office-gobmx/vcl/skia/salbmp.cxx
Patrick Luby e4821ce3e0 tdf#158014 make image immutable after using Skia to invert
I can't explain why inverting using Skia causes this bug on
macOS but not other platforms. My guess is that Skia on macOS
is sharing some data when different SkiaSalBitmap instances
are created from the same OutputDevice. So, mark this
SkiaSalBitmap instance's image as immutable so that successive
inversions are done with buffered bitmap data instead of Skia.

Change-Id: I8acf90561c48edba14a5f43d16f375f15f25820c
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/158880
Reviewed-by: Patrick Luby <plubius@neooffice.org>
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
Tested-by: Jenkins
2023-11-03 18:33:23 +01:00

1500 lines
60 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <skia/salbmp.hxx>
#include <o3tl/safeint.hxx>
#include <tools/helpers.hxx>
#include <boost/smart_ptr/make_shared.hpp>
#include <salgdi.hxx>
#include <salinst.hxx>
#include <scanlinewriter.hxx>
#include <svdata.hxx>
#include <bitmap/bmpfast.hxx>
#include <vcl/BitmapReadAccess.hxx>
#include <skia/utils.hxx>
#include <skia/zone.hxx>
#include <SkBitmap.h>
#include <SkCanvas.h>
#include <SkImage.h>
#include <SkPixelRef.h>
#include <SkShader.h>
#include <SkSurface.h>
#include <SkSwizzle.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <skia_opts.hxx>
#ifdef DBG_UTIL
#include <fstream>
#define CANARY "skia-canary"
#endif
using namespace SkiaHelper;
// As constexpr here, evaluating it directly in code makes Clang warn about unreachable code.
constexpr bool kN32_SkColorTypeIsBGRA = (kN32_SkColorType == kBGRA_8888_SkColorType);
SkiaSalBitmap::SkiaSalBitmap() {}
SkiaSalBitmap::~SkiaSalBitmap() {}
SkiaSalBitmap::SkiaSalBitmap(const sk_sp<SkImage>& image)
{
ResetAllData();
mImage = image;
mPalette = BitmapPalette();
#if SKIA_USE_BITMAP32
mBitCount = 32;
#else
mBitCount = 24;
#endif
mSize = mPixelsSize = Size(image->width(), image->height());
ComputeScanlineSize();
mReadAccessCount = 0;
#ifdef DBG_UTIL
mWriteAccessCount = 0;
#endif
SAL_INFO("vcl.skia.trace", "bitmapfromimage(" << this << ")");
}
bool SkiaSalBitmap::Create(const Size& rSize, vcl::PixelFormat ePixelFormat,
const BitmapPalette& rPal)
{
assert(mReadAccessCount == 0);
ResetAllData();
if (ePixelFormat == vcl::PixelFormat::INVALID)
return false;
mPalette = rPal;
mBitCount = vcl::pixelFormatBitCount(ePixelFormat);
mSize = rSize;
ResetPendingScaling();
if (!ComputeScanlineSize())
{
mBitCount = 0;
mSize = mPixelsSize = Size();
mScanlineSize = 0;
mPalette = BitmapPalette();
return false;
}
SAL_INFO("vcl.skia.trace", "create(" << this << ")");
return true;
}
bool SkiaSalBitmap::ComputeScanlineSize()
{
int bitScanlineWidth;
if (o3tl::checked_multiply<int>(mPixelsSize.Width(), mBitCount, bitScanlineWidth))
{
SAL_WARN("vcl.skia", "checked multiply failed");
return false;
}
mScanlineSize = AlignedWidth4Bytes(bitScanlineWidth);
return true;
}
void SkiaSalBitmap::CreateBitmapData()
{
assert(!mBuffer);
// Make sure code has not missed calling ComputeScanlineSize().
assert(mScanlineSize == int(AlignedWidth4Bytes(mPixelsSize.Width() * mBitCount)));
// The pixels could be stored in SkBitmap, but Skia only supports 8bit gray, 16bit and 32bit formats
// (e.g. 24bpp is actually stored as 32bpp). But some of our code accessing the bitmap assumes that
// when it asked for 24bpp, the format really will be 24bpp (e.g. the png loader), so we cannot use
// SkBitmap to store the data. And even 8bpp is problematic, since Skia does not support palettes
// and a VCL bitmap can change its grayscale status simply by changing the palette.
// Moreover creating SkImage from SkBitmap does a data copy unless the bitmap is immutable.
// So just always store pixels in our buffer and convert as necessary.
if (mScanlineSize == 0 || mPixelsSize.Height() == 0)
return;
size_t allocate = mScanlineSize * mPixelsSize.Height();
#ifdef DBG_UTIL
allocate += sizeof(CANARY);
#endif
mBuffer = boost::make_shared_noinit<sal_uInt8[]>(allocate);
#ifdef DBG_UTIL
// fill with random garbage
sal_uInt8* buffer = mBuffer.get();
for (size_t i = 0; i < allocate; i++)
buffer[i] = (i & 0xFF);
memcpy(buffer + allocate - sizeof(CANARY), CANARY, sizeof(CANARY));
#endif
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp)
{
return Create(rSalBmp, vcl::bitDepthToPixelFormat(rSalBmp.GetBitCount()));
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp, SalGraphics* pGraphics)
{
auto ePixelFormat = vcl::PixelFormat::INVALID;
if (pGraphics)
ePixelFormat = vcl::bitDepthToPixelFormat(pGraphics->GetBitCount());
else
ePixelFormat = vcl::bitDepthToPixelFormat(rSalBmp.GetBitCount());
return Create(rSalBmp, ePixelFormat);
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp, vcl::PixelFormat eNewPixelFormat)
{
assert(mReadAccessCount == 0);
assert(&rSalBmp != this);
ResetAllData();
const SkiaSalBitmap& src = static_cast<const SkiaSalBitmap&>(rSalBmp);
mImage = src.mImage;
mImageImmutable = src.mImageImmutable;
mAlphaImage = src.mAlphaImage;
mBuffer = src.mBuffer;
mPalette = src.mPalette;
mBitCount = src.mBitCount;
mSize = src.mSize;
mPixelsSize = src.mPixelsSize;
mScanlineSize = src.mScanlineSize;
mScaleQuality = src.mScaleQuality;
mEraseColorSet = src.mEraseColorSet;
mEraseColor = src.mEraseColor;
if (vcl::pixelFormatBitCount(eNewPixelFormat) != src.GetBitCount())
{
// This appears to be unused(?). Implement this just in case, but be lazy
// about it and rely on EnsureBitmapData() doing the conversion from mImage
// if needed, even if that may need unnecessary to- and from- SkImage
// conversion.
