office-gobmx/compilerplugins/clang/methodcycles.cxx
Luboš Luňák 8d8d25f5dd make FORCE_COMPILE_ALL more flexible than all or nothing
Rename it to FORCE_COMPILE and it takes the --enable-symbols
specification of what to include, for example
FORCE_COMPILE="all -sw/ -Library_sc".

Change-Id: I92afd8e0abc75d3566285c197d6640c26c03db36
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/122248
Tested-by: Jenkins
Reviewed-by: Luboš Luňák <l.lunak@collabora.com>
2021-09-18 19:24:46 +02:00

380 lines
13 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include <cassert>
#include <string>
#include <iostream>
#include <fstream>
#include <set>
#include <unordered_set>
#include <map>
#include "clang/AST/Attr.h"
#include "plugin.hxx"
/**
What we are looking for here are methods that are not reachable from any of the program
entry points.
"Entry points" includes main, and various binary API
Mostly that means we end up finding cycles of methods i.e. methods that refer to each
other, but are not reachable.
It does so, by dumping various call/definition info to a log file.
Be warned that it produces around 20G of log file.
Then we will post-process the log file with a python script, which takes about
15min to run on a fast machine.
The process goes something like this:
$ make check
$ make FORCE_COMPILE=all COMPILER_PLUGIN_TOOL='methodcycles' check
$ ./compilerplugins/clang/methodcycles.py
Note that the actual process may involve a fair amount of undoing, hand editing, and general messing around
to get it to work :-)
*/
namespace
{
struct MyFuncInfo
{
std::string returnType;
std::string nameAndParams;
std::string sourceLocation;
};
bool operator<(const MyFuncInfo& lhs, const MyFuncInfo& rhs)
{
return std::tie(lhs.returnType, lhs.nameAndParams)
< std::tie(rhs.returnType, rhs.nameAndParams);
}
// try to limit the voluminous output a little
static std::multimap<const FunctionDecl*, const FunctionDecl*> callMap;
static std::set<MyFuncInfo> definitionSet;
class MethodCycles : public RecursiveASTVisitor<MethodCycles>, public loplugin::Plugin
{
public:
explicit MethodCycles(loplugin::InstantiationData const& data)
: Plugin(data)
{
}
virtual void run() override
{
TraverseDecl(compiler.getASTContext().getTranslationUnitDecl());
// dump all our output in one write call - this is to try and limit IO "crosstalk" between multiple processes
// writing to the same logfile
std::string output;
for (const MyFuncInfo& s : definitionSet)
output += "definition:\t" + s.returnType + "\t" + s.nameAndParams + "\t"
+ s.sourceLocation + "\n";
for (const auto& pair : callMap)
{
if (!isLocationMine(pair.first->getLocation())
|| !isLocationMine(pair.second->getLocation()))
continue;
auto niceNameFrom = niceName(pair.first);
auto niceNameTo = niceName(pair.second);
output += "call:\t" + niceNameFrom.returnType + "\t" + niceNameFrom.nameAndParams + "\t"
+ niceNameTo.returnType + "\t" + niceNameTo.nameAndParams + "\n";
}
std::ofstream myfile;
myfile.open(WORKDIR "/loplugin.methodcycles.log", std::ios::app | std::ios::out);
myfile << output;
myfile.close();
}
bool shouldVisitTemplateInstantiations() const { return true; }
bool shouldVisitImplicitCode() const { return true; }
bool VisitCallExpr(CallExpr*);
bool VisitFunctionDecl(const FunctionDecl* decl);
bool VisitDeclRefExpr(const DeclRefExpr*);
bool VisitCXXConstructExpr(const CXXConstructExpr*);
bool TraverseFunctionDecl(FunctionDecl*);
bool TraverseCXXMethodDecl(CXXMethodDecl*);
bool TraverseCXXConstructorDecl(CXXConstructorDecl*);
bool TraverseCXXConversionDecl(CXXConversionDecl*);
bool TraverseCXXDestructorDecl(CXXDestructorDecl*);
bool TraverseCXXDeductionGuideDecl(CXXDeductionGuideDecl*);
private:
void logCallToRootMethods(const FunctionDecl* functionDeclFrom,
