1de066d04f
Change-Id: I2985b6793a776639214a25bf9732c000b9026bfc Reviewed-on: https://gerrit.libreoffice.org/c/core/+/167236 Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk> Tested-by: Jenkins
122 lines
3.7 KiB
C++
122 lines
3.7 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <MeanValueRegressionCurveCalculator.hxx>
|
|
|
|
#include <osl/diagnose.h>
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
using namespace ::com::sun::star;
|
|
|
|
namespace chart
|
|
{
|
|
|
|
MeanValueRegressionCurveCalculator::MeanValueRegressionCurveCalculator() :
|
|
m_fMeanValue( std::numeric_limits<double>::quiet_NaN() )
|
|
{
|
|
}
|
|
|
|
MeanValueRegressionCurveCalculator::~MeanValueRegressionCurveCalculator()
|
|
{}
|
|
|
|
// ____ XRegressionCurveCalculator ____
|
|
void SAL_CALL MeanValueRegressionCurveCalculator::recalculateRegression(
|
|
const uno::Sequence< double >& /*aXValues*/,
|
|
const uno::Sequence< double >& aYValues )
|
|
{
|
|
sal_Int32 nMax = aYValues.getLength();
|
|
double fSumY = 0.0;
|
|
|
|
for (double y : aYValues)
|
|
{
|
|
if (std::isnan(y) || std::isinf(y))
|
|
--nMax;
|
|
else
|
|
fSumY += y;
|
|
}
|
|
|
|
m_fCorrelationCoefficient = 0.0;
|
|
|
|
if( nMax == 0 )
|
|
{
|
|
m_fMeanValue = std::numeric_limits<double>::quiet_NaN();
|
|
}
|
|
else
|
|
{
|
|
m_fMeanValue = fSumY / static_cast< double >( nMax );
|
|
|
|
// correlation coefficient: standard deviation
|
|
if( nMax > 1 )
|
|
{
|
|
double fErrorSum = 0.0;
|
|
for (double y : aYValues)
|
|
{
|
|
if (!std::isnan(y) && !std::isinf(y))
|
|
{
|
|
double v = m_fMeanValue - y;
|
|
fErrorSum += (v*v);
|
|
}
|
|
}
|
|
OSL_ASSERT( fErrorSum >= 0.0 );
|
|
m_fCorrelationCoefficient = sqrt( fErrorSum / (nMax - 1 ));
|
|
}
|
|
}
|
|
}
|
|
|
|
double SAL_CALL MeanValueRegressionCurveCalculator::getCurveValue( double /*x*/ )
|
|
{
|
|
return m_fMeanValue;
|
|
}
|
|
|
|
uno::Sequence< geometry::RealPoint2D > SAL_CALL MeanValueRegressionCurveCalculator::getCurveValues(
|
|
double min, double max, ::sal_Int32 nPointCount,
|
|
const uno::Reference< chart2::XScaling >& xScalingX,
|
|
const uno::Reference< chart2::XScaling >& xScalingY,
|
|
sal_Bool bMaySkipPointsInCalculation )
|
|
{
|
|
if( bMaySkipPointsInCalculation )
|
|
{
|
|
// optimize result
|
|
uno::Sequence< geometry::RealPoint2D > aResult{ { min, m_fMeanValue },
|
|
{ max, m_fMeanValue } };
|
|
|
|
return aResult;
|
|
}
|
|
return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
|
|
}
|
|
|
|
OUString MeanValueRegressionCurveCalculator::ImplGetRepresentation(
|
|
const uno::Reference< util::XNumberFormatter >& xNumFormatter,
|
|
sal_Int32 nNumberFormatKey, sal_Int32* pFormulaLength /* = nullptr */ ) const
|
|
{
|
|
OUString aBuf(mYName + " = ");
|
|
if ( pFormulaLength )
|
|
{
|
|
*pFormulaLength -= aBuf.getLength();
|
|
if ( *pFormulaLength <= 0 )
|
|
return u"###"_ustr;
|
|
}
|
|
return ( aBuf + getFormattedString( xNumFormatter, nNumberFormatKey, m_fMeanValue, pFormulaLength ) );
|
|
}
|
|
|
|
} // namespace chart
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|