ResetToSkImage(GetSkImage());
}
SAL_INFO("vcl.skia.trace", "create(" << this << "): (" << &src << ")");
return true;
}
bool SkiaSalBitmap::Create(const css::uno::Reference<css::rendering::XBitmapCanvas>&, Size&, bool)
{
return false;
}
void SkiaSalBitmap::Destroy()
{
SAL_INFO("vcl.skia.trace", "destroy(" << this << ")");
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
assert(mReadAccessCount == 0);
ResetAllData();
}
Size SkiaSalBitmap::GetSize() const { return mSize; }
sal_uInt16 SkiaSalBitmap::GetBitCount() const { return mBitCount; }
BitmapBuffer* SkiaSalBitmap::AcquireBuffer(BitmapAccessMode nMode)
{
switch (nMode)
{
case BitmapAccessMode::Write:
EnsureBitmapUniqueData();
if (!mBuffer)
return nullptr;
assert(mPixelsSize == mSize);
assert(!mEraseColorSet);
break;
case BitmapAccessMode::Read:
EnsureBitmapData();
if (!mBuffer)
return nullptr;
assert(mPixelsSize == mSize);
assert(!mEraseColorSet);
break;
case BitmapAccessMode::Info:
// Related tdf#156629 and tdf#156630 force snapshot of alpha mask
// On macOS, with Skia/Metal or Skia/Raster with a Retina display
// (i.e. 2.0 window scale), the alpha mask gets upscaled in certain
// cases.
// This bug appears to be caused by pending scaling of an existing
// SkImage in the bitmap parameter. So, force the SkiaSalBitmap to
// handle its pending scaling.
// Note: also handle pending scaling if SAL_FORCE_HIDPI_SCALING is
// set otherwise exporting the following animated .png image will
// fail:
// https://bugs.documentfoundation.org/attachment.cgi?id=188792
static const bool bForceHiDPIScaling = getenv("SAL_FORCE_HIDPI_SCALING") != nullptr;
if (mImage && !mImageImmutable && mBitCount == 8 && mPalette.IsGreyPalette8Bit()
&& (mPixelsSize != mSize || bForceHiDPIScaling))
{
ResetToSkImage(GetSkImage());
ResetPendingScaling();
assert(mPixelsSize == mSize);
// When many of the images affected by tdf#156629 and
// tdf#156630 are exported to PDF the first time after the
// image has been opened and before it has been printed or run
// in a slideshow, the alpha mask will unexpectedly be
// inverted. Fix that by marking this alpha mask as immutable
// so that when Invert() is called on this alpha mask, it will
// be a noop. Invert() is a noop after EnsureBitmapData() is
// called but we don't want to call that due to performance
// so set a flag instead.
mImageImmutable = true;
}
break;
}
#ifdef DBG_UTIL
// BitmapWriteAccess stores also a copy of the palette and it can
// be modified, so concurrent reading of it might result in inconsistencies.
assert(mWriteAccessCount == 0 || nMode == BitmapAccessMode::Write);
#endif
BitmapBuffer* buffer = new BitmapBuffer;
buffer->mnWidth = mSize.Width();
buffer->mnHeight = mSize.Height();
buffer->mnBitCount = mBitCount;
buffer->maPalette = mPalette;
if (nMode != BitmapAccessMode::Info)
buffer->mpBits = mBuffer.get();
else
buffer->mpBits = nullptr;
if (mPixelsSize == mSize)
buffer->mnScanlineSize = mScanlineSize;
else
{
// The value of mScanlineSize is based on internal mPixelsSize, but the outside
// world cares about mSize, the size that the report as the size of the bitmap,
// regardless of any internal state. So report scanline size for that size.
Size savedPixelsSize = mPixelsSize;
mPixelsSize = mSize;
ComputeScanlineSize();
buffer->mnScanlineSize = mScanlineSize;
mPixelsSize = savedPixelsSize;
ComputeScanlineSize();
}
switch (mBitCount)
{
case 1:
buffer->mnFormat = ScanlineFormat::N1BitMsbPal;
break;
case 8:
buffer->mnFormat = ScanlineFormat::N8BitPal;
break;
case 24:
// Make the RGB/BGR format match the default Skia 32bpp format, to allow
// easy conversion later.
buffer->mnFormat = kN32_SkColorTypeIsBGRA ? ScanlineFormat::N24BitTcBgr
: ScanlineFormat::N24BitTcRgb;
break;
case 32:
buffer->mnFormat = kN32_SkColorTypeIsBGRA ? ScanlineFormat::N32BitTcBgra
: ScanlineFormat::N32BitTcRgba;
break;
default:
abort();
}
buffer->mnFormat |= ScanlineFormat::TopDown;
// Refcount all read/write accesses, to catch problems with existing accesses while
// a bitmap changes, and also to detect when we can free mBuffer if wanted.
// Write mode implies also reading. It would be probably a good idea to count even
// Info accesses, but VclCanvasBitmap keeps one around pointlessly, causing tdf#150817.
if (nMode == BitmapAccessMode::Read || nMode == BitmapAccessMode::Write)
++mReadAccessCount;
#ifdef DBG_UTIL
if (nMode == BitmapAccessMode::Write)
++mWriteAccessCount;
#endif
return buffer;
}
void SkiaSalBitmap::ReleaseBuffer(BitmapBuffer* pBuffer, BitmapAccessMode nMode)
{
ReleaseBuffer(pBuffer, nMode, false);
}
void SkiaSalBitmap::ReleaseBuffer(BitmapBuffer* pBuffer, BitmapAccessMode nMode,
bool dontChangeToErase)
{
if (nMode == BitmapAccessMode::Write)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount > 0);
--mWriteAccessCount;
#endif
mPalette = pBuffer->maPalette;
ResetToBuffer();
DataChanged();
}
if (nMode == BitmapAccessMode::Read || nMode == BitmapAccessMode::Write)
{
assert(mReadAccessCount > 0);
--mReadAccessCount;
}
// Are there any more ground movements underneath us ?
assert(pBuffer->mnWidth == mSize.Width());
assert(pBuffer->mnHeight == mSize.Height());
assert(pBuffer->mnBitCount == mBitCount);
assert(pBuffer->mpBits == mBuffer.get() || nMode == BitmapAccessMode::Info);
verify();
delete pBuffer;
if (nMode == BitmapAccessMode::Write && !dontChangeToErase)
{
// This saves memory and is also used by IsFullyOpaqueAsAlpha() to avoid unnecessary
// alpha blending.
if (IsAllBlack())
{
SAL_INFO("vcl.skia.trace", "releasebuffer(" << this << "): erasing to black");
EraseInternal(COL_BLACK);
}
}
}
static bool isAllZero(const sal_uInt8* data, size_t size)
{ // For performance, check in larger data chunks.