const FunctionDecl* functionDeclTo);
void findRoots(const FunctionDecl* functionDecl,
std::unordered_set<const FunctionDecl*>& roots);
MyFuncInfo niceName(const FunctionDecl* functionDecl);
bool isLocationMine(SourceLocation loc);
std::string toString(SourceLocation loc);
FunctionDecl const* currentFunctionDecl = nullptr;
};
MyFuncInfo MethodCycles::niceName(const FunctionDecl* functionDecl)
{
if (functionDecl->getInstantiatedFromMemberFunction())
functionDecl = functionDecl->getInstantiatedFromMemberFunction();
#if CLANG_VERSION < 90000
else if (functionDecl->getClassScopeSpecializationPattern())
functionDecl = functionDecl->getClassScopeSpecializationPattern();
#endif
else if (functionDecl->getTemplateInstantiationPattern())
functionDecl = functionDecl->getTemplateInstantiationPattern();
MyFuncInfo aInfo;
if (!isa<CXXConstructorDecl>(functionDecl))
{
aInfo.returnType = functionDecl->getReturnType().getCanonicalType().getAsString();
}
else
{
aInfo.returnType = "";
}
if (auto methodDecl = dyn_cast<CXXMethodDecl>(functionDecl))
{
const CXXRecordDecl* recordDecl = methodDecl->getParent();
aInfo.nameAndParams
= recordDecl->getQualifiedNameAsString() + "::" + functionDecl->getNameAsString() + "(";
}
else
{
aInfo.nameAndParams = functionDecl->getQualifiedNameAsString() + "(";
}
bool bFirst = true;
for (const ParmVarDecl* pParmVarDecl : functionDecl->parameters())
{
if (bFirst)
bFirst = false;
else
aInfo.nameAndParams += ",";
aInfo.nameAndParams += pParmVarDecl->getType().getCanonicalType().getAsString();
}
aInfo.nameAndParams += ")";
if (isa<CXXMethodDecl>(functionDecl) && dyn_cast<CXXMethodDecl>(functionDecl)->isConst())
{
aInfo.nameAndParams += " const";
}
aInfo.sourceLocation = toString(functionDecl->getLocation());
return aInfo;
}
std::string MethodCycles::toString(SourceLocation loc)
{
SourceLocation expansionLoc = compiler.getSourceManager().getExpansionLoc(loc);
StringRef name = getFilenameOfLocation(expansionLoc);
std::string sourceLocation
= std::string(name.substr(strlen(SRCDIR) + 1)) + ":"
+ std::to_string(compiler.getSourceManager().getSpellingLineNumber(expansionLoc));
loplugin::normalizeDotDotInFilePath(sourceLocation);
return sourceLocation;
}
bool MethodCycles::isLocationMine(SourceLocation loc)
{
SourceLocation expansionLoc = compiler.getSourceManager().getExpansionLoc(loc);
if (compiler.getSourceManager().isInSystemHeader(expansionLoc))
return false;
const char* bufferName = compiler.getSourceManager().getPresumedLoc(expansionLoc).getFilename();
if (bufferName == NULL)
return false;
if (loplugin::hasPathnamePrefix(bufferName, WORKDIR "/")
|| loplugin::hasPathnamePrefix(bufferName, BUILDDIR "/")
|| loplugin::hasPathnamePrefix(bufferName, SRCDIR "/"))
return true; // ok
return false;
}
void MethodCycles::logCallToRootMethods(const FunctionDecl* functionDeclFrom,
const FunctionDecl* functionDeclTo)
{
if (!functionDeclFrom)
{
// template magic mostly, but also things called from initialisers
return;
}
functionDeclFrom = functionDeclFrom->getCanonicalDecl();
functionDeclTo = functionDeclTo->getCanonicalDecl();
std::unordered_set<const FunctionDecl*> fromRoots;
findRoots(functionDeclFrom, fromRoots);
std::unordered_set<const FunctionDecl*> toRoots;
findRoots(functionDeclTo, toRoots);
for (auto const& from : fromRoots)
for (auto const& to : toRoots)
callMap.insert({ from, to });
}
void MethodCycles::findRoots(const FunctionDecl* functionDecl,
std::unordered_set<const FunctionDecl*>& roots)
{
bool bCalledSuperMethod = false;
if (auto methodDecl = dyn_cast<CXXMethodDecl>(functionDecl))
{
// For virtual/overriding methods, we need to pretend we called from/to root method(s),
// so that they get marked as used.
for (auto it = methodDecl->begin_overridden_methods();
it != methodDecl->end_overridden_methods(); ++it)
{
findRoots(*it, roots);
bCalledSuperMethod = true;
}
}
if (!bCalledSuperMethod)
{
while (functionDecl->getTemplateInstantiationPattern())
functionDecl = functionDecl->getTemplateInstantiationPattern();
if (functionDecl->getLocation().isValid())
roots.insert(functionDecl);
}
}
bool MethodCycles::VisitCallExpr(CallExpr* expr)
{
// Note that I don't ignore ANYTHING here, because I want to get calls to my code that result
// from template instantiation deep inside the STL and other external code
FunctionDecl* calleeFunctionDecl = expr->getDirectCallee();
if (calleeFunctionDecl == nullptr)
{
Expr* callee = expr->getCallee()->IgnoreParenImpCasts();
DeclRefExpr* dr = dyn_cast<DeclRefExpr>(callee);
if (dr)
{
calleeFunctionDecl = dyn_cast<FunctionDecl>(dr->getDecl());
if (calleeFunctionDecl)
goto gotfunc;
}
return true;
}
gotfunc:
if (currentFunctionDecl != calleeFunctionDecl)
// ignore recursive calls
logCallToRootMethods(currentFunctionDecl, calleeFunctionDecl);
return true;
}
bool MethodCycles::VisitCXXConstructExpr(const CXXConstructExpr* constructExpr)
{
// Note that I don't ignore ANYTHING here, because I want to get calls to my code that result
// from template instantiation deep inside the STL and other external code
const CXXConstructorDecl* constructorDecl = constructExpr->getConstructor();
constructorDecl = constructorDecl->getCanonicalDecl();
if (!constructorDecl->getLocation().isValid())
{
return true;
}
logCallToRootMethods(currentFunctionDecl, constructorDecl);
return true;
}
bool MethodCycles::VisitFunctionDecl(const FunctionDecl* functionDecl)
{
const FunctionDecl* canonicalFunctionDecl = functionDecl->getCanonicalDecl();
if (functionDecl->isDeleted())
return true;
// don't care about compiler-generated functions
if (functionDecl->isImplicit())
return true;
if (!canonicalFunctionDecl->getLocation().isValid())
return true;
// ignore method overrides, since the call will show up as being directed to the root method
const CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(functionDecl);
if (methodDecl
&& (methodDecl->size_overridden_methods() != 0 || methodDecl->hasAttr<OverrideAttr>()))
return true;
if (!isLocationMine(canonicalFunctionDecl->getLocation()))
return true;
MyFuncInfo funcInfo = niceName(canonicalFunctionDecl);
definitionSet.insert(funcInfo);
return true;
}
bool MethodCycles::VisitDeclRefExpr(const DeclRefExpr* declRefExpr)
{
const FunctionDecl* functionDecl = dyn_cast<FunctionDecl>(declRefExpr->getDecl());
if (!functionDecl)
{
return true;
}
logCallToRootMethods(currentFunctionDecl, functionDecl->getCanonicalDecl());
return true;
}
bool MethodCycles::TraverseFunctionDecl(FunctionDecl* f)
{
auto copy = currentFunctionDecl;
currentFunctionDecl = f;
bool ret = RecursiveASTVisitor::TraverseFunctionDecl(f);
currentFunctionDecl = copy;
return ret;
}
bool MethodCycles::TraverseCXXMethodDecl(CXXMethodDecl* f)
{
auto copy = currentFunctionDecl;
currentFunctionDecl = f;
bool ret = RecursiveASTVisitor::TraverseCXXMethodDecl(f);
currentFunctionDecl = copy;
return ret;
}
bool MethodCycles::TraverseCXXConversionDecl(CXXConversionDecl* f)
{
auto copy = currentFunctionDecl;
currentFunctionDecl = f;
bool ret = RecursiveASTVisitor::TraverseCXXConversionDecl(f);
currentFunctionDecl = copy;
return ret;
}
bool MethodCycles::TraverseCXXDeductionGuideDecl(CXXDeductionGuideDecl* f)
{
auto copy = currentFunctionDecl;
currentFunctionDecl = f;
bool ret = RecursiveASTVisitor::TraverseCXXDeductionGuideDecl(f);
currentFunctionDecl = copy;
return ret;
}
bool MethodCycles::TraverseCXXConstructorDecl(CXXConstructorDecl* f)
{
auto copy = currentFunctionDecl;
currentFunctionDecl = f;
bool ret = RecursiveASTVisitor::TraverseCXXConstructorDecl(f);
currentFunctionDecl = copy;
return ret;
}
bool MethodCycles::TraverseCXXDestructorDecl(CXXDestructorDecl* f)
{
auto copy = currentFunctionDecl;
currentFunctionDecl = f;
bool ret = RecursiveASTVisitor::TraverseCXXDestructorDecl(f);
currentFunctionDecl = copy;
return ret;
}
loplugin::Plugin::Registration<MethodCycles> X("methodcycles", false);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */