|
typename T::Char cGroupSeparator,
|
|
bool bEraseTrailingDecZeros)
|
|
{
|
|
static double const nRoundVal[] = {
|
|
5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6,
|
|
0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14
|
|
};
|
|
|
|
// sign adjustment, instead of testing for fValue<0.0 this will also fetch
|
|
// -0.0
|
|
bool bSign = std::signbit(fValue);
|
|
|
|
if (bSign)
|
|
fValue = -fValue;
|
|
|
|
if (std::isnan(fValue))
|
|
{
|
|
// #i112652# XMLSchema-2
|
|
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN");
|
|
if (!pResultCapacity)
|
|
{
|
|
pResultCapacity = &nCapacity;
|
|
T::createBuffer(pResult, pResultCapacity);
|
|
nResultOffset = 0;
|
|
}
|
|
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("NaN"));
|
|
|
|
return;
|
|
}
|
|
|
|
bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way...
|
|
if (bHuge || std::isinf(fValue))
|
|
{
|
|
// #i112652# XMLSchema-2
|
|
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF");
|
|
if (!pResultCapacity)
|
|
{
|
|
pResultCapacity = &nCapacity;
|
|
T::createBuffer(pResult, pResultCapacity);
|
|
nResultOffset = 0;
|
|
}
|
|
|
|
if ( bSign )
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("-"));
|
|
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("INF"));
|
|
|
|
return;
|
|
}
|
|
|
|
// Unfortunately the old rounding below writes 1.79769313486232e+308 for
|
|
// DBL_MAX and 4 subsequent nextafter(...,0).
|
|
static const double fB1 = std::nextafter( DBL_MAX, 0);
|
|
static const double fB2 = std::nextafter( fB1, 0);
|
|
static const double fB3 = std::nextafter( fB2, 0);
|
|
static const double fB4 = std::nextafter( fB3, 0);
|
|
if ((fValue >= fB4) && eFormat != rtl_math_StringFormat_F)
|
|
{
|
|
// 1.7976931348623157e+308 instead of rounded 1.79769313486232e+308
|
|
// that can't be converted back as out of range. For rounded values if
|
|
// they exceed range they should not be written to exchange strings or
|
|
// file formats.
|
|
|
|
// Writing pDig up to decimals(-1,-2) then appending one digit from
|
|
// pRou xor one or two digits from pSlot[].
|
|
constexpr char pDig[] = "7976931348623157";
|
|
constexpr char pRou[] = "8087931359623267"; // the only up-carry is 80
|
|
static_assert(SAL_N_ELEMENTS(pDig) == SAL_N_ELEMENTS(pRou), "digit count mismatch");
|
|
constexpr sal_Int32 nDig2 = RTL_CONSTASCII_LENGTH(pRou) - 2;
|
|
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH(pRou) + 8; // + "-1.E+308"
|
|
const char pSlot[5][2][3] =
|
|
{ // rounded, not
|
|
"67", "57", // DBL_MAX
|
|
"65", "55",
|
|
"53", "53",
|
|
"51", "51",
|
|
"59", "49",
|
|
};
|
|
|
|
if (!pResultCapacity)
|
|
{
|
|
pResultCapacity = &nCapacity;
|
|
T::createBuffer(pResult, pResultCapacity);
|
|
nResultOffset = 0;
|
|
}
|
|
|
|
if (bSign)
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("-"));
|
|
|
|
nDecPlaces = std::clamp<sal_Int32>( nDecPlaces, 0, RTL_CONSTASCII_LENGTH(pRou));
|
|
if (nDecPlaces == 0)
|
|
{
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("2"));
|
|
}
|
|
else
|
|
{
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("1"));
|
|
T::appendChars(pResult, pResultCapacity, &nResultOffset, &cDecSeparator, 1);
|
|
if (nDecPlaces <= 2)
|
|
{
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pRou, nDecPlaces);
|
|
}
|
|
else if (nDecPlaces <= nDig2)
|
|
{
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pDig, nDecPlaces - 1);
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pRou + nDecPlaces - 1, 1);
|
|
}
|
|
else
|
|
{
|
|
const sal_Int32 nDec = nDecPlaces - nDig2;
|
|
nDecPlaces -= nDec;
|
|
// nDec-1 is also offset into slot, rounded(1-1=0) or not(2-1=1)
|
|
const size_t nSlot = ((fValue < fB3) ? 4 : ((fValue < fB2) ? 3
|
|
: ((fValue < fB1) ? 2 : ((fValue < DBL_MAX) ? 1 : 0))));
|
|
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pDig, nDecPlaces);
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pSlot[nSlot][nDec-1], nDec);
|
|
}
|
|
}
|
|
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
|
|
RTL_CONSTASCII_STRINGPARAM("E+308"));
|
|
|
|
return;
|
|
}
|
|
|
|
// Use integer representation for integer values that fit into the
|
|
// mantissa (1.((2^53)-1)) with a precision of 1 for highest accuracy.
|
|
const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
|
|
if ((eFormat == rtl_math_StringFormat_Automatic ||
|
|
eFormat == rtl_math_StringFormat_F) && fValue <= static_cast< double >(kMaxInt))
|
|
{
|
|
sal_Int64 nInt = static_cast< sal_Int64 >(fValue);
|
|
// Check the integer range again because double comparison may yield
|
|
// true within the precision range.
|
|
if (nInt <= kMaxInt && static_cast< double >(nInt) == fValue)
|
|
{
|
|
if (nDecPlaces == rtl_math_DecimalPlaces_Max)
|
|
nDecPlaces = 0;
|
|
else
|
|
nDecPlaces = ::std::clamp< sal_Int32 >(nDecPlaces, -15, 15);
|
|
|
|
if (bEraseTrailingDecZeros && nDecPlaces > 0)
|
|
nDecPlaces = 0;
|
|
|
|
// Round before decimal position.
|
|
if (nDecPlaces < 0)
|
|
{
|
|
sal_Int64 nRounding = static_cast< sal_Int64 >(getN10Exp(-nDecPlaces - 1));
|
|
sal_Int64 nTemp = nInt / nRounding;
|
|
int nDigit = nTemp % 10;
|
|
nTemp /= 10;
|
|
|
|
if (nDigit >= 5)
|
|
++nTemp;
|
|
|
|
nTemp *= 10;
|
|
nTemp *= nRounding;
|
|
nInt = nTemp;
|
|
nDecPlaces = 0;
|
|
}
|
|
|
|
// Max 1 sign, 16 integer digits, 15 group separators, 1 decimal
|
|
// separator, 15 decimals digits.
|
|
typename T::Char aBuf[64];
|
|
typename T::Char * pBuf = aBuf;
|
|
typename T::Char * p = pBuf;
|
|
|
|
// Backward fill.
|
|
size_t nGrouping = 0;
|
|
sal_Int32 nGroupDigits = 0;
|
|
do
|
|
{
|
|
typename T::Char nDigit = nInt % 10;
|
|
nInt /= 10;
|
|
*p++ = nDigit + '0';
|
|
if (pGroups && pGroups[nGrouping] == ++nGroupDigits && nInt > 0 && cGroupSeparator)
|
|
{
|
|
*p++ = cGroupSeparator;
|
|
if (pGroups[nGrouping+1])
|
|
++nGrouping;
|
|
nGroupDigits = 0;
|
|
}
|
|
}
|
|
while (nInt > 0);
|
|
if (bSign)
|
|
*p++ = '-';
|
|
|
|
// Reverse buffer content.
|
|
sal_Int32 n = (p - pBuf) / 2;
|
|
for (sal_Int32 i=0; i < n; ++i)
|
|
{
|
|
::std::swap( pBuf[i], p[-i-1]);
|
|
}
|
|
|
|
// Append decimals.
|
|
if (nDecPlaces > 0)
|
|
{
|
|
*p++ = cDecSeparator;
|
|
while (nDecPlaces--)
|
|
*p++ = '0';
|
|
}
|
|
|
|
if (!pResultCapacity)
|
|
T::createString(pResult, pBuf, p - pBuf);
|
|
else
|
|
T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// find the exponent
|
|
int nExp = 0;
|
|
if ( fValue > 0.0 )
|
|
{
|
|
// Cap nExp at a small value beyond which "fValue /= N10Exp" would lose precision (or N10Exp
|
|
// might even be zero); that will produce output with the decimal point in a non-normalized
|
|
// position, but the current quality of output for such small values is probably abysmal,
|
|
// anyway:
|
|
nExp = std::max(
|
|
static_cast< int >(floor(log10(fValue))), std::numeric_limits<double>::min_exponent10);
|
|
double const N10Exp = getN10Exp(nExp);
|
|
assert(N10Exp != 0);
|
|
fValue /= N10Exp;
|
|
}
|
|
|
|
switch (eFormat)
|
|
{
|
|
case rtl_math_StringFormat_Automatic:
|
|
{ // E or F depending on exponent magnitude
|
|
int nPrec;
|
|
if (nExp <= -15 || nExp >= 15) // was <-16, >16 in ancient versions, which leads to inaccuracies
|
|
{
|
|
nPrec = 14;
|
|
eFormat = rtl_math_StringFormat_E;
|
|
}
|
|
else
|
|
{
|
|
if (nExp < 14)
|
|
{
|
|
nPrec = 15 - nExp - 1;
|
|
eFormat = rtl_math_StringFormat_F;
|
|
}
|
|
else
|
|
{
|
|
nPrec = 15;
|
|
eFormat = rtl_math_StringFormat_F;
|
|
}
|
|
}
|
|
|
|
if (nDecPlaces == rtl_math_DecimalPlaces_Max)
|
|
nDecPlaces = nPrec;
|
|
}
|
|
break;
|
|
|
|
case rtl_math_StringFormat_G :
|
|
case rtl_math_StringFormat_G1 :
|
|
case rtl_math_StringFormat_G2 :
|
|
{ // G-Point, similar to sprintf %G
|
|
if (nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance)
|
|
nDecPlaces = 6;
|
|
|
|
if (nExp < -4 || nExp >= nDecPlaces)
|
|
{
|
|
nDecPlaces = std::max< sal_Int32 >(1, nDecPlaces - 1);
|
|
|
|
if (eFormat == rtl_math_StringFormat_G)
|
|
eFormat = rtl_math_StringFormat_E;
|
|
else if (eFormat == rtl_math_StringFormat_G2)
|
|
eFormat = rtl_math_StringFormat_E2;
|
|
else if (eFormat == rtl_math_StringFormat_G1)
|
|
eFormat = rtl_math_StringFormat_E1;
|
|
}
|
|
else
|
|
{
|
|
nDecPlaces = std::max< sal_Int32 >(0, nDecPlaces - nExp - 1);
|
|
eFormat = rtl_math_StringFormat_F;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Too large values for nDecPlaces make no sense; it might also be
|
|
// rtl_math_DecimalPlaces_Max was passed with rtl_math_StringFormat_F or
|
|
// others, but we don't want to allocate/deallocate 2GB just to fill it
|
|
// with trailing '0' characters..