#ifdef UINT64_MAX
const int64_t* d = reinterpret_cast<const int64_t*>(data);
#else
const int32_t* d = reinterpret_cast<const int32_t*>(data);
#endif
constexpr size_t step = sizeof(*d) * 8;
for (size_t i = 0; i < size / step; ++i)
{ // Unrolled loop.
if (d[0] != 0)
return false;
if (d[1] != 0)
return false;
if (d[2] != 0)
return false;
if (d[3] != 0)
return false;
if (d[4] != 0)
return false;
if (d[5] != 0)
return false;
if (d[6] != 0)
return false;
if (d[7] != 0)
return false;
d += 8;
}
for (size_t i = size / step * step; i < size; ++i)
if (data[i] != 0)
return false;
return true;
}
bool SkiaSalBitmap::IsAllBlack() const
{
if (mBitCount % 8 != 0 || (!!mPalette && mPalette[0] != COL_BLACK))
return false; // Don't bother.
if (mSize.Width() * mBitCount / 8 == mScanlineSize)
return isAllZero(mBuffer.get(), mScanlineSize * mSize.Height());
for (tools::Long y = 0; y < mSize.Height(); ++y)
if (!isAllZero(mBuffer.get() + mScanlineSize * y, mSize.Width() * mBitCount / 8))
return false;
return true;
}
bool SkiaSalBitmap::GetSystemData(BitmapSystemData&)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
return false;
}
bool SkiaSalBitmap::ScalingSupported() const { return true; }
bool SkiaSalBitmap::Scale(const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag)
{
SkiaZone zone;
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
Size newSize(FRound(mSize.Width() * rScaleX), FRound(mSize.Height() * rScaleY));
if (mSize == newSize)
return true;
SAL_INFO("vcl.skia.trace", "scale(" << this << "): " << mSize << "/" << mBitCount << "->"
<< newSize << ":" << static_cast<int>(nScaleFlag));
if (mEraseColorSet)
{ // Simple.
mSize = newSize;
ResetPendingScaling();
EraseInternal(mEraseColor);
return true;
}
if (mBitCount < 24 && !mPalette.IsGreyPalette8Bit())
{
// Scaling can introduce additional colors not present in the original
// bitmap (e.g. when smoothing). If the bitmap is indexed (has non-trivial palette),
// this would break the bitmap, because the actual scaling is done only somewhen later.
// Linear 8bit palette (grey) is ok, since there we use directly the values as colors.
SAL_INFO("vcl.skia.trace", "scale(" << this << "): indexed bitmap");
return false;
}
// The idea here is that the actual scaling will be delayed until the result
// is actually needed. Usually the scaled bitmap will be drawn somewhere,
// so delaying will mean the scaling can be done as a part of GetSkImage().
// That means it can be GPU-accelerated, while done here directly it would need
// to be either done by CPU, or with the CPU->GPU->CPU roundtrip required
// by GPU-accelerated scaling.
// Pending scaling is detected by 'mSize != mPixelsSize' for mBuffer,
// and 'imageSize(mImage) != mSize' for mImage. It is not intended to have 3 different
// sizes though, code below keeps only mBuffer or mImage. Note that imageSize(mImage)
// may or may not be equal to mPixelsSize, depending on whether mImage is set here
// (sizes will be equal) or whether it's set in GetSkImage() (will not be equal).
// Pending scaling is considered "done" by the time mBuffer is resized (or created).
// Resizing of mImage is somewhat independent of this, since mImage is primarily
// considered to be a cached object (although sometimes it's the only data available).
// If there is already one scale() pending, use the lowest quality of all requested.
switch (nScaleFlag)
{
case BmpScaleFlag::Fast:
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::NearestNeighbor:
// We handle this the same way as Fast by mapping to Skia's nearest-neighbor,
// and it's needed for unittests (mScaling and testTdf132367()).
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::Default:
if (mScaleQuality == BmpScaleFlag::BestQuality)
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::BestQuality:
// Best is the maximum, set by default.
break;
default:
SAL_INFO("vcl.skia.trace", "scale(" << this << "): unsupported scale algorithm");
return false;
}
mSize = newSize;
// If we have both mBuffer and mImage, prefer mImage, since it likely will be drawn later.
// We could possibly try to keep the buffer as well, but that would complicate things
// with two different data structures to be scaled on-demand, and it's a question
// if that'd realistically help with anything.
if (mImage)
ResetToSkImage(mImage);
else
ResetToBuffer();
DataChanged();
// The rest will be handled when the scaled bitmap is actually needed,
// such as in EnsureBitmapData() or GetSkImage().
return true;
}
bool SkiaSalBitmap::Replace(const Color&, const Color&, sal_uInt8)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
return false;
}
bool SkiaSalBitmap::ConvertToGreyscale()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Normally this would need to convert contents of mBuffer for all possible formats,
// so just let the VCL algorithm do it.
// Avoid the costly SkImage->buffer->SkImage conversion.
if (!mBuffer && mImage && !mEraseColorSet)
{
if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
return true;
sk_sp<SkSurface> surface
= createSkSurface(imageSize(mImage), mImage->imageInfo().alphaType());
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
// VCL uses different coefficients for conversion to gray than Skia, so use the VCL
// values from Bitmap::ImplMakeGreyscales(). Do not use kGray_8_SkColorType,
// Skia would use its gray conversion formula.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix toGray(77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // R column
77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // G column
77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // B column
0, 0, 0, 1, 0); // don't modify alpha
paint.setColorFilter(SkColorFilters::Matrix(toGray));
surface->getCanvas()->drawImage(mImage, 0, 0, SkSamplingOptions(), &paint);
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
SAL_INFO("vcl.skia.trace", "converttogreyscale(" << this << ")");
return true;
}
return false;
}
bool SkiaSalBitmap::InterpretAs8Bit()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
return true;
if (mEraseColorSet)
{
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
EraseInternal(mEraseColor);
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with erase color");
return true;
}
// This is usually used by AlphaMask, the point is just to treat
// the content as an alpha channel. This is often used
// by the horrible separate-alpha-outdev hack, where the bitmap comes
// from SkiaSalGraphicsImpl::GetBitmap(), so only mImage is set,
// and that is followed by a later call to GetAlphaSkImage().
// Avoid the costly SkImage->buffer->SkImage conversion and simply
// just treat the SkImage as being for 8bit bitmap. EnsureBitmapData()
// will do the conversion if needed, but the normal case will be
// GetAlphaSkImage() creating kAlpha_8_SkColorType SkImage from it.
if (mImage)
{
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
ResetToSkImage(mImage); // keep mImage, it will be interpreted as 8bit if needed
DataChanged();
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with image");
return true;
}
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with pixel data, ignoring");
return false;
}
bool SkiaSalBitmap::Erase(const Color& color)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Optimized variant, just remember the color and apply it when needed,
// which may save having to do format conversions (e.g. GetSkImage()
// may directly erase the SkImage).
EraseInternal(color);
SAL_INFO("vcl.skia.trace", "erase(" << this << ")");
return true;
}
void SkiaSalBitmap::EraseInternal(const Color& color)
{
ResetAllData();
mEraseColorSet = true;
mEraseColor = color;
}
bool SkiaSalBitmap::AlphaBlendWith(const SalBitmap& rSalBmp)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
const SkiaSalBitmap* otherBitmap = dynamic_cast<const SkiaSalBitmap*>(&rSalBmp);
if (!otherBitmap)
return false;
if (mSize != otherBitmap->mSize)
return false;
// We're called from AlphaMask, which should ensure 8bit.
assert(GetBitCount() == 8 && mPalette.IsGreyPalette8Bit());
// If neither bitmap have Skia images, then AlphaMask::BlendWith() will be faster,
// as it will operate on mBuffer pixel buffers, while for Skia we'd need to convert it.
// If one has and one doesn't, do it using Skia, under the assumption that after this
// the resulting Skia image will be needed for drawing.
if (!(mImage || mEraseColorSet) && !(otherBitmap->mImage || otherBitmap->mEraseColorSet))
return false;
// This is for AlphaMask, which actually stores the alpha as the pixel values.
// I.e. take value of the color channel (one of them, if >8bit, they should be the same).
if (mEraseColorSet && otherBitmap->mEraseColorSet)
{
const sal_uInt16 nGrey1 = mEraseColor.GetRed();
const sal_uInt16 nGrey2 = otherBitmap->mEraseColor.GetRed();
// See comment in AlphaMask::BlendWith for how this calculation was derived
const sal_uInt8 nGrey = static_cast<sal_uInt8>(nGrey1 * nGrey2 / 255);
mEraseColor = Color(nGrey, nGrey, nGrey);
DataChanged();
SAL_INFO("vcl.skia.trace",
"alphablendwith(" << this << ") : with erase color " << otherBitmap);
return true;
}
std::unique_ptr<SkiaSalBitmap> otherBitmapAllocated;
if (otherBitmap->GetBitCount() != 8 || !otherBitmap->mPalette.IsGreyPalette8Bit())
{ // Convert/interpret as 8bit if needed.
otherBitmapAllocated = std::make_unique<SkiaSalBitmap>();
if (!otherBitmapAllocated->Create(*otherBitmap) || !otherBitmapAllocated->InterpretAs8Bit())
return false;
otherBitmap = otherBitmapAllocated.get();
}
// This is 8-bit bitmap serving as mask, so the image itself needs no alpha.
sk_sp<SkSurface> surface = createSkSurface(mSize, kOpaque_SkAlphaType);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is
surface->getCanvas()->drawImage(GetSkImage(), 0, 0, SkSamplingOptions(), &paint);
// in the 0..1 range that skia uses, the equation we want is:
// r = 1 - ((1 - src) + (1 - dest) - (1 - src) * (1 - dest))
// which simplifies to:
// r = src * dest
// which is SkBlendMode::kModulate
paint.setBlendMode(SkBlendMode::kModulate);
surface->getCanvas()->drawImage(otherBitmap->GetSkImage(), 0, 0, SkSamplingOptions(), &paint);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
SAL_INFO("vcl.skia.trace", "alphablendwith(" << this << ") : with image " << otherBitmap);
return true;
}
bool SkiaSalBitmap::Invert()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Normally this would need to convert contents of mBuffer for all possible formats,
// so just let the VCL algorithm do it.
// Avoid the costly SkImage->buffer->SkImage conversion.
if (!mBuffer && mImage && !mImageImmutable && !mEraseColorSet)
{
// This is 8-bit bitmap serving as alpha/transparency/mask, so the image itself needs no alpha.
// tdf#156866 use mSize instead of mPixelSize for inverted surface
// Commit 5baac4e53128d3c0fc73b9918dc9a9c2777ace08 switched to setting
// the surface size to mPixelsSize in an attempt to avoid downscaling
// mImage but since it causes tdf#156866, revert back to setting the
// surface size to mSize.
sk_sp<SkSurface> surface = createSkSurface(mSize, kOpaque_SkAlphaType);
surface->getCanvas()->clear(SK_ColorWHITE);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kDifference);
// Drawing the image does not work so create a shader from the image
paint.setShader(GetSkShader(SkSamplingOptions()));
surface->getCanvas()->drawRect(SkRect::MakeXYWH(0, 0, mSize.Width(), mSize.Height()),
paint);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
#ifdef MACOSX
// tdf#158014 make image immutable after using Skia to invert
// I can't explain why inverting using Skia causes this bug on
// macOS but not other platforms. My guess is that Skia on macOS
// is sharing some data when different SkiaSalBitmap instances
// are created from the same OutputDevice. So, mark this
// SkiaSalBitmap instance's image as immutable so that successive
// inversions are done with buffered bitmap data instead of Skia.
mImageImmutable = true;
#endif
SAL_INFO("vcl.skia.trace", "invert(" << this << ")");
return true;
}
return false;
}
SkBitmap SkiaSalBitmap::GetAsSkBitmap() const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
EnsureBitmapData();
assert(mSize == mPixelsSize); // data has already been scaled if needed
SkiaZone zone;
SkBitmap bitmap;
if (mBuffer)
{
if (mBitCount == 32)
{
// Make a copy, the bitmap should be immutable (otherwise converting it
// to SkImage will make a copy anyway).
const size_t bytes = mPixelsSize.Height() * mScanlineSize;
std::unique_ptr<sal_uInt8[]> data(new sal_uInt8[bytes]);
memcpy(data.get(), mBuffer.get(), bytes);
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(), alphaType()),
data.release(), mScanlineSize,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else if (mBitCount == 24)
{
// Convert 24bpp RGB/BGR to 32bpp RGBA/BGRA.
std::unique_ptr<uint32_t[]> data(
new uint32_t[mPixelsSize.Height() * mPixelsSize.Width()]);
uint32_t* dest = data.get();
// SkConvertRGBToRGBA() also works as BGR to BGRA (the function extends 3 bytes to 4
// by adding 0xFF alpha, so position of B and R doesn't matter).
if (mPixelsSize.Width() * 3 == mScanlineSize)
SkConvertRGBToRGBA(dest, mBuffer.get(), mPixelsSize.Height() * mPixelsSize.Width());
else
{
for (tools::Long y = 0; y < mPixelsSize.Height(); ++y)
{
const sal_uInt8* src = mBuffer.get() + mScanlineSize * y;
SkConvertRGBToRGBA(dest, src, mPixelsSize.Width());
dest += mPixelsSize.Width();
}
}
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
{
// Convert 8bpp gray to 32bpp RGBA/BGRA.
// There's also kGray_8_SkColorType, but it's probably simpler to make
// GetAsSkBitmap() always return 32bpp SkBitmap and then assume mImage
// is always 32bpp too.
std::unique_ptr<uint32_t[]> data(
new uint32_t[mPixelsSize.Height() * mPixelsSize.Width()]);
uint32_t* dest = data.get();
if (mPixelsSize.Width() * 1 == mScanlineSize)
SkConvertGrayToRGBA(dest, mBuffer.get(),
mPixelsSize.Height() * mPixelsSize.Width());
else
{
for (tools::Long y = 0; y < mPixelsSize.Height(); ++y)
{
const sal_uInt8* src = mBuffer.get() + mScanlineSize * y;
SkConvertGrayToRGBA(dest, src, mPixelsSize.Width());
dest += mPixelsSize.Width();
}
}
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else
{
std::unique_ptr<sal_uInt8[]> data = convertDataBitCount(
mBuffer.get(), mPixelsSize.Width(), mPixelsSize.Height(), mBitCount, mScanlineSize,
mPalette, kN32_SkColorTypeIsBGRA ? BitConvert::BGRA : BitConvert::RGBA);
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
}
bitmap.setImmutable();
return bitmap;
}
// If mEraseColor is set, this is the color to use when the bitmap is used as alpha bitmap.
// E.g. COL_BLACK actually means fully transparent and COL_WHITE means fully opaque.
// This is because the alpha value is set as the color itself, not the alpha of the color.
static SkColor fromEraseColorToAlphaImageColor(Color color)
{
return SkColorSetARGB(color.GetBlue(), 0, 0, 0);
}
// SkiaSalBitmap can store data in both the SkImage and our mBuffer, which with large
// images can waste quite a lot of memory. Ideally we should store the data in Skia's
// SkBitmap, but LO wants us to support data formats that Skia doesn't support.
// So try to conserve memory by keeping the data only once in that was the most
// recently wanted storage, and drop the other one. Usually the other one won't be needed
// for a long time, and especially with raster the conversion is usually fast.
// Do this only with raster, to avoid GPU->CPU transfer in GPU mode (exception is 32bit
// builds, where memory is more important). Also don't do this with paletted bitmaps,
// where EnsureBitmapData() would be expensive.
// Ideally SalBitmap should be able to say which bitmap formats it supports
// and VCL code should oblige, which would allow reusing the same data.
bool SkiaSalBitmap::ConserveMemory() const
{
static bool keepBitmapBuffer = getenv("SAL_SKIA_KEEP_BITMAP_BUFFER") != nullptr;
constexpr bool is32Bit = sizeof(void*) == 4;
// 16MiB bitmap data at least (set to 0 for easy testing).
constexpr tools::Long maxBufferSize = 2000 * 2000 * 4;
return !keepBitmapBuffer && (renderMethodToUse() == RenderRaster || is32Bit)
&& mPixelsSize.Height() * mScanlineSize > maxBufferSize
&& (mBitCount > 8 || (mBitCount == 8 && mPalette.IsGreyPalette8Bit()));
}
const sk_sp<SkImage>& SkiaSalBitmap::GetSkImage(DirectImage direct) const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (direct == DirectImage::Yes)
return mImage;
if (mEraseColorSet)
{
if (mImage)
{
assert(imageSize(mImage) == mSize);
return mImage;
}
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(
mSize, mEraseColor.IsTransparent() ? kPremul_SkAlphaType : kOpaque_SkAlphaType);
assert(surface);
surface->getCanvas()->clear(toSkColor(mEraseColor));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = makeCheckedImageSnapshot(surface);
SAL_INFO("vcl.skia.trace", "getskimage(" << this << ") from erase color " << mEraseColor);
return mImage;
}
if (mPixelsSize != mSize && !mImage && renderMethodToUse() != RenderRaster)
{
// The bitmap has a pending scaling, but no image. This function would below call GetAsSkBitmap(),
// which would do CPU-based pixel scaling, and then it would get converted to an image.
// Be more efficient, first convert to an image and then the block below will scale on the GPU.
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): shortcut image scaling "
<< mPixelsSize << "->" << mSize);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
Size savedSize = mSize;
thisPtr->mSize = mPixelsSize; // block scaling
SkiaZone zone;
sk_sp<SkImage> image = createSkImage(GetAsSkBitmap());
assert(image);
thisPtr->mSize = savedSize;
thisPtr->ResetToSkImage(image);
}
if (mImage)
{
if (imageSize(mImage) != mSize)
{
assert(!mBuffer); // This code should be only called if only mImage holds data.
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(mSize, mImage->imageInfo().alphaType());
assert(surface);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
surface->getCanvas()->drawImageRect(
mImage, SkRect::MakeWH(mSize.Width(), mSize.Height()),
makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1), &paint);
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): image scaled "
<< Size(mImage->width(), mImage->height())
<< "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = makeCheckedImageSnapshot(surface);
}
return mImage;
}
SkiaZone zone;
sk_sp<SkImage> image = createSkImage(GetAsSkBitmap());
assert(image);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = image;
// The data is now stored both in the SkImage and in our mBuffer, so drop the buffer
// if conserving memory. It'll be converted back by EnsureBitmapData() if needed.
if (ConserveMemory() && mReadAccessCount == 0)
{
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): dropping buffer");
thisPtr->ResetToSkImage(mImage);
}
SAL_INFO("vcl.skia.trace", "getskimage(" << this << ")");
return mImage;
}
const sk_sp<SkImage>& SkiaSalBitmap::GetAlphaSkImage(DirectImage direct) const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (direct == DirectImage::Yes)
return mAlphaImage;
if (mEraseColorSet)
{
if (mAlphaImage)
{
assert(imageSize(mAlphaImage) == mSize);
return mAlphaImage;
}
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
surface->getCanvas()->clear(fromEraseColorToAlphaImageColor(mEraseColor));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
SAL_INFO("vcl.skia.trace",
"getalphaskimage(" << this << ") from erase color " << mEraseColor);
return mAlphaImage;
}
if (mAlphaImage)
{
if (imageSize(mAlphaImage) == mSize)
return mAlphaImage;
}
if (mImage)
{
SkiaZone zone;
const bool scaling = imageSize(mImage) != mSize;
SkPixmap pixmap;
if (mImage->peekPixels(&pixmap))
{
assert(pixmap.colorType() == kN32_SkColorType);
// In non-GPU mode, convert 32bit data to 8bit alpha, this is faster than
// the SkColorFilter below. Since this is the VCL alpha-vdev alpha, where
// all R,G,B are the same and in fact mean alpha, this means we simply take one
// 8bit channel from the input, and that's the output.
SkBitmap bitmap;
if (!bitmap.installPixels(pixmap))
abort();
SkBitmap alphaBitmap;
if (!alphaBitmap.tryAllocPixels(SkImageInfo::MakeA8(bitmap.width(), bitmap.height())))
abort();
if (int(bitmap.rowBytes()) == bitmap.width() * 4)
{
SkConvertRGBAToR(alphaBitmap.getAddr8(0, 0), bitmap.getAddr32(0, 0),
bitmap.width() * bitmap.height());
}
else
{
for (tools::Long y = 0; y < bitmap.height(); ++y)
SkConvertRGBAToR(alphaBitmap.getAddr8(0, y), bitmap.getAddr32(0, y),
bitmap.width());
}
alphaBitmap.setImmutable();
sk_sp<SkImage> alphaImage = createSkImage(alphaBitmap);
assert(alphaImage);
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ") from raster image");
// Don't bother here with ConserveMemory(), mImage -> mAlphaImage conversions should
// generally only happen with the separate-alpha-outdev hack, and those bitmaps should
// be temporary.
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = alphaImage;
// Fix testDelayedScaleAlphaImage unit test
// Do not return the alpha mask if it is awaiting pending scaling.
// Pending scaling has not yet been done at this point since the
// scaling is done in the code following this block.
if (!scaling)
return mAlphaImage;
}
// Move the R channel value to the alpha channel. This seems to be the only
// way to reinterpret data in SkImage as an alpha SkImage without accessing the pixels.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix redToAlpha(0, 0, 0, 0, 0, // R column
0, 0, 0, 0, 0, // G column
0, 0, 0, 0, 0, // B column
1, 0, 0, 0, 0); // A column
SkPaint paint;
paint.setColorFilter(SkColorFilters::Matrix(redToAlpha));
if (scaling)
assert(!mBuffer); // This code should be only called if only mImage holds data.
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
surface->getCanvas()->drawImageRect(
mImage, SkRect::MakeWH(mSize.Width(), mSize.Height()),
scaling ? makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1)
: SkSamplingOptions(),
&paint);
if (scaling)
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << "): image scaled "
<< Size(mImage->width(), mImage->height())
<< "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
else
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ") from image");
// Don't bother here with ConserveMemory(), mImage -> mAlphaImage conversions should
// generally only happen with the separate-alpha-outdev hack, and those bitmaps should
// be temporary.
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
return mAlphaImage;
}
SkiaZone zone;
EnsureBitmapData();
assert(mSize == mPixelsSize); // data has already been scaled if needed
SkBitmap alphaBitmap;
if (mBuffer && mBitCount <= 8)
{
assert(mBuffer.get());
verify();
std::unique_ptr<sal_uInt8[]> data
= convertDataBitCount(mBuffer.get(), mSize.Width(), mSize.Height(), mBitCount,
mScanlineSize, mPalette, BitConvert::A8);
if (!alphaBitmap.installPixels(
SkImageInfo::MakeA8(mSize.Width(), mSize.Height()), data.release(), mSize.Width(),
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
alphaBitmap.setImmutable();
sk_sp<SkImage> image = createSkImage(alphaBitmap);
assert(image);
const_cast<sk_sp<SkImage>&>(mAlphaImage) = image;
}
else
{
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
// Move the R channel value to the alpha channel. This seems to be the only
// way to reinterpret data in SkImage as an alpha SkImage without accessing the pixels.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix redToAlpha(0, 0, 0, 0, 0, // R column
0, 0, 0, 0, 0, // G column
0, 0, 0, 0, 0, // B column
1, 0, 0, 0, 0); // A column
paint.setColorFilter(SkColorFilters::Matrix(redToAlpha));
surface->getCanvas()->drawImage(GetAsSkBitmap().asImage(), 0, 0, SkSamplingOptions(),
&paint);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
}
// The data is now stored both in the SkImage and in our mBuffer, so drop the buffer
// if conserving memory and the conversion back would be simple (it'll be converted back
// by EnsureBitmapData() if needed).
if (ConserveMemory() && mBitCount == 8 && mPalette.IsGreyPalette8Bit() && mReadAccessCount == 0)
{
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << "): dropping buffer");
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mBuffer.reset();
}
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ")");
return mAlphaImage;
}
void SkiaSalBitmap::TryDirectConvertToAlphaNoScaling()
{
// This is a bit of a hack. Because of the VCL alpha hack where alpha is stored
// separately, we often convert mImage to mAlphaImage to represent the alpha
// channel. If code finds out that there is mImage but no mAlphaImage,
// this will create it from it, without checking for delayed scaling (i.e.
// it is "direct").
assert(mImage);
assert(!mAlphaImage);
// Set wanted size, trigger conversion.
Size savedSize = mSize;
mSize = imageSize(mImage);
GetAlphaSkImage();
assert(mAlphaImage);
mSize = savedSize;
}
// If the bitmap is to be erased, SkShader with the color set is more efficient
// than creating an image filled with the color.
bool SkiaSalBitmap::PreferSkShader() const { return mEraseColorSet; }
sk_sp<SkShader> SkiaSalBitmap::GetSkShader(const SkSamplingOptions& samplingOptions,
DirectImage direct) const
{
if (mEraseColorSet)
return SkShaders::Color(toSkColor(mEraseColor));
return GetSkImage(direct)->makeShader(samplingOptions);
}
sk_sp<SkShader> SkiaSalBitmap::GetAlphaSkShader(const SkSamplingOptions& samplingOptions,
DirectImage direct) const
{
if (mEraseColorSet)
return SkShaders::Color(fromEraseColorToAlphaImageColor(mEraseColor));
return GetAlphaSkImage(direct)->makeShader(samplingOptions);
}
bool SkiaSalBitmap::IsFullyOpaqueAsAlpha() const
{
if (!mEraseColorSet) // Set from Erase() or ReleaseBuffer().
return false;
// If the erase color is set so that this bitmap used as alpha would
// mean a fully opaque alpha mask (= noop), we can skip using it.
return SkColorGetA(fromEraseColorToAlphaImageColor(mEraseColor)) == 255;
}
SkAlphaType SkiaSalBitmap::alphaType() const
{
if (mEraseColorSet)
return mEraseColor.IsTransparent() ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
#if SKIA_USE_BITMAP32
// The bitmap's alpha matters only if SKIA_USE_BITMAP32 is set, otherwise
// the alpha is in a separate bitmap.
if (mBitCount == 32)
return kPremul_SkAlphaType;
#endif
return kOpaque_SkAlphaType;
}
void SkiaSalBitmap::PerformErase()
{
if (mPixelsSize.IsEmpty())
return;
BitmapBuffer* bitmapBuffer = AcquireBuffer(BitmapAccessMode::Write);
if (bitmapBuffer == nullptr)
abort();
Color fastColor = mEraseColor;
if (!!mPalette)
fastColor = Color(ColorAlpha, mPalette.GetBestIndex(fastColor));
if (!ImplFastEraseBitmap(*bitmapBuffer, fastColor))
{
FncSetPixel setPixel = BitmapReadAccess::SetPixelFunction(bitmapBuffer->mnFormat);
assert(bitmapBuffer->mnFormat & ScanlineFormat::TopDown);
// Set first scanline, copy to others.
Scanline scanline = bitmapBuffer->mpBits;
for (tools::Long x = 0; x < bitmapBuffer->mnWidth; ++x)
setPixel(scanline, x, mEraseColor, bitmapBuffer->maColorMask);
for (tools::Long y = 1; y < bitmapBuffer->mnHeight; ++y)
memcpy(scanline + y * bitmapBuffer->mnScanlineSize, scanline,
bitmapBuffer->mnScanlineSize);
}
ReleaseBuffer(bitmapBuffer, BitmapAccessMode::Write, true);
}
void SkiaSalBitmap::EnsureBitmapData()
{
if (mEraseColorSet)
{
SkiaZone zone;
assert(mPixelsSize == mSize);
assert(!mBuffer);
CreateBitmapData();
// Unset now, so that repeated call will return mBuffer.
mEraseColorSet = false;
PerformErase();
verify();
SAL_INFO("vcl.skia.trace",
"ensurebitmapdata(" << this << ") from erase color " << mEraseColor);
return;
}
if (mBuffer)
{
if (mSize == mPixelsSize)
return;
// Pending scaling. Create raster SkImage from the bitmap data
// at the pixel size and then the code below will scale at the correct
// bpp from the image.
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): pixels to be scaled "
<< mPixelsSize << "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
Size savedSize = mSize;
mSize = mPixelsSize;
ResetToSkImage(SkImages::RasterFromBitmap(GetAsSkBitmap()));
mSize = savedSize;
}
// Convert from alpha image, if the conversion is simple.
if (mAlphaImage && imageSize(mAlphaImage) == mSize && mBitCount == 8
&& mPalette.IsGreyPalette8Bit())
{
assert(mAlphaImage->colorType() == kAlpha_8_SkColorType);
SkiaZone zone;
SkBitmap bitmap;
SkPixmap pixmap;
if (mAlphaImage->peekPixels(&pixmap))
bitmap.installPixels(pixmap);
else
{
if (!bitmap.tryAllocPixels(SkImageInfo::MakeA8(mSize.Width(), mSize.Height())))
abort();
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
canvas.drawImage(mAlphaImage, 0, 0, SkSamplingOptions(), &paint);
canvas.flush();
}
bitmap.setImmutable();
ResetPendingScaling();
CreateBitmapData();
assert(mBuffer != nullptr);
assert(mPixelsSize == mSize);
if (int(bitmap.rowBytes()) == mScanlineSize)
memcpy(mBuffer.get(), bitmap.getPixels(), mSize.Height() * mScanlineSize);
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
memcpy(dest, src, mScanlineSize);
}
}
verify();
// We've created the bitmap data from mAlphaImage, drop the image if conserving memory,
// it'll be converted back if needed.
if (ConserveMemory())
{
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): dropping images");
ResetToBuffer();
}
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): from alpha image");
return;
}
if (!mImage)
{
// No data at all, create uninitialized data.
CreateBitmapData();
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): uninitialized");
return;
}
// Try to fill mBuffer from mImage.
assert(mImage->colorType() == kN32_SkColorType);
SkiaZone zone;
// If the source image has no alpha, then use no alpha (faster to convert), otherwise
// use kUnpremul_SkAlphaType to make Skia convert from premultiplied alpha when reading
// from the SkImage (the alpha will be ignored if converting to bpp<32 formats, but
// the color channels must be unpremultiplied. Unless bpp==32 and SKIA_USE_BITMAP32,
// in which case use kPremul_SkAlphaType, since SKIA_USE_BITMAP32 implies premultiplied alpha.
SkAlphaType alphaType = kUnpremul_SkAlphaType;
if (mImage->imageInfo().alphaType() == kOpaque_SkAlphaType)
alphaType = kOpaque_SkAlphaType;
#if SKIA_USE_BITMAP32
if (mBitCount == 32)
alphaType = kPremul_SkAlphaType;
#endif
SkBitmap bitmap;
SkPixmap pixmap;
if (imageSize(mImage) == mSize && mImage->imageInfo().alphaType() == alphaType
&& mImage->peekPixels(&pixmap))
{
bitmap.installPixels(pixmap);
}
else
{
if (!bitmap.tryAllocPixels(SkImageInfo::MakeS32(mSize.Width(), mSize.Height(), alphaType)))
abort();
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
if (imageSize(mImage) != mSize) // pending scaling?
