1ab27f9ae6
Change-Id: I4d21cfcc65c099fbddbe5146fc1b8a6257971e32 Reviewed-on: https://gerrit.libreoffice.org/61555 Tested-by: Jenkins Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
179 lines
5.6 KiB
C++
179 lines
5.6 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
*/
|
|
|
|
#ifndef INCLUDED_SCCOMP_SOURCE_PARTICLESWARM_HXX
|
|
#define INCLUDED_SCCOMP_SOURCE_PARTICLESWARM_HXX
|
|
|
|
#include <vector>
|
|
#include <random>
|
|
#include <limits>
|
|
|
|
struct Particle
|
|
{
|
|
Particle(size_t nDimensionality)
|
|
: mVelocity(nDimensionality)
|
|
, mPosition(nDimensionality)
|
|
, mCurrentFitness(std::numeric_limits<float>::lowest())
|
|
, mBestPosition(nDimensionality)
|
|
, mBestFitness(std::numeric_limits<float>::lowest())
|
|
{
|
|
}
|
|
|
|
std::vector<double> mVelocity;
|
|
|
|
std::vector<double> mPosition;
|
|
double mCurrentFitness;
|
|
|
|
std::vector<double> mBestPosition;
|
|
double mBestFitness;
|
|
};
|
|
|
|
template <typename DataProvider> class ParticleSwarmOptimizationAlgorithm
|
|
{
|
|
private:
|
|
// inertia
|
|
static constexpr double constWeight = 0.729;
|
|
// cognitive coefficient
|
|
static constexpr double c1 = 1.49445;
|
|
// social coefficient
|
|
static constexpr double c2 = 1.49445;
|
|
|
|
static constexpr double constAcceptedPrecision = 0.000000001;
|
|
|
|
DataProvider& mrDataProvider;
|
|
|
|
size_t const mnNumOfParticles;
|
|
|
|
std::vector<Particle> maSwarm;
|
|
|
|
std::random_device maRandomDevice;
|
|
std::mt19937 maGenerator;
|
|
size_t mnDimensionality;
|
|
|
|
std::uniform_real_distribution<> maRandom01;
|
|
|
|
std::vector<double> maBestPosition;
|
|
double mfBestFitness;
|
|
int mnGeneration;
|
|
int mnLastChange;
|
|
|
|
public:
|
|
ParticleSwarmOptimizationAlgorithm(DataProvider& rDataProvider, size_t nNumOfParticles)
|
|
: mrDataProvider(rDataProvider)
|
|
, mnNumOfParticles(nNumOfParticles)
|
|
, maGenerator(maRandomDevice())
|
|
, mnDimensionality(mrDataProvider.getDimensionality())
|
|
, maRandom01(0.0, 1.0)
|
|
, maBestPosition(mnDimensionality)
|
|
, mfBestFitness(std::numeric_limits<float>::lowest())
|
|
, mnGeneration(0)
|
|
, mnLastChange(0)
|
|
{
|
|
}
|
|
|
|
std::vector<double> const& getResult() { return maBestPosition; }
|
|
|
|
int getGeneration() { return mnGeneration; }
|
|
|
|
int getLastChange() { return mnLastChange; }
|
|
|
|
void initialize()
|
|
{
|
|
mnGeneration = 0;
|
|
mnLastChange = 0;
|
|
maSwarm.clear();
|
|
|
|
mfBestFitness = std::numeric_limits<float>::lowest();
|
|
|
|
maSwarm.reserve(mnNumOfParticles);
|
|
for (size_t i = 0; i < mnNumOfParticles; i++)
|
|
{
|
|
maSwarm.emplace_back(mnDimensionality);
|
|
Particle& rParticle = maSwarm.back();
|
|
|
|
mrDataProvider.initializeVariables(rParticle.mPosition, maGenerator);
|
|
mrDataProvider.initializeVariables(rParticle.mVelocity, maGenerator);
|
|
|
|
for (size_t k = 0; k < mnDimensionality; k++)
|
|
{
|
|
rParticle.mPosition[k] = mrDataProvider.clampVariable(k, rParticle.mPosition[k]);
|
|
}
|
|
|
|
rParticle.mCurrentFitness = mrDataProvider.calculateFitness(rParticle.mPosition);
|
|
|
|
for (size_t k = 0; k < mnDimensionality; k++)
|
|
{
|
|
rParticle.mPosition[k] = mrDataProvider.clampVariable(k, rParticle.mPosition[k]);
|
|
}
|
|
|
|
std::copy(rParticle.mPosition.begin(), rParticle.mPosition.end(),
|
|
rParticle.mBestPosition.begin());
|
|
rParticle.mBestFitness = rParticle.mCurrentFitness;
|
|
|
|
if (rParticle.mCurrentFitness > mfBestFitness)
|
|
{
|
|
mfBestFitness = rParticle.mCurrentFitness;
|
|
std::copy(rParticle.mPosition.begin(), rParticle.mPosition.end(),
|
|
maBestPosition.begin());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool next()
|
|
{
|
|
bool bBestChanged = false;
|
|
|
|
for (Particle& rParticle : maSwarm)
|
|
{
|
|
double fRandom1 = maRandom01(maGenerator);
|
|
double fRandom2 = maRandom01(maGenerator);
|
|
|
|
for (size_t k = 0; k < mnDimensionality; k++)
|
|
{
|
|
rParticle.mVelocity[k]
|
|
= (constWeight * rParticle.mVelocity[k])
|
|
+ (c1 * fRandom1 * (rParticle.mBestPosition[k] - rParticle.mPosition[k]))
|
|
+ (c2 * fRandom2 * (maBestPosition[k] - rParticle.mPosition[k]));
|
|
|
|
mrDataProvider.clampVariable(k, rParticle.mVelocity[k]);
|
|
|
|
rParticle.mPosition[k] += rParticle.mVelocity[k];
|
|
rParticle.mPosition[k] = mrDataProvider.clampVariable(k, rParticle.mPosition[k]);
|
|
}
|
|
|
|
rParticle.mCurrentFitness = mrDataProvider.calculateFitness(rParticle.mPosition);
|
|
|
|
if (rParticle.mCurrentFitness > rParticle.mBestFitness)
|
|
{
|
|
rParticle.mBestFitness = rParticle.mCurrentFitness;
|
|
std::copy(rParticle.mPosition.begin(), rParticle.mPosition.end(),
|
|
rParticle.mBestPosition.begin());
|
|
}
|
|
|
|
if (rParticle.mCurrentFitness > mfBestFitness)
|
|
{
|
|
if (std::abs(rParticle.mCurrentFitness - mfBestFitness) > constAcceptedPrecision)
|
|
{
|
|
bBestChanged = true;
|
|
mnLastChange = mnGeneration;
|
|
}
|
|
std::copy(rParticle.mPosition.begin(), rParticle.mPosition.end(),
|
|
maBestPosition.begin());
|
|
mfBestFitness = rParticle.mCurrentFitness;
|
|
}
|
|
}
|
|
mnGeneration++;
|
|
return bBestChanged;
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|