|
|
nDecPlaces = std::clamp<sal_Int32>(nDecPlaces, -20, 20);
|
|
|
|
sal_Int32 nDigits = nDecPlaces + 1;
|
|
|
|
if (eFormat == rtl_math_StringFormat_F)
|
|
nDigits += nExp;
|
|
|
|
// Round the number
|
|
if(nDigits >= 0)
|
|
{
|
|
fValue += nRoundVal[std::min<sal_Int32>(nDigits, 15)];
|
|
if (fValue >= 10)
|
|
{
|
|
fValue = 1.0;
|
|
nExp++;
|
|
|
|
if (eFormat == rtl_math_StringFormat_F)
|
|
nDigits++;
|
|
}
|
|
}
|
|
|
|
static sal_Int32 const nBufMax = 256;
|
|
typename T::Char aBuf[nBufMax];
|
|
typename T::Char * pBuf;
|
|
sal_Int32 nBuf = static_cast< sal_Int32 >
|
|
(nDigits <= 0 ? std::max< sal_Int32 >(nDecPlaces, abs(nExp))
|
|
: nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0);
|
|
|
|
if (nBuf > nBufMax)
|
|
{
|
|
pBuf = static_cast< typename T::Char * >(
|
|
malloc(nBuf * sizeof (typename T::Char)));
|
|
OSL_ENSURE(pBuf, "Out of memory");
|
|
}
|
|
else
|
|
{
|
|
pBuf = aBuf;
|
|
}
|
|
|
|
typename T::Char * p = pBuf;
|
|
if ( bSign )
|
|
*p++ = static_cast< typename T::Char >('-');
|
|
|
|
bool bHasDec = false;
|
|
|
|
int nDecPos;
|
|
// Check for F format and number < 1
|
|
if(eFormat == rtl_math_StringFormat_F)
|
|
{
|
|
if(nExp < 0)
|
|
{
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
if (nDecPlaces > 0)
|
|
{
|
|
*p++ = cDecSeparator;
|
|
bHasDec = true;
|
|
}
|
|
|
|
sal_Int32 i = (nDigits <= 0 ? nDecPlaces : -nExp - 1);
|
|
|
|
while((i--) > 0)
|
|
{
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
|
|
nDecPos = 0;
|
|
}
|
|
else
|
|
{
|
|
nDecPos = nExp + 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nDecPos = 1;
|
|
}
|
|
|
|
int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0;
|
|
if (nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator)
|
|
{
|
|
while (nGrouping + pGroups[nGroupSelector] < nDecPos)
|
|
{
|
|
nGrouping += pGroups[nGroupSelector];
|
|
if (pGroups[nGroupSelector+1])
|
|
{
|
|
if (nGrouping + pGroups[nGroupSelector+1] >= nDecPos)
|
|
break; // while
|
|
|
|
++nGroupSelector;
|
|
}
|
|
else if (!nGroupExceed)
|
|
{
|
|
nGroupExceed = nGrouping;
|
|
}
|
|
}
|
|
}
|
|
|
|
// print the number
|
|
if (nDigits > 0)
|
|
{
|
|
for (int i = 0; ; i++)
|
|
{
|
|
if (i < 15) // was 16 in ancient versions, which leads to inaccuracies
|
|
{
|
|
int nDigit;
|
|
if (nDigits-1 == 0 && i > 0 && i < 14)
|
|
nDigit = static_cast< int >(floor( fValue + nCorrVal[15-i]));
|
|
else
|
|
nDigit = static_cast< int >(fValue + 1E-15);
|
|
|
|
if (nDigit >= 10)
|
|
{ // after-treatment of up-rounding to the next decade
|
|
sal_Int32 sLen = static_cast< long >(p-pBuf)-1;
|
|
if (sLen == -1 || (sLen == 0 && bSign))
|
|
{
|
|
// Assert that no one changed the logic we rely on.
|
|
assert(!bSign || *pBuf == static_cast< typename T::Char >('-'));
|
|
p = pBuf;
|
|
if (bSign)
|
|
++p;
|
|
if (eFormat == rtl_math_StringFormat_F)
|
|
{
|
|
*p++ = static_cast< typename T::Char >('1');
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
else
|
|
{
|
|
*p++ = static_cast< typename T::Char >('1');
|
|
*p++ = cDecSeparator;
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
nExp++;
|
|
bHasDec = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (sal_Int32 j = sLen; j >= 0; j--)
|
|
{
|
|
typename T::Char cS = pBuf[j];
|
|
if (j == 0 && bSign)
|
|
{
|
|
// Do not touch leading minus sign put earlier.
|
|
assert(cS == static_cast< typename T::Char >('-'));
|
|
break; // for, this is the last character backwards.
|
|
}
|
|
if (cS != cDecSeparator)
|
|
{
|
|
if (cS != static_cast< typename T::Char >('9'))
|
|
{
|
|
pBuf[j] = ++cS;
|
|
j = -1; // break loop
|
|
}
|
|
else
|
|
{
|
|
pBuf[j] = static_cast< typename T::Char >('0');
|
|
if (j == 0 || (j == 1 && bSign))
|
|
{
|
|
if (eFormat == rtl_math_StringFormat_F)
|
|
{ // insert '1'
|
|
typename T::Char * px = p++;
|
|
while (pBuf < px)
|
|
{
|
|
*px = *(px-1);
|
|
px--;
|
|
}
|
|
|
|
pBuf[0] = static_cast< typename T::Char >('1');
|
|
}
|
|
else
|
|
{
|
|
pBuf[j] = static_cast< typename T::Char >('1');
|
|
nExp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
fValue = 0.0;
|
|
}
|
|
else
|
|
{
|
|
*p++ = static_cast< typename T::Char >(
|
|
nDigit + static_cast< typename T::Char >('0') );
|
|
fValue = (fValue - nDigit) * 10.0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
|
|
if (!--nDigits)
|
|
break; // for
|
|
|
|
if (nDecPos)
|
|
{
|
|
if(!--nDecPos)
|
|
{
|
|
*p++ = cDecSeparator;
|
|
bHasDec = true;
|
|
}
|
|
else if (nDecPos == nGrouping)
|
|
{
|
|
*p++ = cGroupSeparator;
|
|
nGrouping -= pGroups[nGroupSelector];
|
|
|
|
if (nGroupSelector && nGrouping < nGroupExceed)
|
|
--nGroupSelector;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!bHasDec && eFormat == rtl_math_StringFormat_F)
|
|
{ // nDecPlaces < 0 did round the value
|
|
while (--nDecPos > 0)
|
|
{ // fill before decimal point
|
|
if (nDecPos == nGrouping)
|
|
{
|
|
*p++ = cGroupSeparator;
|
|
nGrouping -= pGroups[nGroupSelector];
|
|
|
|
if (nGroupSelector && nGrouping < nGroupExceed)
|
|
--nGroupSelector;
|
|
}
|
|
|
|
*p++ = static_cast< typename T::Char >('0');
|
|
}
|
|
}
|
|
|
|
if (bEraseTrailingDecZeros && bHasDec && p > pBuf)
|
|
{
|
|
while (*(p-1) == static_cast< typename T::Char >('0'))
|
|
{
|
|
p--;
|
|
}
|
|
|
|
if (*(p-1) == cDecSeparator)
|
|
p--;
|
|
}
|
|
|
|
// Print the exponent ('E', followed by '+' or '-', followed by exactly
|
|
// three digits for rtl_math_StringFormat_E). The code in
|
|
// rtl_[u]str_valueOf{Float|Double} relies on this format.
|
|
if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1)
|
|
{
|
|
if (p == pBuf)
|
|
*p++ = static_cast< typename T::Char >('1');
|
|
// maybe no nDigits if nDecPlaces < 0
|
|
|
|
*p++ = static_cast< typename T::Char >('E');
|
|
if(nExp < 0)
|
|
{
|
|
nExp = -nExp;
|
|
*p++ = static_cast< typename T::Char >('-');
|
|
}
|
|
else
|
|
{
|
|
*p++ = static_cast< typename T::Char >('+');
|
|
}
|
|
|
|
if (eFormat == rtl_math_StringFormat_E || nExp >= 100)
|
|
*p++ = static_cast< typename T::Char >(
|
|
nExp / 100 + static_cast< typename T::Char >('0') );
|
|
|
|
nExp %= 100;
|
|
|
|
if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10)
|
|
*p++ = static_cast< typename T::Char >(
|
|
nExp / 10 + static_cast< typename T::Char >('0') );
|
|
|
|
*p++ = static_cast< typename T::Char >(
|
|
nExp % 10 + static_cast< typename T::Char >('0') );
|
|
}
|
|
|
|
if (!pResultCapacity)
|
|
T::createString(pResult, pBuf, p - pBuf);
|
|
else
|
|
T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf);
|
|
|
|
if (pBuf != &aBuf[0])
|
|
free(pBuf);
|
|
}
|
|
|
|
}
|
|
|
|
void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
|
|
sal_Int32 * pResultCapacity,
|
|
sal_Int32 nResultOffset, double fValue,
|
|
rtl_math_StringFormat eFormat,
|
|
sal_Int32 nDecPlaces,
|
|
char cDecSeparator,
|
|
sal_Int32 const * pGroups,
|
|
char cGroupSeparator,
|
|
sal_Bool bEraseTrailingDecZeros)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
doubleToString< StringTraits >(
|
|
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
|
|
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
|
|
}
|
|
|
|
void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
|
|
sal_Int32 * pResultCapacity,
|
|
sal_Int32 nResultOffset, double fValue,
|
|
rtl_math_StringFormat eFormat,
|
|
sal_Int32 nDecPlaces,
|
|
sal_Unicode cDecSeparator,
|
|
sal_Int32 const * pGroups,
|
|
sal_Unicode cGroupSeparator,
|
|
sal_Bool bEraseTrailingDecZeros)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
doubleToString< UStringTraits >(
|
|
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
|
|
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
|
|
}
|
|
|
|
namespace {
|
|
|
|
template< typename CharT >
|
|
double stringToDouble(CharT const * pBegin, CharT const * pEnd,
|
|
CharT cDecSeparator, CharT cGroupSeparator,
|
|
rtl_math_ConversionStatus * pStatus,
|
|
CharT const ** pParsedEnd)
|
|
{
|
|
double fVal = 0.0;
|
|
rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
|
|
|
|
CharT const * p0 = pBegin;
|
|
while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
|
|
{
|
|
++p0;
|
|
}
|
|
|
|
bool bSign;
|
|
if (p0 != pEnd && *p0 == CharT('-'))
|
|
{
|
|
bSign = true;
|
|
++p0;
|
|
}
|
|
else
|
|
{
|
|
bSign = false;
|
|
if (p0 != pEnd && *p0 == CharT('+'))
|
|
++p0;
|
|
}
|
|
|
|
CharT const * p = p0;
|
|
bool bDone = false;
|
|
|
|
// #i112652# XMLSchema-2
|
|
if ((pEnd - p) >= 3)
|
|
{
|
|
if ((CharT('N') == p[0]) && (CharT('a') == p[1])
|
|
&& (CharT('N') == p[2]))
|
|
{
|
|
p += 3;
|
|
rtl::math::setNan( &fVal );
|
|
bDone = true;
|
|
}
|
|
else if ((CharT('I') == p[0]) && (CharT('N') == p[1])
|
|
&& (CharT('F') == p[2]))
|
|
{
|
|
p += 3;
|
|
fVal = HUGE_VAL;
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
bDone = true;
|
|
}
|
|
}
|
|
|
|
if (!bDone) // do not recognize e.g. NaN1.23
|
|
{
|
|
std::unique_ptr<char[]> bufInHeap;
|
|
std::unique_ptr<const CharT * []> bufInHeapMap;
|
|
constexpr int bufOnStackSize = 256;
|
|
char bufOnStack[bufOnStackSize];
|
|
const CharT* bufOnStackMap[bufOnStackSize];
|
|
char* buf = bufOnStack;
|
|
const CharT** bufmap = bufOnStackMap;
|
|
int bufpos = 0;
|
|
const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
|
|
if (bufsize > bufOnStackSize)
|
|
{
|
|
bufInHeap = std::make_unique<char[]>(bufsize);
|
|
bufInHeapMap = std::make_unique<const CharT*[]>(bufsize);
|
|
buf = bufInHeap.get();
|
|
bufmap = bufInHeapMap.get();
|
|
}
|
|
|
|
if (bSign)
|
|
{
|
|
buf[0] = '-';
|
|
bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
|
|
bufpos = 1;
|
|
}
|
|
// Put first zero to buffer for strings like "-0"
|
|
if (p != pEnd && *p == CharT('0'))
|
|
{
|
|
buf[bufpos] = '0';
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
++p;
|
|
}
|
|
// Leading zeros and group separators between digits may be safely
|
|
// ignored. p0 < p implies that there was a leading 0 already,
|
|
// consecutive group separators may not happen as *(p+1) is checked for
|
|
// digit.
|
|
while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator
|
|
&& p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1)))))
|
|
{
|
|
++p;
|
|
}
|
|
|
|
// integer part of mantissa
|
|
for (; p != pEnd; ++p)
|
|
{
|
|
CharT c = *p;
|
|
if (rtl::isAsciiDigit(c))
|
|
{
|
|
buf[bufpos] = static_cast<char>(c);
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
}
|
|
else if (c != cGroupSeparator)
|
|
{
|
|
break;
|
|
}
|
|
else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1)))
|
|
{
|
|
// A leading or trailing (not followed by a digit) group
|
|
// separator character is not a group separator.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// fraction part of mantissa
|
|
if (p != pEnd && *p == cDecSeparator)
|
|
{
|
|
buf[bufpos] = '.';
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
++p;
|
|
|
|
for (; p != pEnd; ++p)
|
|
{
|
|
CharT c = *p;
|
|
if (!rtl::isAsciiDigit(c))
|
|
{
|
|
break;
|
|
}
|
|
buf[bufpos] = static_cast<char>(c);
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
}
|
|
}
|
|
|
|
// Exponent
|
|
if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
|
|
{
|
|
buf[bufpos] = 'E';
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
++p;
|
|
if (p != pEnd && *p == CharT('-'))
|
|
{
|
|
buf[bufpos] = '-';
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
++p;
|
|
}
|
|
else if (p != pEnd && *p == CharT('+'))
|
|
++p;
|
|
|
|
for (; p != pEnd; ++p)
|
|
{
|
|
CharT c = *p;
|
|
if (!rtl::isAsciiDigit(c))
|
|
break;
|
|
|
|
buf[bufpos] = static_cast<char>(c);
|
|
bufmap[bufpos] = p;
|
|
++bufpos;
|
|
}
|
|
}
|
|
else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
|
|
&& p[-1] == cDecSeparator && p[-2] == CharT('1'))
|
|
{
|
|
if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
|
|
&& p[3] == CharT('F'))
|
|
{
|
|
// "1.#INF", "+1.#INF", "-1.#INF"
|
|
p += 4;
|
|
fVal = HUGE_VAL;
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
// Eat any further digits:
|
|
while (p != pEnd && rtl::isAsciiDigit(*p))
|
|
++p;
|
|
bDone = true;
|
|
}
|
|
else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
|
|
&& p[3] == CharT('N'))
|
|
{
|
|
// "1.#NAN", "+1.#NAN", "-1.#NAN"
|
|
p += 4;
|
|
rtl::math::setNan( &fVal );
|
|
if (bSign)
|
|
{
|
|
union {
|
|
double sd;
|
|
sal_math_Double md;
|
|
} m;
|
|
|
|
m.sd = fVal;
|
|
m.md.w32_parts.msw |= 0x80000000; // create negative NaN
|
|
fVal = m.sd;
|
|
bSign = false; // don't negate again
|
|
}
|
|
|
|
// Eat any further digits:
|
|
while (p != pEnd && rtl::isAsciiDigit(*p))
|
|
{
|
|
++p;
|
|
}
|
|
bDone = true;
|
|
}
|
|
}
|
|
|
|
if (!bDone)
|
|
{
|
|
buf[bufpos] = '\0';
|
|
bufmap[bufpos] = p;
|
|
char* pCharParseEnd;
|
|
errno = 0;
|
|
fVal = strtod_nolocale(buf, &pCharParseEnd);
|
|
if (errno == ERANGE)
|
|
{
|
|
// Check for the dreaded rounded to 15 digits max value
|
|
// 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
|
|
// everywhere, accept with or without plus sign in exponent.
|
|
const char* b = buf;
|
|
if (b[0] == '-')
|
|
++b;
|
|
if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20))
|
|
&& !strncmp( b, "1.79769313486232", 16)
|
|
&& (b[16] == 'e' || b[16] == 'E')
|
|
&& (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4))
|
|
|| ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3))))
|
|
{
|
|
fVal = (buf < b) ? -DBL_MAX : DBL_MAX;
|
|
}
|
|
else
|
|
{
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
}
|
|
}
|
|
p = bufmap[pCharParseEnd - buf];
|
|
bSign = false;
|
|
}
|
|
}
|
|
|
|
// overflow also if more than DBL_MAX_10_EXP digits without decimal
|
|
// separator, or 0. and more than DBL_MIN_10_EXP digits, ...
|
|
bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
|
|
if (bHuge)
|
|
eStatus = rtl_math_ConversionStatus_OutOfRange;
|
|
|
|
if (bSign)
|
|
fVal = -fVal;
|
|
|
|
if (pStatus)
|
|
*pStatus = eStatus;
|
|
|
|
if (pParsedEnd)
|
|
*pParsedEnd = p == p0 ? pBegin : p;
|
|
|
|
return fVal;
|
|
}
|
|
|
|
}
|
|
|
|
double SAL_CALL rtl_math_stringToDouble(char const * pBegin,
|
|
char const * pEnd,
|
|
char cDecSeparator,
|
|
char cGroupSeparator,
|
|
rtl_math_ConversionStatus * pStatus,
|
|
char const ** pParsedEnd)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
return stringToDouble(
|
|
reinterpret_cast<unsigned char const *>(pBegin),
|
|
reinterpret_cast<unsigned char const *>(pEnd),
|
|
static_cast<unsigned char>(cDecSeparator),
|
|
static_cast<unsigned char>(cGroupSeparator), pStatus,
|
|
reinterpret_cast<unsigned char const **>(pParsedEnd));
|
|
}
|
|
|
|
double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
|
|
sal_Unicode const * pEnd,
|
|
sal_Unicode cDecSeparator,
|
|
sal_Unicode cGroupSeparator,
|
|
rtl_math_ConversionStatus * pStatus,
|
|
sal_Unicode const ** pParsedEnd)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
|
|
pParsedEnd);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
|
|
enum rtl_math_RoundingMode eMode)
|
|
SAL_THROW_EXTERN_C()
|
|
{
|
|
OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20);
|
|
|
|
if (!std::isfinite(fValue))
|
|
return fValue;
|
|
|
|
if (fValue == 0.0)
|
|
return fValue;
|
|
|
|
if ( nDecPlaces == 0 && eMode == rtl_math_RoundingMode_Corrected )
|
|
return std::round( fValue );
|
|
|
|
// sign adjustment
|
|
bool bSign = std::signbit( fValue );
|
|
if (bSign)
|
|
fValue = -fValue;
|
|
|
|
// Rounding to decimals between integer distance precision (gaps) does not
|
|
// make sense, do not even try to multiply/divide and introduce inaccuracy.
|
|
// For same reasons, do not attempt to round integers to decimals.
|
|
if (nDecPlaces >= 0
|
|
&& (fValue >= (static_cast<sal_Int64>(1) << 52)
|
|
|| isRepresentableInteger(fValue)))
|
|
return bSign ? -fValue : fValue;
|
|
|
|
double fFac = 0;
|
|
if (nDecPlaces != 0)
|
|
{
|
|
if (nDecPlaces > 1 && fValue > 4294967296.0)
|
|
{
|
|
// 4294967296 is 2^32 with room for at least 20 decimals, checking
|
|
// smaller values is not necessary. Lower the limit if more than 20
|
|
// decimals were to be allowed.
|
|
|
|
// Determine how many decimals are representable in the precision.
|
|
// Anything greater 2^52 and 0.0 was already ruled out above.
|
|
// Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
|
|
const sal_math_Double* pd = reinterpret_cast<const sal_math_Double*>(&fValue);
|
|
const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023);
|
|
if (nDec < nDecPlaces)
|
|
nDecPlaces = nDec;
|
|
}
|
|
|
|
/* TODO: this was without the inverse factor and determining max
|
|
* possible decimals, it could now be adjusted to be more lenient. */
|
|
// max 20 decimals, we don't have unlimited precision
|
|
// #38810# and no overflow on fValue*=fFac
|
|
if (nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20))
|
|
return bSign ? -fValue : fValue;
|
|
|
|
// Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
|
|
// factors that later when dividing back spoil things. For negative
|
|
// decimals divide first with the inverse, then multiply the rounded
|
|
// value back.
|
|
fFac = getN10Exp(abs(nDecPlaces));
|
|
if (nDecPlaces < 0)
|
|
fValue /= fFac;
|
|
else
|
|
fValue *= fFac;
|
|
}
|
|
|
|
// Round only if not already in distance precision gaps of integers, where
|
|
// for [2^52,2^53) adding 0.5 would even yield the next representable
|
|
// integer.
|
|
if (fValue < (static_cast<sal_Int64>(1) << 52))
|
|
{
|
|
switch ( eMode )
|
|
{
|
|
case rtl_math_RoundingMode_Corrected :
|
|
fValue = rtl::math::approxFloor(fValue + 0.5);
|
|
break;
|
|
case rtl_math_RoundingMode_Down:
|
|
fValue = rtl::math::approxFloor(fValue);
|
|
break;
|
|
case rtl_math_RoundingMode_Up:
|
|
fValue = rtl::math::approxCeil(fValue);
|
|
break;
|
|
case rtl_math_RoundingMode_Floor:
|
|
fValue = bSign ? rtl::math::approxCeil(fValue)
|
|
: rtl::math::approxFloor( fValue );
|
|
break;
|
|
case rtl_math_RoundingMode_Ceiling:
|
|
fValue = bSign ? rtl::math::approxFloor(fValue)
|
|
: rtl::math::approxCeil(fValue);
|
|
break;
|
|
case rtl_math_RoundingMode_HalfDown :
|
|
{
|
|
double f = floor(fValue);
|
|
fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
|
|
}
|
|
break;
|
|
case rtl_math_RoundingMode_HalfUp:
|
|
{
|
|
double f = floor(fValue);
|
|
fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
|
|
}
|
|
break;
|
|
case rtl_math_RoundingMode_HalfEven:
|
|
#if defined FLT_ROUNDS
|
|
/*
|
|
Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
|
|
|
|
DBL_EPSILON is the smallest fractional number which can be represented,
|
|
its reciprocal is therefore the smallest number that cannot have a
|
|
fractional part. Once you add this reciprocal to `x', its fractional part
|
|
is stripped off. Simply subtracting the reciprocal back out returns `x'
|
|
without its fractional component.
|
|
Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
|
|
who placed it into public domain.
|
|
|
|
volatile: prevent compiler from being too smart
|
|
*/
|
|
if (FLT_ROUNDS == 1)
|
|
{
|
|
volatile double x = fValue + 1.0 / DBL_EPSILON;
|
|
fValue = x - 1.0 / DBL_EPSILON;
|
|
}
|
|
else
|
|
#endif // FLT_ROUNDS
|
|
{
|
|
double f = floor(fValue);
|
|
if ((fValue - f) != 0.5)
|
|
{
|
|
fValue = floor( fValue + 0.5 );
|
|
}
|
|
else
|
|
{
|
|
double g = f / 2.0;
|
|
fValue = (g == floor( g )) ? f : (f + 1.0);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
OSL_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nDecPlaces != 0)
|
|
{
|
|
if (nDecPlaces < 0)
|
|
fValue *= fFac;
|
|
else
|
|
fValue /= fFac;
|
|
}
|
|
|
|
return bSign ? -fValue : fValue;
|
|
}
|
|
|
|
double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
|
|
{
|
|
return fValue * getN10Exp(nExp);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
|
|
{
|
|
const double fBigInt = 2199023255552.0; // 2^41 -> only 11 bits left for fractional part, fine as decimal
|
|
if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt)
|
|
{
|
|
// We don't handle these conditions. Bail out.
|
|
return fValue;
|
|
}
|
|
|
|
double fOrigValue = fValue;
|
|
|
|
bool bSign = std::signbit(fValue);
|
|
if (bSign)
|
|
fValue = -fValue;
|
|
|
|
// If the value is either integer representable as double,
|
|
// or only has small number of bits in fraction part, then we need not do any approximation
|
|
if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
|
|
return fOrigValue;
|
|
|
|
int nExp = static_cast< int >(floor(log10(fValue)));
|
|
nExp = 14 - nExp;
|
|
double fExpValue = getN10Exp(abs(nExp));
|
|
|
|
if (nExp < 0)
|
|
fValue /= fExpValue;
|
|
else
|
|
fValue *= fExpValue;
|
|
|
|
// If the original value was near DBL_MIN we got an overflow. Restore and
|
|
// bail out.
|
|
if (!std::isfinite(fValue))
|
|
return fOrigValue;
|
|
|
|
fValue = std::round(fValue);
|
|
|
|
if (nExp < 0)
|
|
fValue *= fExpValue;
|
|
else
|
|
fValue /= fExpValue;
|
|
|
|
// If the original value was near DBL_MAX we got an overflow. Restore and
|
|
// bail out.
|
|
if (!std::isfinite(fValue))
|
|
return fOrigValue;
|
|
|
|
return bSign ? -fValue : fValue;
|
|
}
|
|
|
|
bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()
|
|
{
|
|
static const double e48 = 1.0 / (16777216.0 * 16777216.0);
|
|
static const double e44 = e48 * 16.0;
|
|
|
|
if (a == b)
|
|
return true;
|
|
|
|
if (a == 0.0 || b == 0.0)
|
|
return false;
|
|
|
|
const double d = fabs(a - b);
|
|
if (!std::isfinite(d))
|
|
return false; // Nan or Inf involved
|
|
|
|
a = fabs(a);
|
|
if (d > (a * e44))
|
|
return false;
|
|
b = fabs(b);
|
|
if (d > (b * e44))
|
|
return false;
|
|
|
|
if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b))
|
|
return false; // special case for representable integers.
|
|
|
|
return (d < a * e48 && d < b * e48);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C()
|
|
{
|
|
return expm1(fValue);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
|
|
{
|
|
#ifdef __APPLE__
|
|
if (fValue == -0.0)
|
|
return fValue; // macOS 10.8 libc returns 0.0 for -0.0
|
|
#endif
|
|
|
|
return log1p(fValue);
|
|
}
|
|
|
|
double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C()
|
|
#if defined __clang__
|
|
__attribute__((no_sanitize("float-divide-by-zero"))) // atahn(1) -> inf
|
|
#endif
|
|
{
|
|
return 0.5 * rtl_math_log1p(2.0 * fValue / (1.0-fValue));
|
|
}
|
|
|
|
/** Parent error function (erf) */
|
|
double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C()
|
|
{
|
|
return erf(x);
|
|
}
|
|
|
|
/** Parent complementary error function (erfc) */
|
|
double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C()
|
|
{
|
|
return erfc(x);
|
|
}
|
|
|
|
/** improved accuracy of asinh for |x| large and for x near zero
|
|
@see #i97605#
|
|
*/
|
|
double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()
|
|
{
|
|
if ( fX == 0.0 )
|
|
return 0.0;
|
|
|
|
double fSign = 1.0;
|
|
if ( fX < 0.0 )
|
|
{
|
|
fX = - fX;
|
|
fSign = -1.0;
|
|
}
|
|
|
|
if ( fX < 0.125 )
|
|
return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
|
|
|
|
if ( fX < 1.25e7 )
|
|
return fSign * log( fX + sqrt( 1.0 + fX*fX));
|
|
|
|
return fSign * log( 2.0*fX);
|
|
}
|
|
|
|
/** improved accuracy of acosh for x large and for x near 1
|
|
@see #i97605#
|
|
*/
|
|
double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()
|
|
{
|
|
volatile double fZ = fX - 1.0;
|
|
if (fX < 1.0)
|
|
{
|
|
double fResult;
|
|
::rtl::math::setNan( &fResult );
|
|
return fResult;
|
|
}
|
|
if ( fX == 1.0 )
|
|
return 0.0;
|
|
|
|
if ( fX < 1.1 )
|
|
return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
|
|
|
|
if ( fX < 1.25e7 )
|
|
return log( fX + sqrt( fX*fX - 1.0));
|
|
|
|
return log( 2.0*fX);
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|