{
canvas.drawImageRect(mImage, SkRect::MakeWH(mSize.getWidth(), mSize.getHeight()),
makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1),
&paint);
SAL_INFO("vcl.skia.trace",
"ensurebitmapdata(" << this << "): image scaled " << imageSize(mImage) << "->"
<< mSize << ":" << static_cast<int>(mScaleQuality));
}
else
canvas.drawImage(mImage, 0, 0, SkSamplingOptions(), &paint);
canvas.flush();
}
bitmap.setImmutable();
ResetPendingScaling();
CreateBitmapData();
assert(mBuffer != nullptr);
assert(mPixelsSize == mSize);
if (mBitCount == 32)
{
if (int(bitmap.rowBytes()) == mScanlineSize)
memcpy(mBuffer.get(), bitmap.getPixels(), mSize.Height() * mScanlineSize);
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
memcpy(dest, src, mScanlineSize);
}
}
}
else if (mBitCount == 24) // non-paletted
{
if (int(bitmap.rowBytes()) == mSize.Width() * 4 && mSize.Width() * 3 == mScanlineSize)
{
SkConvertRGBAToRGB(mBuffer.get(), bitmap.getAddr32(0, 0),
mSize.Height() * mSize.Width());
}
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint32_t* src = bitmap.getAddr32(0, y);
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
SkConvertRGBAToRGB(dest, src, mSize.Width());
}
}
}
else if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
{ // no actual data conversion, use one color channel as the gray value
if (int(bitmap.rowBytes()) == mSize.Width() * 4 && mSize.Width() * 1 == mScanlineSize)
{
SkConvertRGBAToR(mBuffer.get(), bitmap.getAddr32(0, 0), mSize.Height() * mSize.Width());
}
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint32_t* src = bitmap.getAddr32(0, y);
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
SkConvertRGBAToR(dest, src, mSize.Width());
}
}
}
else
{
std::unique_ptr<vcl::ScanlineWriter> pWriter
= vcl::ScanlineWriter::Create(mBitCount, mPalette);
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
pWriter->nextLine(dest);
for (tools::Long x = 0; x < mSize.Width(); ++x)
{
sal_uInt8 r = *src++;
sal_uInt8 g = *src++;
sal_uInt8 b = *src++;
++src; // skip alpha
pWriter->writeRGB(r, g, b);
}
}
}
verify();
// We've created the bitmap data from mImage, drop the image if conserving memory,
// it'll be converted back if needed.
if (ConserveMemory())
{
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): dropping images");
ResetToBuffer();
}
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << ")");
}
void SkiaSalBitmap::EnsureBitmapUniqueData()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
EnsureBitmapData();
assert(mPixelsSize == mSize);
if (mBuffer.use_count() > 1)
{
sal_uInt32 allocate = mScanlineSize * mSize.Height();
#ifdef DBG_UTIL
assert(memcmp(mBuffer.get() + allocate, CANARY, sizeof(CANARY)) == 0);
allocate += sizeof(CANARY);
#endif
boost::shared_ptr<sal_uInt8[]> newBuffer = boost::make_shared_noinit<sal_uInt8[]>(allocate);
memcpy(newBuffer.get(), mBuffer.get(), allocate);
mBuffer = newBuffer;
}
}
void SkiaSalBitmap::ResetToBuffer()
{
SkiaZone zone;
// This should never be called to drop mImage if that's the only data we have.
assert(mBuffer || !mImage);
mImage.reset();
mImageImmutable = false;
mAlphaImage.reset();
mEraseColorSet = false;
}
void SkiaSalBitmap::ResetToSkImage(sk_sp<SkImage> image)
{
assert(mReadAccessCount == 0); // can't reset mBuffer if there's a read access pointing to it
SkiaZone zone;
mBuffer.reset();
// Just to be safe, assume mutability of the image does not change
mImage = image;
mAlphaImage.reset();
mEraseColorSet = false;
}
void SkiaSalBitmap::ResetAllData()
{
assert(mReadAccessCount == 0);
SkiaZone zone;
mBuffer.reset();
mImage.reset();
mImageImmutable = false;
mAlphaImage.reset();
mEraseColorSet = false;
mPixelsSize = mSize;
ComputeScanlineSize();
DataChanged();
}
void SkiaSalBitmap::DataChanged() { InvalidateChecksum(); }
void SkiaSalBitmap::ResetPendingScaling()
{
if (mPixelsSize == mSize)
return;
SkiaZone zone;
mScaleQuality = BmpScaleFlag::BestQuality;
mPixelsSize = mSize;
ComputeScanlineSize();
// Information about the pending scaling has been discarded, so make sure we do not
// keep around any cached images that would still need scaling.
if (mImage && imageSize(mImage) != mSize)
{
mImage.reset();
mImageImmutable = false;
}
if (mAlphaImage && imageSize(mAlphaImage) != mSize)
mAlphaImage.reset();
}
OString SkiaSalBitmap::GetImageKey(DirectImage direct) const
{
if (mEraseColorSet)
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(6)
<< static_cast<sal_uInt32>(mEraseColor.GetRGBColor()) << std::setw(2)
<< static_cast<int>(mEraseColor.GetAlpha());
return OString::Concat("E") + ss.str().c_str();
}
assert(direct == DirectImage::No || mImage);
sk_sp<SkImage> image = GetSkImage(direct);
// In some cases drawing code may try to draw the same content but using
// different bitmaps (even underlying bitmaps), for example canvas apparently
// copies the same things around in tdf#146095. For pixel-based images
// it should be still cheaper to compute a checksum and avoid re-caching.
if (!image->isTextureBacked())
return OString::Concat("C") + OString::number(getSkImageChecksum(image));
return OString::Concat("I") + OString::number(image->uniqueID());
}
OString SkiaSalBitmap::GetAlphaImageKey(DirectImage direct) const
{
if (mEraseColorSet)
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(2)
<< static_cast<int>(SkColorGetA(fromEraseColorToAlphaImageColor(mEraseColor)));
return OString::Concat("E") + ss.str().c_str();
}
assert(direct == DirectImage::No || mAlphaImage);
sk_sp<SkImage> image = GetAlphaSkImage(direct);
if (!image->isTextureBacked())
return OString::Concat("C") + OString::number(getSkImageChecksum(image));
return OString::Concat("I") + OString::number(image->uniqueID());
}
void SkiaSalBitmap::dump(const char* file) const
{
// Use a copy, so that debugging doesn't affect this instance.
SkiaSalBitmap copy;
copy.Create(*this);
SkiaHelper::dump(copy.GetSkImage(), file);
}
#ifdef DBG_UTIL
void SkiaSalBitmap::verify() const
{
if (!mBuffer)
return;
// Use mPixelsSize, that describes the size of the actual data.
assert(memcmp(mBuffer.get() + mScanlineSize * mPixelsSize.Height(), CANARY, sizeof(CANARY))
== 0);
}
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */